Assessment of the Nutritional Value, Techno-Functional, and In Vitro Physiological Properties of Six Edible Insects †
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Chemical Composition Analysis
2.2.1. Proximate Analysis
2.2.2. Determination of Chitin
2.2.3. Determination of Trypsin Inhibitor
2.3. In Vitro Antioxidant Capacity Determination
2.4. Physicochemical and Techno-Functional Properties
2.5. Evaluation of the In Vitro Hypoglycaemic Properties
2.5.1. Glucose Adsorption Capacity
2.5.2. In Vitro α-Amylase Inhibition
2.5.3. In Vitro Glucose Dialysis Retardation Capacity
2.5.4. In Vitro Starch Digestibility Retardation
2.6. Evaluation of the In Vitro Hypolipidemic Properties
2.6.1. Cholesterol Binding Capacity
2.6.2. Sodium Cholate Binding Capacity
2.6.3. In Vitro Pancreatic Lipase Inhibition
2.7. Statistical Analysis
3. Results
3.1. Insect Flours Are a Sustainable Source of Protein, Chitin, and Lipids
3.2. Insects Flours’ Physicochemical and Techno-Functional Properties Validated Their Use in Food Production
3.3. Insect Flours Could Retard Intestinal Glucose Absorption Reducing Postprandial Glycemia
3.4. Insect Flours Exhibited the Ability to Hinder Lipids Digestion Diminishing Their Absorption
3.5. Insect Flours Were Statistically Classified According to Their Composition and Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cadinu, L.A.; Barra, P.; Torre, F.; Delogu, F.; Madau, F.A. Insect Rearing: Potential, Challenges, and Circularity. Sustainability 2020, 12, 4567. [Google Scholar] [CrossRef]
- Verbeke, W. Profiling consumers who are ready to adopt insects as a meat substitute in a Western society. Food Qual. Prefer. 2015, 39, 147–155. [Google Scholar] [CrossRef]
- Schlüter, O.; Rumpold, B.; Holzhauser, T.; Roth, A.; Vogel, R.F.; Quasigroch, W.; Vogel, S.; Heinz, V.; Jäger, H.; Bandick, N.; et al. Safety aspects of the production of foods and food ingredients from insects. Mol. Nutr. Food Res. 2017, 61, 1600520. [Google Scholar] [CrossRef] [PubMed]
- Imathiu, S. Benefits and food safety concerns associated with consumption of edible insects. NFS J. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- de Castro, R.J.S.; Ohara, A.; Aguilar, J.G.D.S.; Domingues, M.A.F. Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends Food Sci. Technol. 2018, 76, 82–89. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis of. Anal. Chem. 1995, 52, 148A.
- Adámková, A.; Mlček, J.; Kouřimská, L.; Borkovcová, M.; Bušina, T.; Adámek, M.; Bednářová, M.; Krajsa, J. Nutritional potential of selected insect species reared on the island of Sumatra. Int. J. Env. Res. Public Health 2017, 14, 521. [Google Scholar] [CrossRef] [PubMed]
- Herrera, T.; Aguilera, Y.; Rebollo-Hernanz, M.; Bravo, E.; Benítez, V.; Martínez-Sáez, N.; Arribas, S.M.; del Castillo, M.D.; Martín-Cabrejas, M.A. Teas and herbal infusions as sources of melatonin and other bioactive non-nutrient components. Lwt Food Sci. Technol. 2018, 89, 65–73. [Google Scholar] [CrossRef]
- Rebollo-Hernanz, M.; Fernández-Gómez, B.; Herrero, M.; Aguilera, Y.; Martín-Cabrejas, M.A.; Uribarri, J.; Del Castillo, M.D. Inhibition of the Maillard reaction by phytochemicals composing an aqueous coffee silverskin extract via a mixed mechanism of action. Foods 2019, 8, 438. [Google Scholar] [CrossRef] [PubMed]
- Benítez, V.; Rebollo-Hernanz, M.; Aguilera, Y.; Bejerano, S.; Cañas, S.; Martín-Cabrejas, M.A. Extruded coffee parchment shows enhanced antioxidant, hypoglycaemic, and hypolipidemic properties by releasing phenolic compounds from the fibre matrix. Food Funct. 2021, 12, 1097. [Google Scholar] [CrossRef] [PubMed]
- Rebollo-Hernanz, M.; Aguilera, Y.; Herrera, T.; Cayuelas, L.T.; Dueñas, M.; Rodríguez-Rodríguez, P.; Ramiro-Cortijo, D.; Arribas, S.M.; Martín-Cabrejas, M.A. Bioavailability of melatonin from lentil sprouts and its role in the plasmatic antioxidant status in rats. Foods 2020, 9, 330. [Google Scholar] [CrossRef] [PubMed]
- FAO. Edible Insects. Future Prospects for Food and feed Security; FAO: Roma, Italy, 2013; Volume 171, ISBN 9789251075951. [Google Scholar]
- European Commission Summary of Ongoing Applications and Notifications Novel Food. Available online: https://ec.europa.eu/food/safety/novel_food/authorisations/summary-applications-and-notifications_en (accessed on 2 April 2021).
