Developing Novel Rice Yield Index Using UAV Remote Sensing Imagery Fusion Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Image Acquisition and Processing
2.3. Feature Selection
2.4. Data Sets Construction and Model Effect Evaluation
3. Results
3.1. Relationships between Yield and New VIs and CIs
3.2. Relationships between Yield and New TIs
3.3. YI Building
3.3.1. YI Building by QNR Model
3.3.2. YI Building Based on Fusing VIs, CIs and TIs
4. Discussion
4.1. Model Performance Using Cross Datasets
4.2. Performance of the Novel YI
4.3. Advantages of the Novel YI
4.4. Potential Applications of the Novel YI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ouattara, T.A.; Sokeng, V.C.J.; Zo-Bi, I.C.; Kouame, K.F.; Grinand, C.; Vaudry, R. Detection of forest tree losses in cote d’ivoire using drone aerial images. Drones 2022, 6, 83. [Google Scholar] [CrossRef]
- Padua, L.; Antao-Geraldes, A.M.; Sousa, J.J.; Rodrigues, M.A.; Oliveira, V.; Santos, D.; Miguens, M.F.P.; Castro, J.P. Water hyacinth (Eichhornia crassipes) detection using coarse and high resolution multispectral data. Drones 2022, 6, 47. [Google Scholar] [CrossRef]
- Dalla Corte, A.P.; Neto, E.D.M.; Rex, F.E.; Souza, D.; Behling, A.; Mohan, M.; Sanquetta, M.N.I.; Silva, C.A.; Klauberg, C.; Sanquetta, C.R.; et al. High-density UAV-lidar in an integrated crop-livestock-forest system: Sampling forest inventory or forest inventory based on individual tree detection (ITD). Drones 2022, 6, 48. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.X.; Feng, G.H.; Gao, X.W.; Li, F.; Liu, B.; Yue, S.C.; Cheng, S.S.; Ustin, S.L.; Khosla, R. Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Comput. Electron. Agric. 2015, 112, 54–67. [Google Scholar] [CrossRef]
- Gnyp, M.L.; Miao, Y.X.; Yuan, F.; Ustin, S.L.; Yu, K.; Yao, Y.K.; Huang, S.Y.; Bareth, G. Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crops Res. 2014, 155, 42–55. [Google Scholar] [CrossRef]
- Khaliq, A.; Comba, L.; Biglia, A.; Aimonino, D.R.; Chiaberge, M.; Gay, P. Comparison of satellite and UAV-based multispectral imagery for vineyard variability assessment. Remote Sens. 2019, 11, 436. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.J.; Ju, W.M.; Li, L.; Li, D.Q.; Liu, Y.B.; Fan, W.L. Using vegetation indices and texture measures to estimate vegetation fractional coverage (VFC) of planted and natural forests in Nanjing city, China. Adv. Space Res. 2013, 51, 1186–1194. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Liu, X.; Liang, Y.; Cao, Q.; Tian, Y.C.; Zhu, Y.; Cao, W.X.; Liu, X.J. Using a portable active sensor to monitor growth parameters and predict grain yield of winter wheat. Sensors 2019, 19, 1108. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Niu, Z.; Chen, H.Y.; Li, D.; Wu, M.Q.; Zhao, W. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecol. Indic. 2016, 67, 637–648. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.M.; Zhang, L.; Han, J.W.; Bian, C.S.; Li, G.C.; Liu, J.G.; Jin, L.P. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J Photogramm. Remote Sens. 2020, 162, 161–172. [Google Scholar] [CrossRef]
