The Possibility of Using Slag for the Production of Geopolymer Materials and Its Influence on Mechanical Performances—A Review †
Abstract
:1. Introduction
2. Results and Discussions
2.1. Development of Geopolymer Materials without Heat Treatment
2.2. Development of Geopolymer Materials with Heat Treatment
2.3. Development of Geopolymer Materials with High Chemical Attack Properties
3. Conclusions
Funding
Conflicts of Interest
References
- Ashadi, H.W.; Aprilando, B.A.; Astutiningsih, S. Effects of Steel Slag Substitution in Geopolymer Concrete on Compressive Strength and Corrosion Rate of Steel Reinforcement in Seawater and an Acid Rain Enviroment. Int. J. Technol. 2015, 2, 227–235. [Google Scholar] [CrossRef]
- De Silva, P.; Sagoe-Crenstil, K.; Sirivivatnanon, V. Kinetics of geopolymerisation: Role of Al2O3 and SiO2. Cem. Conc. Res. 2007, 37, 512–518. [Google Scholar] [CrossRef]
- Bosoaga Masek, O.; Oakey, J.E. CO2 capture technologies for cement Industry, Energy. Procedia 2009, 1, 133–140. [Google Scholar]
- Barcelo, L.; Kline, J.; Walenta, G.; Gartner, E. Cement and carbon emissions. Mater. Struct. 2014, 47, 1055–1065. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007, 37, 1590–1597. [Google Scholar] [CrossRef]
- Shen, H.; Forssberg, E. An Overview of Recovery of Metals from Slags. Waste Manag. 2003, 23, 933–949. [Google Scholar] [CrossRef]
- Liu, J.; Dongmin, W. Application of Ground Granulate Blast FurnaceSlag-Steel Slag Composite Binder in a Massive ConcreteStructure under Severe Sulphate Attack. Adv. Mater. Sci. Eng. 2017, 2017, 9493043. [Google Scholar] [CrossRef]
- Furlani, E.; Tonello, G.; Maschio, S. Recycling of steelslag and glass cullet from energy saving lamps by fast firingproduction of ceramics. Waste Manag. 2010, 30, 1714–1719. [Google Scholar] [CrossRef]
- El-Sayed, H.A.; El-Enein, S.A.A.; Khater, H.M.; Hasanein, S.A. Resistance of alkali activated water-cooled slag geopolymer to sulphate attack. Ceram Silik. 2011, 55, 153–160. [Google Scholar]
- Yang, H.F.; Dang, C.G.; Xu, W. Preparation of geopolymer using the slag from direct reduction-magnetic separation of refractory iron ore (SDRMS). Manuf. Sci. Technol. 2012, 383, 911–915. [Google Scholar] [CrossRef]
- Kashani, A.; Provis, J.L.; van Deventer, J.S.J. Effect of ground granulated blast furnace slag particle size distribution on paste rheology: A preliminary model. AIP Conf. Proc. 2013, 1542, 1094–1097. [Google Scholar]
- Indian Minerals Yearbook 2012 Part- II: Metals & Alloys, 51st Edition, Slag–Iron and Steel; Government of India, Ministry of Mines, Indian Bureau of Mines: Nagpur, India, 2012.
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.-B. Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cem. Concr. Res. 1999, 29, 1619–1625. [Google Scholar] [CrossRef]
- Wang, S.-D.; Scrivener, K.L.; Pratt, P.L. Factors affecting the strength of alkali-activated slag. Cem. Concr. Res. 1994, 24, 1033–1043. [Google Scholar] [CrossRef]
- Bijen, J. Benefits of slag and fly ash. Construct. Build. Mater. 1996, 10, 309–314. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Effect of GGBFS on setting, workability and earlystrength properties of fly ash geopolymer concrete cured in ambient condition. Construct. Build. Mater. 2014, 66, 163–171. [Google Scholar] [CrossRef]
- Provis, J.L. Geopolymers and other alkali activated materials: Why, how, and what? Mater. Struct. 2014, 47, 11–25. [Google Scholar] [CrossRef]
- Shi, C.; Qian, J. High Performance Cementing Materials from Industrial slags—A review. Resour. Conserv. Recycl. 1999, 29, 195–207. [Google Scholar] [CrossRef]
- Purdon, A.O. The action of alkalis on blast furnace slag. J. Soc. Chem. Ind. 1940, 59, 191–202. [Google Scholar]
- Recommended Practice- Geopolymer Concrete 2011; Concrete Institute of Australia: Sydney, Australia, 2011.