- Nowak, V.; Persijn, D.; Rittenschober, D.; Charrondiere, U.R. Review of food composition data for edible insects. Food Chem. 2016, 193, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Kou, L.; Adámková, A. Nutritional and sensory quality of edible insects. NFS J. 2016, 4, 22–26. [Google Scholar]
- Gravel, A.; Doyen, A. The Use of Edible Insect Proteins in Food: Challenges and Issues Related to Their Functional Properties. Innov. Food Sci. Emerg. Technol. 2020, 59, 102272. [Google Scholar] [CrossRef]
- Dossey, A.T. Insects and their chemical weaponry: New potential for drug discovery. Nat. Prod. Rep. 2010, 27, 1737–1757. [Google Scholar] [CrossRef] [PubMed]
- Azzollini, D.; Derossi, A.; Fogliano, V.; Lakemond, C.M.M.; Severini, C. Effects of formulation and process conditions on microstructure, texture and digestibility of extruded insect-riched snacks. Innov. Food Sci. Emerg. Technol. 2018, 45, 344–353. [Google Scholar] [CrossRef]
- Navarro del Hierro, J.; Gutiérrez-Docio, A.; Otero, P.; Reglero, G.; Martin, D. Characterization, antioxidant activity, and inhibitory effect on pancreatic lipase of extracts from the edible insects Acheta domesticus and Tenebrio molitor. Food Chem. 2020, 309, 125742. [Google Scholar] [CrossRef] [PubMed]
- Oibiokpa, F.I.; Akanya, H.O.; Jigam, A.A.; Saidu, A.N.; Egwim, E.C. Protein quality of four indigenous edible insect species in Nigeria. Food Sci. Hum. Wellness 2018, 7, 175–183. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilera, Y.; Rebollo-Hernanz, M.; Pastrana, I.; Benitez, V.; Alvarez-Rivera, G.; Viejo, J.L.; Martin-Cabrejas, M.A. Assessment of the Nutritional Value, Techno-Functional, and In Vitro Physiological Properties of Six Edible Insects. Proceedings 2021, 70, 77. https://doi.org/10.3390/foods_2020-08499
Aguilera Y, Rebollo-Hernanz M, Pastrana I, Benitez V, Alvarez-Rivera G, Viejo JL, Martin-Cabrejas MA. Assessment of the Nutritional Value, Techno-Functional, and In Vitro Physiological Properties of Six Edible Insects. Proceedings. 2021; 70(1):77. https://doi.org/10.3390/foods_2020-08499
Chicago/Turabian StyleAguilera, Yolanda, Miguel Rebollo-Hernanz, Irene Pastrana, Vanesa Benitez, Gerardo Alvarez-Rivera, Jose Luis Viejo, and Maria A. Martin-Cabrejas. 2021. "Assessment of the Nutritional Value, Techno-Functional, and In Vitro Physiological Properties of Six Edible Insects" Proceedings 70, no. 1: 77. https://doi.org/10.3390/foods_2020-08499
APA StyleAguilera, Y., Rebollo-Hernanz, M., Pastrana, I., Benitez, V., Alvarez-Rivera, G., Viejo, J. L., & Martin-Cabrejas, M. A. (2021). Assessment of the Nutritional Value, Techno-Functional, and In Vitro Physiological Properties of Six Edible Insects. Proceedings, 70(1), 77. https://doi.org/10.3390/foods_2020-08499