- Wan, L.; Li, Y.J.; Cen, H.Y.; Zhu, J.P.; Yin, W.X.; Wu, W.K.; Zhu, H.Y.; Sun, D.W.; Zhou, W.J.; He, Y. Combining UAV-based vegetation indices and image classification to estimate flower number in oilseed rape. Remote Sens. 2018, 10, 1484. [Google Scholar] [CrossRef] [Green Version]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- Ge, H.X.; Ma, F.; Li, Z.W.; Du, C.W. Grain yield estimation in rice breeding using phenological data and vegetation indices derived from UAV images. Agronomy 2021, 11, 2439. [Google Scholar] [CrossRef]
- Hlatshwayo, S.T.; Mutanga, O.; Lottering, R.T.; Kiala, Z.; Ismail, R. Mapping forest aboveground biomass in the reforested Buffelsdraai landfill site using texture combinations computed from SPOT-6 pan-sharpened imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 65–77. [Google Scholar] [CrossRef]
- Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens. 2005, 26, 2509–2525. [Google Scholar] [CrossRef]
- Yang, M.D.; Huang, K.S.; Kuo, Y.H.; Tsai, H.P.; Lin, L.M. Spatial and spectral hybrid image classification for rice lodging assessment through uav imagery. Remote Sens 2017, 9, 583. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Naito, H.; Ogawa, S.; Valencia, M.O.; Mohri, H.; Urano, Y.; Hosoi, F.; Shimizu, Y.; Chavez, A.L.; Ishitani, M.; Selvaraj, M.G.; et al. Estimating rice yield related traits and quantitative trait loci analysis under different nitrogen treatments using a simple tower-based field phenotyping system with modified single-lens reflex cameras. ISPRS J Photogramm. Remote Sens. 2017, 125, 50–62. [Google Scholar] [CrossRef]
- Zhang, K.; Ge, X.K.; Shen, P.C.; Li, W.Y.; Liu, X.J.; Cao, Q.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting rice grain yield based on dynamic changes in vegetation indexes during early to mid-growth stages. Remote Sens. 2019, 11, 387. [Google Scholar] [CrossRef] [Green Version]
- Elmetwalli, A.H.; El-Hendawy, S.; Al-Suhaibani, N.; Alotaibi, M.; Tahir, M.U.; Mubushar, M.; Hassan, W.M.; Elsayed, S. Potential of hyperspectral and thermal proximal sensing for estimating growth performance and yield of soybean exposed to different drip irrigation regimes under arid conditions. Sensors 2020, 20, 6569. [Google Scholar] [CrossRef]
- Eckert, S. Improved forest biomass and carbon estimations using texture measures from worldview-2 satellite data. Remote Sens. 2012, 4, 810–829. [Google Scholar] [CrossRef] [Green Version]
- Vina, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Atzberger, C.; Guerif, M.; Baret, F.; Werner, W. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput. Electron. Agric. 2010, 73, 165–173. [Google Scholar] [CrossRef]
- Huang, W.J.; Guan, Q.S.; Luo, J.H.; Zhang, J.C.; Zhao, J.L.; Liang, D.; Huang, L.S.; Zhang, D.Y. New optimized spectral indices for identifying and monitoring winter wheat diseases. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2516–2524. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Y.; Qiu, X.L.; Wu, Y.T.; Zhu, Y.; Cao, Q.; Liu, X.J.; Cao, W.X. Combining texture, color, and vegetation indices from fixed-wing uas imagery to estimate wheat growth parameters using multivariate regression methods. Comput. Electron. Agric. 2021, 185, 1061838. [Google Scholar] [CrossRef]
- Qian, C.; Wu, X.J. Mapping paddy rice yield in zhejiang province using MODIS spectral index. Turk. J. Agric. For. 2011, 35, 579–589. [Google Scholar] [CrossRef]
