Multivariate Analysis for the Classification of Chocolate According to its Percentage of Cocoa by Using Terahertz Time-Domain Spectroscopy (THz-TDS) †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Equipment for the THz Spectroscopy
2.3. Multivariate Analysis
3. Results
3.1. Terahertz Imaging Analysis
3.2. Multivariate Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, S.-H.; Dick, B.; Penzkofer, A.; Pokorny, R.; Batschauer, A.; Essen, L.-O. Absorption and Fluorescence Spectroscopic Characterization of Cryptochrome 3 from Arabidopsis Thaliana. J. Photochem. Photobiol. B Biol. 2006, 85, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Pérez-López, A.V.; Simpson, J.; Castro-Camus, E. Three-Dimensional Water Mapping of Succulent Agave Victoriae-Reginae Leaves by Terahertz Imaging. Sci. Rep. 2020, 10, 1404. [Google Scholar] [CrossRef] [PubMed]
- 3Uddin, M.N.; Ferdous, T.; Islam, Z.; Jahan, M.S.; Quaiyyum, M.A. Development of Chemometric Model for Characterization of Non-Wood by FT-NIR Data. J. Bioresour. Bioprod. 2020, 5, 196–203. [Google Scholar] [CrossRef]
- De-la-Torre, M.; Avila-George, H.; Oblitas, J.; Castro, W. Selection and Fusion of Color Channels for Ripeness Classification of Cape Gooseberry Fruits. Adv. Intell. Syst. Comput. 2020, 1071, 219–233. [Google Scholar] [CrossRef]
- Castro, W.; Oblitas, J.; Chuquizuta, T.; Avila-George, H. Application of Image Analysis to Optimization of the Bread-Making Process Based on the Acceptability of the Crust Color. J. Cereal Sci. 2017, 74, 194–199. [Google Scholar] [CrossRef]
- Xu, Y.; Zhong, P.; Jiang, A.; Shen, X.; Li, X.; Xu, Z.; Shen, Y.; Sun, Y.; Lei, H. Raman Spectroscopy Coupled with Chemometrics for Food Authentication: A Review. TrAC Trends Anal. Chem. 2020, 131, 116017. [Google Scholar] [CrossRef]
- Wang, K.; Sun, D.-W.; Pu, H. Emerging Non-Destructive Terahertz Spectroscopic Imaging Technique: Principle and Applications in the Agri-Food Industry. Trends Food Sci. Technol. 2017, 67, 93–105. [Google Scholar] [CrossRef]
- Ferguson, B.; Zhang, X.-C. Materials for Terahertz Science and Technology. Nat. Mater. 2002, 1, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Ferreira de Oliveira, A.P.; Milani, R.F.; Efraim, P.; Morgano, M.A.; Tfouni, S.A.V. Cd and Pb in Cocoa Beans: Occurrence and Effects of Chocolate Processing. Food Control. 2021, 119, 107455. [Google Scholar] [CrossRef]
- Barbin, D.F.; Maciel, L.F.; Bazoni, C.H.V.; Ribeiro, M. da S.; Carvalho, R.D.S.; Bispo, E. da S.; Miranda, M. da P.S.; Hirooka, E.Y. Classification and Compositional Characterization of Different Varieties of Cocoa Beans by near Infrared Spectroscopy and Multivariate Statistical Analyses. J. Food Sci. Technol. 2018, 55, 2457–2466. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, C.; Yu, J.; Zhang, Y.; Li, J.; Chen, Y.; Zheng, L. Discrimination of Geographical Origin of Extra Virgin Olive Oils Using Terahertz Spectroscopy Combined with Chemometrics. Food Chem. 2018, 251, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Dietlein, C.R.; Grossman, E.; Popovic, Z.; Meyer, F.G. Detection and Segmentation of Concealed Objects in Terahertz Images. IEEE Trans. Image Process. 2008, 17, 2465–2475. [Google Scholar] [CrossRef] [PubMed]
- Loussaief, S.; Abdelkrim, A. Machine Learning Framework for Image Classification. Adv. Sci. Technol. Eng. Syst. 2018, 3, 1–10. [Google Scholar] [CrossRef]
- Catapano, I.; Soldovieri, F. Chapter 11—THz imaging and data processing: State of the art and perspective. In Innovation in Near-Surface Geophysics; Persico, R., Piro, S., Linford, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 399–417. ISBN 978-0-12-812429-1. [Google Scholar]
- Humston, E.M.; Knowles, J.D.; McShea, A.; Synovec, R.E. Quantitative Assessment of Moisture Damage for Cacao Bean Quality Using Two-Dimensional Gas Chromatography Combined with Time-of-Flight Mass Spectrometry and Chemometrics. J. Chromatogr. A 2010, 1217, 1963–1970. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhou, R.; Huang, Y.; Xie, L.; Ying, Y. Terahertz Spectroscopic Imaging with Discriminant Analysis for Detecting Foreign Materials among Sausages. Food Control. 2019, 97, 100–104. [Google Scholar] [CrossRef]
Model | Accuracy (%) |
---|---|
Fine Gaussian SVM | 91 |
Medium Gaussian SVM | 90 |
Quadratic Discriminant | 89 |
Optimizable SVM | 93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oblitas, J.; Ruiz, J. Multivariate Analysis for the Classification of Chocolate According to its Percentage of Cocoa by Using Terahertz Time-Domain Spectroscopy (THz-TDS). Proceedings 2021, 70, 109. https://doi.org/10.3390/foods_2020-08029
Oblitas J, Ruiz J. Multivariate Analysis for the Classification of Chocolate According to its Percentage of Cocoa by Using Terahertz Time-Domain Spectroscopy (THz-TDS). Proceedings. 2021; 70(1):109. https://doi.org/10.3390/foods_2020-08029
Chicago/Turabian StyleOblitas, Jimy, and Jorge Ruiz. 2021. "Multivariate Analysis for the Classification of Chocolate According to its Percentage of Cocoa by Using Terahertz Time-Domain Spectroscopy (THz-TDS)" Proceedings 70, no. 1: 109. https://doi.org/10.3390/foods_2020-08029