Micromorphs: Response of the Ammonite Fauna during the Toarcian Oceanic Anoxic Event (T-OAE) in the Es-Saffeh Mountains (Tiaret, Western Algeria) †
Abstract
:1. Introduction
2. Location and Geological Setting
- -
- -
- The Faîdja Valley: It is occupied by marls from the Upper Jurassic period (Oxfordian). These deposits are sometimes covered by Miocene and Plio-Quaternary sediments.
- -
- The Taga Plateau: It occupies the southern flank of the anticlinal structure of Nador. It corresponds to the dolomitico-limestone formations of the Upper Jurassic period, which show a slight dip and a great extension towards the South.
3. Materials and Methods
4. Lithostratigraphic Framework
4.1. Lithological Unit I: (Sublithographic Marly Limestones)
- The first included Arieticeras gr. Amaltheus (Oppel), Emaciaticeras type E. Villae (Gemm), and Amaltheus margaritatus (Month). This association indicated an average Pliensbachian age;
- The second contained Canavaria (Canavaria) sp., Emaciaticeras sp., Canavaria (Canavaria) gr., and Zancliana (Fuc). This association indicated the Upper Pliensbachian (Emaciatum Zone).
4.2. Lithological Unit II (Marly Beds with Lumpy Levels)
- The first contained Dactylioceras sp., Dactyloceras delicatum (Bean-Simp), Dactyloceras tuberculatum (Guex), rare Hildaites gyralis (Buck), and Hildaites sp. This fauna indicated the lower Toarcian (Polymorphum Zone);
- The second interval yielded Hildaites cf., subserpentinus (Buck), Hildaiites cf. borialis (Seeback), and rare Harpoceratoiides sp. This association indicated the lower Toarcian (Levisoni Zone). In its top part, we noted the appearance of the first Hildoceras gr. lusitanicum (Merst.) indicating a middle Toarcian age (Bifron Zone).
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hallam, A. Recovery of the marine fauna in Europe after the end-Triassic and early Toarcian mass extinctions. Geol. Soc. Lond. Spec. Publ. 1997, 102, 231–236. [Google Scholar] [CrossRef]
- Wignall, P.B.; Newton, R.J.; Little, C.T.S. The timing of paleoenvironmental change and cause-and-effect relationships during the Early Jurassic mass extinction in Europe. Am. J. Sci. 2005, 305, 1014–1032. [Google Scholar] [CrossRef]
- Arias, C. Extinction pattern of marine Ostracoda across the Pliensbachian Toarcian boundary in the Cordillera Ibérica, NE Spain: Causes and consequences. Geobios 2009, 42, 1–15. [Google Scholar] [CrossRef]
- Arias, C. The Early Toarcian (Early Jurassic) ostracod extinction events in the Iberian Range: The effect of temperature changes and prolonged exposure to low dissolved oxygen concentrations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 387, 40–55. [Google Scholar] [CrossRef]
- Reolid, M.; Nieto, L.M.; Sánchez-Almazo, I.M. Caracterización geoquímica de facies pobremente oxigenadas en el Toarciense inferior (Jurásico inferior) del Subbético Externo. Rev. Soc. Geológica España 2013, 26, 69–84. [Google Scholar]
- Reolid, M.; Mattioli, E.; Nieto, L.M.; Rodríguez-Tovar, F.J. The Early Toarcian Ocanic Anoxic Event in the External Subbetic (Southiberian Palaeomargin, Westernmost Tethys): Geochemistry, nannofossils and ichnology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 411, 79–94. [Google Scholar] [CrossRef]