- Rahman, A.; Roytman, L.; Krakauer, N.Y.; Nizamuddin, M.; Goldberg, M. Use of vegetation health data for estimation of aus rice yield in bangladesh. Sensors 2009, 9, 2968–2975. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Nam, J.; Kim, Y.; Lee, S.; Seong, D.; Jang, S.; Ryu, C. Assessment of regression models for predicting rice yield and protein content using unmanned aerial vehicle-based multispectral imagery. Remote Sens. 2021, 13, 1508. [Google Scholar] [CrossRef]
- Wang, F.M.; Yao, X.P.; Xie, L.L.; Zheng, J.Y.; Xu, T.Y. Rice yield estimation based on vegetation index and florescence spectral information from UAV hyperspectral remote sensing. Remote Sens. 2021, 13, 3390. [Google Scholar] [CrossRef]
- Zheng, H.B.; Cheng, T.; Li, D.; Zhou, X.; Yao, X.; Tian, Y.C.; Cao, W.X.; Zhu, Y. Evaluation of rgb, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice. Remote Sens. 2018, 10, 824. [Google Scholar] [CrossRef] [Green Version]
Experiments | Rice Cultivars | Fertilization Treatments (N Treatments) | Sampling Date (Stages) |
---|---|---|---|
2019 Exp.1 (Fuyang) 24 plots | 4 varieties: Ezao 18; Zhuliangyou 189; Zhuliangyou 819; Liangyou 287 | (1) Blank control group; (2) N 150 kg·ha−1, BF:PF:TF = 5:3:2. | 26 August (heading), 24 October (maturity) |
2019 Exp.2 (Fuyang) 96 plots | 2 varieties: Zhongzao 39; Zhongjiazao 17 | (1) Blank control group; (2) ordinary N 180 kg·ha−1, BF:PF:TF = 5:3:2; (3) special N 180 kg·ha−1, BF:PF:TF = 8:1:1; (4) special N 150 kg·ha−1, BF:PF:TF = 8:1:1; (5) slow-release N 150 kg·ha−1, BF:PF:TF = 8:1:1; (6) slow-release N 150 kg·ha−1, single basal fertilization; (7)N 150 kg·ha−1 in 10 different brands of fertilizers, single basal fertilization | 26 August (heading), 24 October (maturity) |
2020 Exp.3 (Pingyao) 11 plots | 1 variety: Yongyou 1540 | (1) side deep slow-release N 160 kg·ha−1, BF:PF = 5:5; (2) side deep slow-release N 160 kg·ha−1, BF:PF = 8:3; (3) side deep slow-release N 160 kg·ha−1, BF:PF = 3:8; (4) N 160 kg·ha−1, single basal fertilization. | 24 August (heading), 10 October (maturity) |
2020 Exp.4 (Yuhang) 19 plots | 19 varieties: Yongyou 1540; Yongyou 7850; Yongyou 7860; Yongyou 7872; Yongyou 6711; Chunyou 801; Chengyou 13; Zhejiang Jingyou 1578; Xiuyou 4913; Xiuyou 71,207; Jiaheyou 5; Xiushui 134; Jia 67; Zhongjia 8; Zhejiang Jing 99; Zhejiang Jing 100; Zhejiang Hujing 25; Chunjiang 157; Wankenjing 11,036 | (1) N 207 kg·ha−1, BF:PF:TF = 3:3:4. | 24 August (heading), 31 October (maturity) |
2022 Exp.5 (Fuyang) 28 plots | 4 varieties: Yongyou 1540; Yongyou 17; Zhongzheyou 8; Xiushui 134 | (1) Blank control group; (2) N 160 kg·ha−1, BF:PF:TF = 4:7:5; (3) N 210 kg·ha−1, BF:PF:TF = 6:10:5; (4) N 220 kg·ha−1, BF:PF: TF = 4:7:11; (5) N 260 kg·ha−1, BF:PF:TF = 8:13:5; (6) N 270 kg·ha−1, BF:PF:TF = 6:10:11; (7) N 320 kg·ha−1, BF:PF:TF = 8:13:11. | 17 August (heading), 30 October (maturity) |
2022 Exp.6 (Fuyang) 54 plots | 1 variety: Yongyou 12 | (1) Blank control group;(2) N 0 kg·ha−1, with plastic film; (3) N 195 kg·ha−1, without plastic film; (4) N 165 kg·ha−1, with biodegradable membrane; (5) N 195 kg·ha−1, with biodegradable membrane. | 17 August (heading), 30 October (maturity) |
Index Name | Formula | Reference |
---|---|---|
VI1 | (Rλ1 − Rλ2)/(Rλ3 − Rλ4) | [22] |
VI2 | Rλ1 − Rλ2 | [23] |
VI3 | (Rλ1 − Rλ2))/(Rλ1 + Rλ2) | [24] |
VI4 | Rλ1/Rλ2 | [25] |
VI4 | 1.5*(Rλ1 − Rλ2))/(Rλ1 + Rλ2 + 0.5) | [26] |
