Smart Design Nano-Hybrid Formulations by Machine Learning †
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Methods
2.2.1. Preparation of the Nanocarriers
2.2.2. Characterization of the Nanocarriers
Experimental Design Using the Central Composite Design
Machine Learning
Experimental Procedure
Solubility of β-Lap in the Nanocarriers
Phase Behavior of Nanocarriers
3. Results and Discussion
3.1. β-Lap Solubility Studies
3.2. Phase Behavior Classification by SVM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Faustini, M.; Nicole, L.; Ruiz-Hitzky, E.; Sanchez, C. History of Organic–Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. Adv. Funct. Mater. 2018, 28, 1704158. [Google Scholar] [CrossRef]
- Aguzzi, C.; Cerezo, P.; Viseras, C.; Caramella, C. Use of Clays as Drug Delivery Systems: Possibilities and Limitations. Appl. Clay Sci. 2007, 36, 22–36. [Google Scholar] [CrossRef]
- Haraguchi, K.; Farnworth, R.; Ohbayashi, A.; Takehisa, T. Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly (N, N-Dimethylacrylamide) and Clay. Macromolecules 2003, 36, 5732–5741. [Google Scholar] [CrossRef]
- Chang, C.-W.; van Spreeuwel, A.; Zhang, C.; Varghese, S. PEG/Clay Nanocomposite Hydrogel: A Mechanically Robust Tissue Engineering Scaffold. Soft Matter. 2010, 6, 5157–5164. [Google Scholar] [CrossRef]
- Schmolka, I.R. A Review of Block Polymer Surfactants. J. Am. Oil Chemists Soc. 1977, 54, 110–116. [Google Scholar] [CrossRef]
- Alexandridis, P. Poly (Ethylene Oxide)/Poly (Propylene Oxide) Block Copolymer Surfactants. Curr. Opin. Colloid Interface Sci. 1997, 2, 478–489. [Google Scholar] [CrossRef]
- Alvarez-Lorenzo, C.; Rey-Rico, A.; Sosnik, A.; Taboada, P.; Concheiro, A. Poloxamine-Based Nanomaterials for Drug Delivery. Front. Biosci. 2010, 2, 424–440. [Google Scholar] [CrossRef] [PubMed]
- Pelegrino, M.T.; de Araújo, D.R.; Seabra, A.B. S-Nitrosoglutathione-Containing Chitosan Nanoparticles Dispersed in Pluronic F-127 Hydrogel: Potential Uses in Topical Applications. J. Drug Deliv. Sci. Technol. 2018, 43, 211–220. [Google Scholar] [CrossRef]
- dos Santos, A.C.M.; Akkari, A.C.S.; Ferreira, I.R.S.; Maruyama, C.R.; Pascoli, M.; Guilherme, V.A.; de Paula, E.; Fraceto, L.F.; de Lima, R.; da Silva Melo, P.; et al. Poloxamer-Based Binary Hydrogels for Delivering Tramadol Hydrochloride: Sol-Gel Transition Studies, Dissolution-Release Kinetics, in Vitro Toxicity, and Pharmacological Evaluation. Int. J. Nanomed. 2015, 10, 2391. [Google Scholar]
- da Silva, M.N.; Ferreira, V.F.; de Souza, M.C.B. An Overview of the Chemistry and Pharmacology of Naphthoquinones with Emphasis on B-Lapachone and Derivatives. Química Nova 2003, 26, 407–416. [Google Scholar]
- dos Santos, K.M.; de, M. Barbosa, R.; Vargas, F.G.A.; de Azevedo, E.P.; da S. Lins, A.C.; Camara, C.A.; Aragão, C.F.; de Limia E. Moura, T.F.; Raffin, F.N. Development of Solid Dispersions of β-Lapachone in PEG and PVP by Solvent Evaporation Method. Drug Dev. Ind. Pharm. 2018, 44, 750–756. [Google Scholar] [CrossRef] [PubMed]
- Box, G.E.; Wilson, K.B. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. Ser. B Methodol. 1951, 13, 1–38. [Google Scholar] [CrossRef]
- Singh, B.; Chakkal, S.K.; Ahuja, N. Formulation and Optimization of Controlled Release Mucoadhesive Tablets of Atenolol Using Response Surface Methodology. Aaps Pharmscitech 2006, 7, E19–E28. [Google Scholar] [CrossRef] [PubMed]
- Boulogeorgos, A.-A.A.; Trevlakis, S.E.; Tegos, S.A.; Papanikolaou, V.K.; Karagiannidis, G.K. Machine Learning in Nano-Scale Biomedical Engineering. arXiv 2020, arXiv:2008.02195. [Google Scholar] [CrossRef]