- Reolid, M.; Rivas, P.; Rodríguez-Tovar, F.J. Toarcian ammonitico rosso facies from the South Iberian Paleomargin (Betic Cordillera, southern Spain): Paleoenvironmental reconstruction. Facies 2015, 61, 22. [Google Scholar] [CrossRef]
- Rodríguez-Tovar, F.J.; Uchman, A. Ichnofabric evi- dence for the lack of bottom anoxia during the Lower Toarcian Oceanic Anoxic Event (T-OAE) in the Fuente de la Vidriera section, Betic Cordillera, Spain. Palaios 2010, 25, 576–587. [Google Scholar] [CrossRef]
- Rita, P.; Reolid, M.; Duarte, L.V. The incidence of the Late Pliensbachian –Early Toarcian biotic crisis from ecostratigraphy of benthic foraminiferal assemblages: New insights from the Peniche reference section, Portugal. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 454, 267–281. [Google Scholar] [CrossRef]
- Hallam, A.; Wignall, P.B. Mass Extinctions and their Aftermath; Oxford University Press: Oxford, UK, 1997; 320p. [Google Scholar]
- Baeza-Carratalá, J.F. Diversity patterns of Early Jurassic brachiopod assemblages from the westernmost Tethys (Eastern Subbetic). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 381–382, 76–91. [Google Scholar] [CrossRef]
- Baeza-Carratalá, J.F.; García Joral, F.; Giannetti, A.; Tent-Manclús, J.E. Evolution of the last koninckinids (Athyridida, Koninckinidae), a precursor signal of the Early Toarcian mass extinction event in the Western Tethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 429, 41–56. [Google Scholar] [CrossRef]
- Vörös, A. Victims of the Early Toarcian anoxic event: The radiation and extinction of Jurassic Koninckinidae (Brachiopoda). Lethaia 2002, 35, 345–357. [Google Scholar] [CrossRef]
- Lathuilière, B.; Marchal, D. Extinction, survival and recovery of corals from the Triassic to Middle Jurassic time. Terra Nova 2009, 21, 57–66. [Google Scholar] [CrossRef]
- Reolid, M.; Chakiri, S.; Bejjaji, Z. Adaptative strategies of the Toarcian benthic foraminiferal assemblages from the Middle Atlas (Morocco): Palaeoecological implications. J. Afr. Earth Sci. 2013, 84, 1–12. [Google Scholar] [CrossRef]
- Reolid, M.; Marok, A.; Sebane, A. Foraminiferal assemblages and geochemistry for interpreting the incidence of Early Toarcian environmental changes in North Gondwana palaeomargin (Traras Mountains, Algeria). J. Afr. Earth Sci. 2014, 95, 105–122. [Google Scholar] [CrossRef]
- Reolid, M.; Sánchez-Quiñónez, C.A.; Alegret, L.; Molina, E. The biotic crisis across the Oceanic Anoxic Event 2: Palaeoenvironmental inferences based on foraminifera and geochemical proxies from the South Iberian Palaeomargin. Cretac. Res. 2016, 60, 1–27. [Google Scholar] [CrossRef]
- Reolid, M.; Duarte, L.V.; Rita, P. Changes in foraminiferal assemblages and environmental conditions during the T-OAE (Early Jurassic) in the northern Lusitanian Basin, Portugal. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 520, 30–43. [Google Scholar] [CrossRef]
- Reolid, M.; Copestake, P.; Johnson, B. Foraminiferal assemblages, extinctions and appearances associated with the Early Toarcian Oceanic Anoxic Event in the Llanbedr (Mochras Farm) Borehole, Cardigan Bay Basin, United Kingdom. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 532, 109–277. [Google Scholar] [CrossRef]
- Vörös, A. The Pliensbachian brachiopods of the Bakony Mountains (Hungary). Geol. Hung. 2009, 58, 1–300. [Google Scholar]
