New Insights in the Quality of Phaseolus vulgaris L.: Nutritional Value, Functional Properties and Development of Innovative Tools for Their Assessment †
Abstract
:1. Introduction
2. Methods
2.1. Sampling
2.2. Protein Content
2.3. Amino Acids Composition
2.4. Total Phenols
2.5. In Vitro Antioxidant Activities
2.6. FTIR Analysis
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calles, T.; Xipsiti, M.; del Castello, R. Legacy of the International Year of Pulses. Environ. Earth Sci. 2019, 78, 1–8. [Google Scholar] [CrossRef]
- Kan, L.; Nie, S.; Hu, J.; Wang, S.; Bai, Z.; Wang, J.; Zhou, Y.; Jiang, J.; Zeng, Q.; Song, K. Comparative study on the chemical composition, anthocyanins, tocopherols and carotenoids of selected legumes. Food Chem. 2018, 260, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Lin, Z.; Chen, J.; Wu, Y.; Liu, X. Mid-infrared and near-infrared spectroscopy for rapid detection of Gardeniae Fructus by a liquid-liquid extraction process. J. Pharm. Biomed. Anal. 2017, 145, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Machado, N.; Oppolzer, D.; Ramos, A.; Ferreira, L.; Rosa, E.A.S.; Rodrigues, M.; Domínguez-Perles, R.; Barros, A.I.R.N.A. Evaluating the freezing impact on the proximate composition of immature cowpea (Vigna unguiculata L.) pods: Classical versus spectroscopic approaches. J. Sci. Food Agric. 2017, 97, 4295–4305. [Google Scholar] [CrossRef] [PubMed]
- Mena, P.; García-Viguera, C.; Navarro-Rico, J.; Moreno, D.A.; Bartual, J.; Saura, D.; Martí, N. Phytochemical characterisation for industrial use of pomegranate (Punica granatum L.) cultivars grown in Spain. J. Sci. Food Agric. 2011, 91, 1893–1906. [Google Scholar] [CrossRef] [PubMed]
- Espín, J.C.; Soler-Rivas, C.; Wichers, H.J.; García-Viguera, C. Anthocyanin-based natural colorants: A new source of antiradical activity for foodstuff. J. Agric. Food Chem. 2000, 48, 1588–1592. [Google Scholar] [CrossRef] [PubMed]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics Original Research Article. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Kadiroğlu, P.; Aydemir, L.Y.; Akcakaya, F.G. Prediction of functional properties of registered chickpea samples using FT-IR spectroscopy and chemometrics. LWT 2018, 93, 463–469. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Ren, G. Near-infrared spectroscopy (NIRS) evaluation and regional analysis of Chinese faba bean (Vicia faba L.). Crop J. 2014, 2, 28–37. [Google Scholar] [CrossRef]
- Du, S.; Jiang, H.; Yu, X.; Jane, J. Physicochemical and functional properties of whole legume flour. LWT Food Sci. Technol. 2014, 55, 308–313. [Google Scholar] [CrossRef]
- Carbas, B.; Machado, N.; Oppolzer, D.; Ferreira, L.; Queiroz, M.; Brites, C.; Rosa, E.A.S.; Barros, A.I.R.N.A. Nutrients, antinutrients, phenolic composition, and antioxidant activity of common bean cultivars and their potential for food applications. Antioxidants 2020, 9, 186. [Google Scholar] [CrossRef] [PubMed]
- Plans, M.; Simó, J.; Casañas, F.; Sabaté, J.; Rodriguez-Saona, L. Characterization of common beans (Phaseolus vulgaris L.) by infrared spectroscopy: Comparison of MIR, FT-NIR and dispersive NIR using portable and benchtop instruments. Food Res. Int. 2013, 54, 1643–1651. [Google Scholar] [CrossRef]
- Carbas, B.; Machado, N.; Oppolzer, D.; Ferreira, L.; Brites, C.; Rosa, E.A.S.; Barros, A.I.R.N.A. Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy for the determination of nutritional and antinutritional parameters in common beans. Food Chem. 2020, 306. [Google Scholar] [CrossRef] [PubMed]
