Dual-Band 28/38 GHz Inverted-F Array Antenna for Fifth Generation Mobile Applications †
Abstract
:1. Introduction
2. The Single Element “Inverted-F” Antenna
2.1. Antenna Geometry
2.2. Parametric Study
2.3. Reflection Coefficient
2.4. Current Distribution
2.5. Radiation Pattern
3. The “Inverted-F” Array Antenna
3.1. The Antenna Array Geometry
3.2. The S-Parameters of the Array Antenna
3.3. The Cartesian Gains
3.4. The Radiation Pattern of the Array Antenna
4. Conclusions
Acknowledgments
References
- Roh, W.; Seol, J.Y.; Park, J.; Lee, B.; Lee, J.; Kim, Y.; Cho, J.; Cheun, K.; Aryanfar, F. Millimeter-wave beam forming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Commun. Mag. 2014, 52, 106–113. [Google Scholar] [CrossRef]
- Gupta, A.; Jha, R.K. A Survey of 5G Network: Architecture and Emerging Technologies. IEEE Access 2015, 3, 1206–1232. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Qiao, Y.; Tamir, J.I.; Murdock, J.N.; Ben-Dor, E. Cellular broadband millimeter wave propagation and angle of arrival for adaptive beam steering systems (invited paper). In Proceedings of the 2012 IEEE Radio and Wireless Symposium (RWS), Santa Clara, CA, USA, 15–18 January 2012; pp. 151–154. [Google Scholar]
- Akdeniz, M.R.; Liu, Y.; Rangan, S.; Erkip, E. Millimeter wave picocellular system evaluation for urban deployments. In Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 9–13 December 2013; pp. 105–110. [Google Scholar]
- El Halaoui, M.; Canale, L.; Asselman, A.; Zissis, G. An Optically Transparent Antenna Integrated in OLED Light Source for 5G Applications. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9–12 June 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Hong, W.; Baek, K.-H.; Lee, Y.; Kim, Y.; Ko, S.-T. Study and prototyping of practically large-scale mm Wave antenna systems for 5G cellular devices. IEEE Commun. Mag. 2014, 52, 63–69. [Google Scholar] [CrossRef]
- Tatomirescu, A.; Oprian, A.; Zhekov, S.; Pedersen, G.F. Beam-steering array for handheld devices targeting 5G. In Proceedings of the 2015 International Symposium on Antennas and Propagation (ISAP), Hobart, Tasmanie, Australia, 9–12 November 2015; pp. 1–4. [Google Scholar]
- El Halaoui, M.; Kaabal, A.; Asselman, H.; Ahyoud, S.; Asselman, A. Multiband Planar Inverted-F Antenna with Independent Operating Bands Control for Mobile Handset Applications. Int. J. Antennas Propag. 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Helander, J.; Zhao, K.; Ying, Z.; Sjoberg, D. Performance Analysis of Millimeter-Wave Phased Array Antennas in Cellular Handsets. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 504–507. [Google Scholar] [CrossRef]
- Ashraf, N.; Haraz, O.M.; Ali, M.M.M.; Ashraf, M.A.; Alshebili, S.A.S. Optimized broadband and dual-band printed slot antennas for future millimeter wave mobile communication. AEU Int. J. Electron. Commun. 2016, 70, 257–264. [Google Scholar] [CrossRef]
- Bisharat, D.J.; Liao, S.; Xue, Q. High Gain and Low Cost Dierentially Fed Circularly Polarized Planar Aperture Antenna for Broadband Millimeter-Wave Applications. IEEE Trans. Antennas Propag. 2016, 64, 33–42. [Google Scholar] [CrossRef]
- Ojaroudiparchin, N.; Shen, M.; Pedersen, G.F. Multi-layer 5G mobile phone antenna for multi-user MIMO communications. In Proceedings of the 2015 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 24–26 November 2015; pp. 559–562. [Google Scholar]
- Li, W.-Y.; Chung, W.; Wong, K.-L. Highly-Integrated Dual-Band mm Wave Antenna Array for 5G Mobile Phone Application. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–5. [Google Scholar]
- Wang, Y.; Huang, H.-C.; Jian, X. Integrated Design of a Cable-Fed Dual-Band Dual-Polarization 5G mm-Wave Antenna Array with a U-Slotted Full-Metal Casing for a Cellular Phone. In Proceedings of the 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Guangzhou, China, 19–22 May 2019; pp. 1–3. [Google Scholar]
- Huang, H.-C.; Wang, Y.; Jian, X. Novel Integrated Design of Dual-Band Dual-Polarization mm-Wave Antennas in Non-mm-Wave Antennas (AiA) for a 5G Phone with a Metal Frame. In Proceedings of the 2019 International Workshop on Antenna Technology (iWAT), Miami, FL, USA, 3–6 March 2019; pp. 125–128. [Google Scholar]
- Mahmoud, K.R.; Montaser, A.M. Design of dual-band circularly polarised array antenna package for 5G mobile terminals with beam-steering capabilities. IET Microw. Antennas Propag. 2018, 12, 29–39. [Google Scholar] [CrossRef]
- Li, Y.; Sim, C.-Y.-D.; Luo, Y.; Yang, G. Multiband 10-Antenna Array for Sub-6 GHz MIMO Applications in 5-G Smartphones. IEEE Access 2018, 6, 28041–28053. [Google Scholar] [CrossRef]
- Marzouk, H.M.; Ahmed, M.I.; Shaalan, A.A. A Novel Dual-band 28/38 GHz Slotted Microstip MIMO Antenna for 5G Mobile Applications. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 607–608. [Google Scholar]
- Deckmyn, T.; Cauwe, M.; Ginste, D.V.; Rogier, H.; Agneessens, S. Dual-Band (28,38) GHz Coupled Quarter-Mode Substrate-Integrated Waveguide Antenna Array for Next-Generation Wireless Systems. IEEE Trans. Antennas Propag. 2019, 67, 2405–2412. [Google Scholar] [CrossRef]
- Rahayu, Y.; Hidayat, M.I. Design of 28/38 GHz Dual-Band Triangular-Shaped Slot Microstrip Antenna Array for 5G Applications. In Proceedings of the 2018 2nd International Conference on Telematics and Future Generation Networks (TAFGEN), Kuching, Malaysia, 24–26 July 2018; pp. 93–97. [Google Scholar]
- Ullah, H.; Tahir, F.A.; Khan, M.U. Dual-band planar spiral monopole antenna for 28/38 GHz frequency bands. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 761–762. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Halaoui, M.; Canale, L.; Asselman, A.; Zissis, G. Dual-Band 28/38 GHz Inverted-F Array Antenna for Fifth Generation Mobile Applications. Proceedings 2020, 63, 53. https://doi.org/10.3390/proceedings2020063053
El Halaoui M, Canale L, Asselman A, Zissis G. Dual-Band 28/38 GHz Inverted-F Array Antenna for Fifth Generation Mobile Applications. Proceedings. 2020; 63(1):53. https://doi.org/10.3390/proceedings2020063053
Chicago/Turabian StyleEl Halaoui, Mustapha, Laurent Canale, Adel Asselman, and Georges Zissis. 2020. "Dual-Band 28/38 GHz Inverted-F Array Antenna for Fifth Generation Mobile Applications" Proceedings 63, no. 1: 53. https://doi.org/10.3390/proceedings2020063053
APA StyleEl Halaoui, M., Canale, L., Asselman, A., & Zissis, G. (2020). Dual-Band 28/38 GHz Inverted-F Array Antenna for Fifth Generation Mobile Applications. Proceedings, 63(1), 53. https://doi.org/10.3390/proceedings2020063053