- Kim, H.; Kim, Y. Characteristics of the Geopolymer using Fly Ash and Blast Furnace Slag with Alkaline Activators. In Proceedings of the 4th International Conference on Chemical, Biological and Environmental Engineering, Phket, Thailand, 1–2 September 2012; IPCBEE: Singapore, 2012; Volume 43, pp. 154–159. [Google Scholar]
- Ghosh, K.; Ghosh, P. Effect of variation of slag content on chemical, engineering and microstructural properties of thermally cured fly ash-slag based geopolymer composites. Rasayan J. Chem. 2018, 11, 426–439. [Google Scholar]
- Premalatha, P.V.; Rhema Rose, C.; Aboorvaraj, K.A. A Comparison of Geopolymer Concrete Blended with Steel Slag under Sunlight and Ambient Curing. AJAST 2018, 2, 55–62. [Google Scholar]
- Luga, E.; Atis, D.C.; Karahan, O.; Ilkentapar, S.; Gorur, E.B. Strength properties of slag/fly ash blends activated with sodium metasilicate. GRAĐEVINAR 2017, 69, 199–205. [Google Scholar]
- Nematollahi, B. Investigation of Geopolymer as a Sustainable Alternative Binder for Fiber-Reinforced Strain-Hardening Composites. Ph.D. Thesis, Faculty of Science, Engineering and Technology, Swinburne University of Technoogy, Hawthorn, Australia, 2017. [Google Scholar]
- Karthik, A.; Sudalaimani, K.; Vijayakumar, C.T. Durability study on coal fly ash-blast furnace slag geopolymer concretes with bio-additives. Ceram. Int. 2017, 43, 11935–11943. [Google Scholar] [CrossRef]
- Neupane, K.; Sriravindrarajah, R.; Baweja, D.; Des Chalmers, I. Effect of curing on the compressive strength development in structural grades of geocement concrete. Construct. Build. Mater. 2015, 94, 241–248. [Google Scholar] [CrossRef]
- Hassan, A.; Arif, M.; Shariq, M. Use of Geopolymer Concrete for a Cleaner and Sustainable Environment—A Review of Mechanical Properties and Microstructure. J. Clean. Prod. 2019, 223, 704–728. [Google Scholar] [CrossRef]
- Lzrescu, A.; Szilagyi, H.; Ioani, A.; Baer, C. Parameters Affecting the Mechanical Properties of Fly Ash-Based Geopolymer Binders-Experimental Results. IOP Conf. Ser. Mater. Sci. Eng. 2018, 374, 012035. [Google Scholar] [CrossRef]
- Lzrescu, A.V.; Szilagyi, H.; Baer, C.; Ioani, A. The Effect of Alkaline Activator Ratio on the Compressive Strength of Fly Ash-Based Geopolymer Paste. IOP Conf. Ser. Mater. Sci. Eng. 2017, 209, 012064. [Google Scholar] [CrossRef]
- Nergis, D.D.B.; Abdullah, M.M.A.; Sandu, A.V.; Vizureanu, P. XRD and TG-DTA study of new alkali activated materials based on fly ash with sand and glass powder. Materials 2020, 13, 343. [Google Scholar] [CrossRef]
- Lee, N.; Lee, H. Setting and mechanical properties of alkali-activatedfly ash/slag concrete manufactured at room temperature. Construct. Build. Mater. 2013, 47, 1201–1209. [Google Scholar] [CrossRef]
- Lee, N.; Lee, H. Reactivity and reaction products of alkali-activated, fly ash/slag paste. Construct. Build. Mater. 2015, 81, 303–312. [Google Scholar] [CrossRef]
- Diaz, E.I.; Allouche, E.N.; Eklund, S. Factors affecting the suitability of fly ash as source material for geopolymers. Fuel 2010, 89, 992–996. [Google Scholar] [CrossRef]
- Fernandez-Jimenez, A.; Palomo, A.; Sobrados, I.; Sanz, J. The role played by the reactive alumina content in the alkaline activation of fly ashes. Micoporous Mesoporous. Materials 2006, 91, 111–119. [Google Scholar]
- Khale, D.; Chauldhary, R. Mechanism of geopolymerization and factors influencing its deveolpment: A review. J. Mater. Sci. 2007, 42, 729–746. [Google Scholar] [CrossRef]
- Dutta, D.; Chakrabarty, S.; Bose, C.; Ghosh, S. Evaluation of geopolymer properties with temperature imposed on activator prior mixing with fly ash. Int. J. Civ. Eng. 2012, 3, 205–213. [Google Scholar]