VI5 | 1.16*(Rλ1 − Rλ2)/(Rλ1 + Rλ2 + 0.16) | [11] |
CI1 | 2g − b − r | [27] |
CI2 | (g2 − r2)/(g2 + r2) | [28] |
CI3 | (g2 − br)/(g2 + br) | [28] |
CI4 | (r − g)/(r + g − b) | [29] |
CI5 | 3g − 2.4r − b | [27] |
CI6 | (2g − b − r)/(2g + b + r) | [30] |
Datasets | Number of Samples | Range (kg/ha) | Average (kg/ha) | SD | CV (%) |
---|---|---|---|---|---|
Training dataset | 174 | 3820.5–13,960.8 | 8546.6 | 2472.8 | 28.93 |
Test dataset | 58 | 4558.6–14,117.4 | 8625.6 | 2524.2 | 29.26 |
All | 232 | 3820.5–14,117.4 | 8566.4 | 2480.5 | 28.96 |
Model | Input TI | HS | MS | AS |
---|---|---|---|---|
QNR | TI(CONNIR, ENEred) | 0.58 * | 0.56 * | 0.46 * |
TI(CONred, ENENIR) | 0.50 * | 0.44 * | 0.36 * | |
TI(CONNIR, CONred) | 0.47 * | 0.42 * | 0.30 * | |
TI(CONNIR, CONred) | 0.63 ** | 0.61 * | 0.32 * | |
TI(CONNIR, ENEred) | 0.56 * | 0.58 * | 0.45 * | |
TI(CONNIR, CORred) | 0.64 ** | 0.60 ** | 0.48 * |
Stages | Variable | R2 | MAE (kg/ha) | MAPE (%) |
---|---|---|---|---|
YIs based on VI | ||||
HS | YIVI4 | 0.62 ** | 1247.95 | 17.93 |
MS | YIVI5 | 0.67 ** | 1148.03 | 13.98 |
AS | YIVI1 | 0.54 * | 1332.70 | 24.33 |
YIs based on CI | ||||
HS | YICI2 | 0.48 * | 1498.80 | 27.25 |
MS | YICI3 | 0.59 * | 1446.21 | 22.21 |
AS | YICI1 | 0.43 * | 1562.96 | 34.52 |
YIs based on TI | ||||
HS | YI(CONNIR,ENEred) | 0.61 ** | 1376.79 | 18.60 |
MS | YI(CONred,ENENIR) | 0.52 * | 1470.40 | 25.89 |
AS | YI(CONNIR,CONred) | 0.46 * | 1481.97 | 30.23 |
Stages | Technique | R2 | MAE (kg/ha) | MAPE (%) | R2 | MAE (kg/ha) | MAPE (%) | R2 | MAE (kg/ha) | MAPE (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
VIs | VIs + CIs | VIs + CIs + TIs | ||||||||||
HS | MLR | 0.69 ** | 1264.55 | 13.91 | 0.65 ** | 1374.55 | 15.12 | 0.61 ** | 1690.92 | 18.60 | ||
RF | 0.70 ** | 1245.46 | 13.70 | 0.79 ** | 851.82 | 9.37 | 0.78 ** | 883.64 | 9.72 | |||
MS | MLR | 0.72 ** | 1145.46 | 12.60 | 0.71 ** | 1195.46 | 13.15 | 0.70 ** | 1245.46 | 13.70 | ||
RF | 0.73 ** | 1095.46 | 12.05 | 0.80 ** | 748.18 | 8.23 | 0.84 ** | 714.55 | 7.86 | |||
AS | MLR | 0.54 * | 2211.83 | 24.33 | 0.50 * | 2372.74 | 26.70 | 0.52 * | 2353.65 | 25.89 | ||
RF | 0.51 * | 2393.65 | 26.33 | 0.65 ** | 1374.55 | 15.12 | 0.61 ** | 1690.92 | 18.60 |
Stages | VIs | VIs + CIs | VIs + CIs + TIs |
---|---|---|---|
HS | 3 | 5 | 7 |
MS | 5 | 4 | 12 |
AS | 4 | 6 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Lu, X.; Yang, R.; Chen, H.; Wang, Y.; Zhang, Y.; Huang, J.; Liu, F. Developing Novel Rice Yield Index Using UAV Remote Sensing Imagery Fusion Technology. Drones 2022, 6, 151. https://doi.org/10.3390/drones6060151
Zhou J, Lu X, Yang R, Chen H, Wang Y, Zhang Y, Huang J, Liu F. Developing Novel Rice Yield Index Using UAV Remote Sensing Imagery Fusion Technology. Drones. 2022; 6(6):151. https://doi.org/10.3390/drones6060151
Chicago/Turabian StyleZhou, Jun, Xiangyu Lu, Rui Yang, Huizhe Chen, Yaliang Wang, Yuping Zhang, Jing Huang, and Fei Liu. 2022. "Developing Novel Rice Yield Index Using UAV Remote Sensing Imagery Fusion Technology" Drones 6, no. 6: 151. https://doi.org/10.3390/drones6060151
APA StyleZhou, J., Lu, X., Yang, R., Chen, H., Wang, Y., Zhang, Y., Huang, J., & Liu, F. (2022). Developing Novel Rice Yield Index Using UAV Remote Sensing Imagery Fusion Technology. Drones, 6(6), 151. https://doi.org/10.3390/drones6060151