- Pereira, A.K.V.; de M. Barbosa, R.; Fernandes, M.A.C.; Finkler, L.; Finkler, C.L.L. Comparative Analyses of Response Surface Methodology and Artificial Neural Networks on Incorporating Tetracaine into Liposomes. Braz. J. Pharm. Sci 2020, 56. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, Y.; Chen, Y.; Shukla, A.J. Application of Artificial Neural Networks in the Design of Controlled Release Drug Delivery Systems. Adv. Drug Deliv. Rev. 2003, 55, 1201–1215. [Google Scholar] [CrossRef]
- Ekins, S.; Puhl, A.C.; Zorn, K.M.; Lane, T.R.; Russo, D.P.; Klein, J.J.; Hickey, A.J.; Clark, A.M. Exploiting Machine Learning for End-to-End Drug Discovery and Development. Nat. Mater. 2019, 18, 435. [Google Scholar] [CrossRef] [PubMed]
Assays | |||||
---|---|---|---|---|---|
Coded Level | % (w/w) | Coded Level | % (w/w) | ||
1 | −1 | 1 | −1 | 0.0 | 0.1206 |
2 | −1 | 1 | 0 | 1.5 | 0.2600 |
3 | −1 | 1 | +1 | 3.0 | 0.4264 |
4 | 0 | 10 | −1 | 0.0 | 0.4281 |
5 | 0 | 10 | +1 | 3.0 | 0.5103 |
6 | +1 | 20 | −1 | 0.0 | 1.0211 |
7 | +1 | 20 | 0 | 1.5 | 1.6062 |
8 | +1 | 20 | +1 | 3.0 | 0.9988 |
9 | 0 | 10 | 0 | 1.5 | 0.7875 |
10 | 0 | 10 | 0 | 1.5 | 0.8010 |
11 | 0 | 10 | 0 | 1.5 | 0.7780 |
12 | 0 | 10 | 0 | 1.5 | 0.7650 |
Phase Behavior | Parameters of Classification |
Liquid | liquid samples are clear aqueous dispersions unable to hold their weight against gravity in and inverted vial. |
Viscous liquid | viscous liquid samples are thicker liquids: liquid flow occurs more slowly and is still unable to hold its weight against gravity in an inverted vial. |
Gel | gel samples are clear gel dispersions and able to hold their weight against gravity in an inverted vial, but come off when shaken |
Strong gel | strong gel samples are clear gel dispersions and able to hold their weight against gravity in an inverted vial but does not come off when shaken. |
Solid | Phase separation leading to a solid cluster suspended in the fluid. |
Assays | |||
---|---|---|---|
Coded Level | % (w/w) | Coded Level | |
13 | 5 | 0.0 | 0.2092 |
14 | 5 | 1.5 | 0.4792 |
15 | 5 | 3.0 | 0.3617 |
16 | 15 | 0.0 | 0.3639 |
17 | 15 | 1.5 | 1.1375 |
18 | 15 | 3.0 | 0.8039 |
19 | 8 | 0.0 | 0.4618 |
20 | 20 | 1.0 | 0.1397 |
21 | 20 | 2.0 | 1.2785 |
Parameters | Values | Parameters | Values |
---|---|---|---|
β0 | −0.0005 | β11 | 0.0015 |
β1 | 0.0262 | β22 | −0.1345 |
β2 | 0.5031 | β12 | −0.0057 |
Surface Method | MSE | |||
---|---|---|---|---|
Fitting | Val. | Fitting | Val. | |
RSM | 0.0105 | 0.0109 | 0.9279 | 0.9368 |
Training | Val. | Training | Val. | |
MLP | 0.0106 | 0.0098 | 0.9332 | 0.9433 |
SVM | 0.0030 | 0.0045 | 0.9814 | 0.9737 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, R.d.M.; Oliveira, F.F.d.; Câmara, G.B.M.; Moura, T.F.A.d.L.e.; Raffin, F.N.; Fernandes, M.A.C. Smart Design Nano-Hybrid Formulations by Machine Learning. Proceedings 2021, 78, 5. https://doi.org/10.3390/IECP2020-08700
Barbosa RdM, Oliveira FFd, Câmara GBM, Moura TFAdLe, Raffin FN, Fernandes MAC. Smart Design Nano-Hybrid Formulations by Machine Learning. Proceedings. 2021; 78(1):5. https://doi.org/10.3390/IECP2020-08700
Chicago/Turabian StyleBarbosa, Raquel de Melo, Fabio Fonseca de Oliveira, Gabriel Bezerra Motta Câmara, Tulio Flavio Accioly de Lima e Moura, Fernanda Nervo Raffin, and Marcelo Augusto Costa Fernandes. 2021. "Smart Design Nano-Hybrid Formulations by Machine Learning" Proceedings 78, no. 1: 5. https://doi.org/10.3390/IECP2020-08700
APA StyleBarbosa, R. d. M., Oliveira, F. F. d., Câmara, G. B. M., Moura, T. F. A. d. L. e., Raffin, F. N., & Fernandes, M. A. C. (2021). Smart Design Nano-Hybrid Formulations by Machine Learning. Proceedings, 78(1), 5. https://doi.org/10.3390/IECP2020-08700