- Puertas, F.; Martinez-Ramirez, S.; Alonso, S.; Vazquez, T. Alkali-Activated Fly Ash/Slag Cement Strength Behaviour, Hydration Products. Cem. Concr. Res. 2000, 30, 1625–1632. [Google Scholar] [CrossRef]
- Provis, J.L.; Myers, R.J.; White, C.E.; Rose, V.; van Deventer, J.S.J. X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cem. Concr. Res. 2012, 42, 855–864. [Google Scholar] [CrossRef]
Oxide | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | L.O.I. | Ref. |
---|---|---|---|---|---|---|---|---|
Fly Ash | 21.94 | 8.46 | 6.05 | 45.4 | 6.06 | 0 | 6.65 | [21] |
Blast furnace slag | 37.33 | 12.49 | 0.26 | 43.3 | 5.31 | 0 | 0 | |
Fly Ash | 65.81 | 22.17 | 3.23 | 1.24 | 1.01 | 0.47 | 1.57 | [22] |
Slag | 37.25 | 10.24 | 1.1 | 42.17 | 3.82 | 2.13 | 0.81 | |
Fly Ash | 52.0 | 33.9 | 4.0 | 1.2 | 0.81 | 0.28 | 6.23 | [23] |
Steel Slag | 10–19 | 1–3 | 10–40 (FeO) | 40–52 | 5–10 | - | ||
Fly Ash | 61.81 | 19.54 | 7.01 | 1.77 | 2.56 | 0.31 | 2.20 | [24] |
Ground Granulated Blast Furnace Slag | 36.7 | 5.20 | 0.98 | 32.61 | 10.12 | 0.99 | 2.88 | |
Fly ash | 51.11 | 25.56 | 12.48 | 4.3 | 1.45 | 0.24 | 0.57 | [25] |
Slag | 32.76 | 12.37 | 0.54 | 44.64 | 5.15 | 4.26 | 0.09 | |
Fly Ash | 63.53 | 27.40 | 3.67 | 1.26 | 0.35 | 0.01 | - | [26] |
Slag | 34.26 | 11.32 | 0.61 | 38.34 | 7.94 | 3.84 | - | |
Fly Ash | 48.3 | 28.3 | 11.8 | 3.97 | 1.51 | 0.22 | 1.74 | [27] |
Slag | 32.9 | 14.3 | 0.47 | 41.2 | 5.42 | 2.40 | 0.36 |
Mixture | FA/BFS Ratio | Compressive Strength [MPa] | Binder/Water Ratio | NaOH Molarity |
---|---|---|---|---|
I | 100:0 | 2.81 | ||
II | 50:50 | 23.51 | 100:40 | 2.78 |
III | 0:100 | 44.41 |
Mixture | FA/GGBFS Ratio | Compressive Strength at 28 Days [MPa] |
---|---|---|
I | 100:0 | 3.1 |
II | 80:20 | 8.4 |
III | 60:40 | 18.2 |
IV | 40:60 | 39.3 |
V | 20:80 | 57.6 |
VI | 0:100 | 74.8 |
Mixture | Steel Slag [%] | Compressive Strength [MPa] | |||
---|---|---|---|---|---|
2 Days | 7 Days | 14 Days | 28 Days | ||
I | 2.0 | 3.5 | 8.5 | 13.3 | 21.3 |
II | 2.5 | 4.8 | 9.3 | 14.7 | 23.9 |
III | 3.0 | 3.3 | 7.8 | 12.9 | 18.6 |
IV | 3.5 | 3.6 | 7.2 | 11.9 | 16.6 |
Mixture | FA:BFS | Na2SiO3-Anhydrous Activator | Water | W/GP Solid Ratio | Compressive Strength [MPa] |
---|---|---|---|---|---|
I | 0.394 | 0.36 | 18.4 | ||
II | 75:25 | 0.120 | 0.400 | 0.36 | 30.5 |
III | 0.300 | 0.27 | 37.3 |
Mixture | FA/GGBFS Ratio | Compressive Strength [MPa] |
---|---|---|
I | 100:0 | 15.4 |
II | 80:20 | 13.7 |
III | 60:40 | 12.1 |
IV | 40:60 | 46.6 |
V | 20:80 | 45.7 |
VI | 0:100 | 42.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ionescu, B.A.; Lăzărescu, A.-V.; Hegyi, A. The Possibility of Using Slag for the Production of Geopolymer Materials and Its Influence on Mechanical Performances—A Review. Proceedings 2020, 63, 30. https://doi.org/10.3390/proceedings2020063030
Ionescu BA, Lăzărescu A-V, Hegyi A. The Possibility of Using Slag for the Production of Geopolymer Materials and Its Influence on Mechanical Performances—A Review. Proceedings. 2020; 63(1):30. https://doi.org/10.3390/proceedings2020063030
Chicago/Turabian StyleIonescu, Brăduț Alexandru, Adrian-Victor Lăzărescu, and Andreea Hegyi. 2020. "The Possibility of Using Slag for the Production of Geopolymer Materials and Its Influence on Mechanical Performances—A Review" Proceedings 63, no. 1: 30. https://doi.org/10.3390/proceedings2020063030
APA StyleIonescu, B. A., Lăzărescu, A. -V., & Hegyi, A. (2020). The Possibility of Using Slag for the Production of Geopolymer Materials and Its Influence on Mechanical Performances—A Review. Proceedings, 63(1), 30. https://doi.org/10.3390/proceedings2020063030