- Vörös, A. Early Jurassic (Pliensbachian) brachiopod biogeography in the Western Tethys: The Euro-Boreal and Mediterranean faunal provinces revised. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 457, 170–185. [Google Scholar] [CrossRef]
- Jenkyns, H.C.; Clayton, C.K. Lower Jurassic epicontinental carbonates and mudstones from England and Wales: Chemostratigraphic signals and the early Toarcian anoxic event. Sedimentology 1997, 44, 687–706. [Google Scholar] [CrossRef]
- Jenkyns, H.C.; Jones, C.E.; Gröcke, D.R.; Hesselbo, S.P.; Parkinson, D.N. Chemostratigraphy of the Jurassic System: Applications, limitations and implications for palaeoceanography. J. Geol. Soc. 2002, 159, 351–378. [Google Scholar] [CrossRef]
- Cohen, A.S.; Coe, A.L.; Harding, S.M.; Scwark, L. Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology 2004, 32, 157–160. [Google Scholar] [CrossRef]
- Hesselbo, S.P.; Jenkyns, H.C.; Duarte, L.V.; Oliveira, L.C.V. Carbon isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil word and marine carbonate (Lusitanian Basin, Portugal). Earth Planet. Sci. Lett. 2007, 253, 455–470. [Google Scholar] [CrossRef]
- Suan, G.; Pittet, B.; Bour, I.; Mattioli, E.; Duarte, L.V.; Mailliot, S. Duration of the Early Toarcian carbon isotope excursion deduced from spectral analysis: Consequence for its possible causes. Earth Planet. Sci. Lett. 2008, 267, 666–679. [Google Scholar] [CrossRef]
- Hermoso, M.; Le callonnec, L.; Minoletti, F.; Renard, M.; Hesselbo, S.P. Expression of the Early Toarcian negative carbon-isotope excursion in separated carbonate microfractions (Jurassic, Paris Basin). Earth Planet. Sci. Lett. 2009, 277, 194–203. [Google Scholar] [CrossRef]
- Sabatino, N.; Neri, R.; Bellanca, A.; Jenkyns, H.C.; Baudin, F.; Parisi, G.; Masetti, D. Carbon-isotope records of the Early Jurassic (Toarcian) oceanic anoxic event from the Valdorbia (Umbria-Marche Apennines) and Monte Mangart (Julian Alps) sections: Palaeoceanographic and stratigraphic implications. Sedimentology 2009, 56, 1307–1328. [Google Scholar] [CrossRef]
- Bodin, S.; Mattioli, E.; Frölich, S.; Marshall, J.D.; Boutib, L.; Lahsini, S.; Redfern, J. Toarcian carbon isotope shifts and nutrient changes from the Northern margin of Gondwana (High Atlas, Morocco, Jurassic): Palaeoenvironmental implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 297, 377–390. [Google Scholar] [CrossRef]
- Gómez, J.J.; Arias, C. Rapid warming and ostracods mass extinction at the Lower Toarcian (Jurassic) of central Spain. Mar. Micropaleontol. 2010, 74, 119–135. [Google Scholar] [CrossRef]
- Littler, K.; Hesselbo, S.; Jenkyns, H.C. A carbon-isotope perturbation at the Pliensbachian–Toarcian boundary: Evidence from the Lias Group, NE England. Geol. Mag. 2010, 147, 181–192. [Google Scholar] [CrossRef]
- Baghli, H.; Mattioli, E.; Spangenberg, J.E.; Bensalah, M.; Arnaud- Godet, F.; Pittet, B.; Suan, G. Early Jurassic climatic trends in the south-Tethyan margin. Gondwana Res. 2020, 77, 67–81. [Google Scholar] [CrossRef]
- Ruebsam, W.; Müller, T.; Kovacs, J.; Palfy, J.; Schwark, L. Environmental response to the early Toarcian carbon cycle and climate perturbation in the northeastern part of the West Tethys shelf. Gondwana Res. 2018, 59, 144–158. [Google Scholar] [CrossRef]
- Ruebsam, W.; Reolid, M.; Schwark, L. δ13C of terrestrial vegetation records Toarcian CO2 and climate gradients. Sci. Rep. UK 2020, 10, 117. [Google Scholar] [CrossRef]