- Carbas, B.; Machado, N.; Oppolzer, D.; Queiroz, M.; Brites, C.; Rosa, E.A.S.; Barros, A.I.R.N.A. Prediction of Phytochemical Composition, In Vitro Antioxidant Activity and Individual Phenolic Compounds of Common Beans Using MIR and NIR Spectroscopy. Food Bioprocess Technol. 2020, 13, 962–977. [Google Scholar] [CrossRef]
MIR | NIR | ||||||||
---|---|---|---|---|---|---|---|---|---|
Analytical Parameters | Treatment | PRESS (NF) | R2c | R2v | Analytical Parameters | Treatment | PRESS (NF) | R2c | R2v |
Protein | 1st deriv (FI) | 0.283 (4) | 0.99 | 0.96 | Protein | 1st deriv | 0.284 (4) | 0.99 | 0.98 |
Thr | 1st deriv MN (LF) | 0.714 (7) | 0.98 | 0.90 | Thr | 1st deriv MN | 0.748 (2) | 0.77 | 0.75 |
His | 1st deriv (FI) | 0.935 (2) | 0.61 | 0.51 | His | 1st deriv MN | 0.900 (2) | 0.65 | 0.62 |
Val | 1st deriv MN (HF) | 0.530 (4) | 0.95 | 0.88 | Val | Spectra | 0.530 (4) | 0.89 | 0.88 |
Lys | Spectra (FI) | 0.978 (1) | 0.41 | 0.37 | Lys | Spectra | 0.962 (1) | 0.46 | 0.44 |
Ileu | Spectra (HF) | 0.550 (6) | 0.92 | 0.88 | Ileu | 1st deriv | 0.629 (3) | 0.91 | 0.89 |
Leu | 1st deriv (LF) | 0.319 (5) | 0.99 | 0.96 | Leu | 1st deriv MN | 0.410 (4) | 0.98 | 0.97 |
Phe | 1st deriv (LF) | 0.881 (6) | 0.97 | 0.87 | Phe | 1st deriv MN | 0.876 (2) | 0.68 | 0.65 |
Trp | 1st deriv (FI) | 0.790 (4) | 0.90 | 0.84 | Trp | 1st deriv | 0.859 (3) | 0.82 | 0.77 |
Asp + Asn | 1st deriv MN (HF) | 0.649 (4) | 0.93 | 0.86 | Asp + Asn | 1st deriv | 0.644 (2) | 0.87 | 0.86 |
Ser | 1st deriv MN (HF) | 0.791 (4) | 0.91 | 0.78 | Ser | Spectra | 0.727 (6) | 0.81 | 0.78 |
Glu + Gln | Spectra (LF) | 0.691 (2) | 0.79 | 0.76 | Glu + Gln | 1st deriv | 0.716 (2) | 0.85 | 0.83 |
Gly | 1st deriv (LF) | 0.762 (5) | 0.95 | 0.89 | Gly | 1st deriv MN | 0.814 (2) | 0.74 | 0.70 |
Arg | 1st deriv (FI) | 0.916 (2) | 0.64 | 0.58 | Arg | 1st deriv MN | 0.929 (2) | 0.65 | 0.61 |
Ala | 1st deriv MN (FI) | 0.491 (4) | 0.96 | 0.93 | Ala | 1st deriv MN | 0.486 (2) | 0.92 | 0.91 |
Pro | 1st deriv (LF) | 0.458 (6) | 0.99 | 0.95 | Pro | 1st deriv | 0.561 (2) | 0.91 | 0.89 |
Tyr | 1st deriv MN (LF) | 0.865 (4) | 0.93 | 0.84 | Tyr | 1st deriv | 0.752 (5) | 0.96 | 0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbas, B.; Machado, N.; Brites, C.; Rosa, E.A.S.; Barros, A.I.R.N.A. New Insights in the Quality of Phaseolus vulgaris L.: Nutritional Value, Functional Properties and Development of Innovative Tools for Their Assessment. Proceedings 2021, 70, 25. https://doi.org/10.3390/foods_2020-07726
Carbas B, Machado N, Brites C, Rosa EAS, Barros AIRNA. New Insights in the Quality of Phaseolus vulgaris L.: Nutritional Value, Functional Properties and Development of Innovative Tools for Their Assessment. Proceedings. 2021; 70(1):25. https://doi.org/10.3390/foods_2020-07726
Chicago/Turabian StyleCarbas, Bruna, Nelson Machado, Carla Brites, Eduardo A.S. Rosa, and Ana I.R.N.A. Barros. 2021. "New Insights in the Quality of Phaseolus vulgaris L.: Nutritional Value, Functional Properties and Development of Innovative Tools for Their Assessment" Proceedings 70, no. 1: 25. https://doi.org/10.3390/foods_2020-07726
APA StyleCarbas, B., Machado, N., Brites, C., Rosa, E. A. S., & Barros, A. I. R. N. A. (2021). New Insights in the Quality of Phaseolus vulgaris L.: Nutritional Value, Functional Properties and Development of Innovative Tools for Their Assessment. Proceedings, 70(1), 25. https://doi.org/10.3390/foods_2020-07726