- Hallam, A. The Pliensbachian and Tithonian extinction events. Nature 1986, 319, 765–768. [Google Scholar] [CrossRef]
- Hallam, A. Radiations and extinctions in relation to environmental change in the marine Lower Jurassic of northwest Europe. Paleobiology 1987, 13, 152–168. [Google Scholar] [CrossRef]
- Elmi, S. Stratigraphic correlations of the main Jurassic events in the Western Mediterranean Tethys (western Algeria and eastern Morocco). Georesearch Forum 1996, 1–2, 343–357. [Google Scholar]
- Elmi, S.; Marok, A.; Sebane, A.; Almeras, Y. Intérêt de la coupe de Mellala (Monts des Traras, Algérie occidentale pour les corrélations de la limite Pliensbachien-Toarcien. 12eme Séminaire national des Sciences de la Terre, Oran. Mars 2006, 2006, 29–30. [Google Scholar]
- Elmi, S. Pliensbachien/Toarcian boundary; the proposed GSSP of Peniche (Portugal). Ciências Terra (UNL) 2007, 16, 7–16. [Google Scholar]
- Elmi, S.; Mouterde, R.; Rocha, R.B.; Ruget, C. Toarcian GSSP candidate: The Peniche section at Ponta do Trovão. Ciências Terra (UNL). Lisboa 2007, 16, 25–35. [Google Scholar]
- Elmi, S.; Marok, A.; Sebane, A.; Almeras, Y. Importance of the Mellala section (Traras Mountains, northwestern Algeria) for the correlation of the Pliensbachian-Toarcian boundary. Vol. Jurass. 2009, 7, 37–45. [Google Scholar]
- Mcarthur, J.M.; Donovan, D.T.; Thirvall, M.F.; Fouke, B.W.; Mattey, D. Strontium isotope of the Early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones and belemnite palaeotemperatures. Earth Planet. Sci. Lett. 2000, 179, 269–285. [Google Scholar] [CrossRef]
- Bailey, T.R.; Rosenthal, Y.; Mcarthur, J.M.; Van de schootbrugge, B.; Thirlwall, M.F. Paleoceanographic changes of the Late Pliensbachian-Early Toarcian interval: A possible link to the genesis of an oceanic anoxic event. Earth Planet. Sci. Lett. 2003, 212, 307–320. [Google Scholar] [CrossRef]
- Ruban, D.A.; Tyszka, J. Diversity dynamics and mass extinctions of the Early-Middle Jurassic foraminifers: A record from the Northwestern Caucasus. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 222, 329–343. [Google Scholar] [CrossRef]
- Ghadeer, S.G.; Macquaker, J.H.S. Sediment transport processes in an ancient mud-dominated succession: A comparison of processes operating in marine offshore settings and anoxic basinal environments. J. Geol. Soc. 2011, 168, 1121–1132. [Google Scholar] [CrossRef]
- Gómez, J.J.; Goy, A. Warming-driven mass extinction in the Early Toarcian (Early Jurassic) of northen and central Spain. Correlation with other time-equivalent European sections. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 306, 176–195. [Google Scholar] [CrossRef]
- Reolid, M.; Rodríguez-Tovar, F.J.; Marok, A.; Sebane, A. The Toarcian Oceanic Anoxic Event in the Western Saharan Atlas, Algeria (North African Paleomargin): Role of anoxia and productivity. GSA Bull. 2012, 124, 1646–1664. [Google Scholar] [CrossRef]
- Trabucho-Alexandre, J.; Dirkx, R.; Veld, H.; Klaver, G.; De Boer, P.L. Toarcian black shales in the Dutch Central Graben: Record of energetic, variable depositional condition during an Oceanic Anoxic Event. J. Sediment. Res. 2012, 82, 104–120. [Google Scholar] [CrossRef]
- Reolid, M.; Molina, J.M.; Nieto, L.M.; Rodríguez-Tovar, F.J. The Toarcian Oceanic Anoxic Event in the South Iberian Palaeo-Margin; Springer: London, UK, 2018; 122p. [Google Scholar]
- Jenkyns, H.C. The early Toarcian (Jurassic) Oceanic Anoxic Event: Stratigraphic, sedimentary, and geochemical evidence. Am. J. Sci. 1988, 288, 101–151. [Google Scholar] [CrossRef]
- Mcarthur, J.M.; Algeo, T.J.; Van de schootbrugge, B.; Li, Q.; Howarth, R.J. Basinal restriction, black shales, Re-Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 2008, 23, PA4217. [Google Scholar] [CrossRef]
- Elmi, S.; Atrops, F.; Mangold, C. Les zones d’ammonites du Domérien-Callovien de l’Algérie occidentale—Première partie: Domérien-Toarcien. Doc. Lab. Géologique Sci. 1974, 61, 1–84. [Google Scholar]
- Deleau, P. Le Djebel Nador. Etude stratigraphique et paléontologique. Bulletin du Service de la Carte Géologique d’Algérie. 2e série Stratigraphique 1948, 17, 68. [Google Scholar]
- Caratini, C. Etude géologique de la région de Chellala-Reibel. Publ. Serv. Géologique L’algérie 1970, 40, 1–2. [Google Scholar]
- Lucas, G. Bordure Nord des Hautes Plaines dans l’Algérie occidentale. Primaire, Jurassique. Analyse structurale. In Proceedings of the XIX ème Congrès Géologique International, Aigiers, Algeria, 8–15 September 1952. [Google Scholar]
- Sebane, A. Etude Systématique et Paléoécologique de la Microfaune du Lias Moyen et Supérieur du Djebel Nador (Tiaret -Algérie). Ph.D. Thesis, Université Claude Bernard, Lyon, France, 1984; 136p. [Google Scholar]
- Elmi, S.; Almeras, Y.; Ameur, M.; Atrops, F.; Benhamou, M.; Moulin, G. La dislocation des plates-formes carbonatées liasique en Méditerranée occidental et ses implications sur les échanges fauniques. Bull. Soc. Géol. Fr. 1982, 5–6, 1007–1016. [Google Scholar] [CrossRef]
- Sebane, A. Les Foraminifères du Jurassique des Monts des Ksour. Etude Biostratigraphique et Paléoécologique. Ph.D. Thesis, Université d’ Oran, Oran, Algérie, 2007; 211p. [Google Scholar]
- Mahdjoub, A.H. Les Foraminifères Benthiques du Passage Pliensbachien-Toarcien du Djebel Es- saffeh (Tiaret, Algérie Occidentale). Master’s Thesis, Université Oran2, Oran, Algérie, 2018; 53p. [Google Scholar]
- Guex, J. Sur la classification des Dactylioceratidae (Ammonoidea) du Toarcien. Bull. Lab. Géol 1971, 64, 225–243. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bengoudira, F.D.; Touahria, A.; Sebane, A. Micromorphs: Response of the Ammonite Fauna during the Toarcian Oceanic Anoxic Event (T-OAE) in the Es-Saffeh Mountains (Tiaret, Western Algeria). Proceedings 2023, 87, 18. https://doi.org/10.3390/IECG2022-13808
Bengoudira FD, Touahria A, Sebane A. Micromorphs: Response of the Ammonite Fauna during the Toarcian Oceanic Anoxic Event (T-OAE) in the Es-Saffeh Mountains (Tiaret, Western Algeria). Proceedings. 2023; 87(1):18. https://doi.org/10.3390/IECG2022-13808
Chicago/Turabian StyleBengoudira, Fatiha Douas, Abdia Touahria, and Abbes Sebane. 2023. "Micromorphs: Response of the Ammonite Fauna during the Toarcian Oceanic Anoxic Event (T-OAE) in the Es-Saffeh Mountains (Tiaret, Western Algeria)" Proceedings 87, no. 1: 18. https://doi.org/10.3390/IECG2022-13808
APA StyleBengoudira, F. D., Touahria, A., & Sebane, A. (2023). Micromorphs: Response of the Ammonite Fauna during the Toarcian Oceanic Anoxic Event (T-OAE) in the Es-Saffeh Mountains (Tiaret, Western Algeria). Proceedings, 87(1), 18. https://doi.org/10.3390/IECG2022-13808