MobileRaT: A Lightweight Radio Transformer Method for Automatic Modulation Classification in Drone Communication Systems
Abstract
:1. Introduction
1.1. Motivation
1.2. Novelty
- A lightweight deep learning model combining point-wise convolution, depth-wise separable convolution, ReLU6 activation, group normalization, and other efficient computing modules was developed for AMC.
- A weight importance metric, based on information entropy, is introduced to iteratively remove redundant parameters from the model. The removal rates and training stop conditions at each epoch are carefully considered to avoid damaging the model structure.
- To the best of our knowledge, this is the first attempt in which an information-entropy-based pruning technique and a lightweight transformer are integrated and applied to processing temporal I/Q signals, ensuring AMC accuracy while improving the inference efficiency.
- Two deep learning models of different scales, MobileRaT-A and MobileRaT-B, are used to evaluate the AMC performance in realistic conditions in order to break through the limitations of storage, computing resources, and power in drone communication systems.
1.3. Organization
2. Related Work
2.1. LB and FB Methods
2.2. Deep Learning Methods
3. Problem Formulation
3.1. Drone Communication Model
3.2. Signal Representation
3.3. Problem Description
4. Lightweight Transformer MobileRaT
4.1. Model Structure
4.2. Weight Evaluation
4.3. Iterative Learning
Algorithm 1. Iterative learning process of MobileRaT. |
Input: training set and validation set. |
Initialization: deep learning model and hyper-parameters. |
1: for each training session do |
2: for each training iteration do |
3: forward propagation: loss computation as Equation (22). |
4: back-propagation: weights update as Equation (20). |
5: end for |
6: learning rate update as Equation (23). |
7: weights removal according to Equation (19). |
8: until the trade-off satisfies the condition |
Output: the convergent lightweight deep learning model. |
5. Experimental Results and Analysis
5.1. Experimental Settings
5.1.1. Experimental Dataset
5.1.2. Hyper-Parameter Setting
5.1.3. Implementation Platform
5.1.4. Evaluation Metrics
5.2. AMC Performance of MobileRaT
5.3. Comparison with State-of-the-Art Methods
5.4. Robustness Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, M.; Sezginer, S.; Gui, G.; Sari, H. Bridging spatial modulation with spatial multiplexing: Frequency-domain ESM. IEEE J. Sel. Top. Signal Process. 2019, 13, 1326–1335. [Google Scholar] [CrossRef]
- Ma, M.; Xu, Y.; Wang, Z.; Fu, X.; Gui, G. Decentralized learning and model averaging based automatic modulation classification in drone communication systems. Drones 2023, 7, 391. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, F.; Wu, Q.; Wu, W.; Hu, R.Q. A novel automatic modulation classification scheme based on multi-scale networks. IEEE Trans. Cogn. Commun. Netw. 2021, 8, 97–110. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, R.; Tian, X.; Yu, Z.; Wang, H.; Elhanashi, A.; Saponara, S. A real-time transformer discharge pattern recognition method based on CNN-LSTM driven by few-shot learning. Electr. Power Syst. Res. 2023, 219, 109241. [Google Scholar] [CrossRef]
- Chang, S.; Zhang, R.; Ji, K.; Huang, S.; Feng, Z. A hierarchical classification head based convolutional gated deep neural network for automatic modulation classification. IEEE Trans. Wirel. Commun. 2022, 21, 8713–8728. [Google Scholar] [CrossRef]
- Wang, Y.; Gui, G.; Gacanin, H.; Ohtsuki, T.; Dobre, O.A.; Poor, H.V. An efficient specific emitter identification method based on complex-valued neural networks and network compression. IEEE J. Sel. Areas Commun. 2021, 39, 2305–2317. [Google Scholar] [CrossRef]
- Liu, X.; Sun, C.; Yu, W.; Zhou, M. Reinforcement-learning-based dynamic spectrum access for software-defined cognitive industrial internet of things. IEEE Trans. Ind. Inform. 2021, 18, 4244–4253. [Google Scholar] [CrossRef]
- Dong, B.; Liu, Y.; Gui, G.; Fu, X.; Dong, H.; Adebisi, B.; Gacanin, H.; Sari, H. A lightweight decentralized-learning-based automatic modulation classification method for resource-constrained edge devices. IEEE Internet Things J. 2022, 9, 24708–24720. [Google Scholar]
- Peng, Y.; Guo, L.; Yan, J.; Tao, M.; Fu, X.; Lin, Y.; Gui, G. Automatic modulation classification using deep residual neural network with masked modeling for wireless communications. Drones 2023, 7, 390. [Google Scholar] [CrossRef]
- Shen, Y.; Yuan, H.; Zhang, P.; Li, Y.; Cai, M.; Li, J. A multi-subsampling self-attention network for unmanned aerial vehicle-to-ground automatic modulation recognition system. Drones 2023, 7, 376. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, H.; Zhu, H.; Adebisi, B.; Gui, G.; Gacanin, H.; Adachi, F. NAS-AMR: Neural architecture search-based automatic modulation recognition for integrated sensing and communication systems. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 1374–1386. [Google Scholar] [CrossRef]
- Fu, X.; Gui, G.; Wang, Y.; Gacanin, H.; Adachi, F. Automatic modulation classification based on decentralized learning and ensemble learning. IEEE Trans. Veh. Technol. 2022, 71, 7942–7946. [Google Scholar] [CrossRef]
- Gong, A.; Zhang, X.; Wang, Y.; Zhang, Y.; Li, M. Hybrid data augmentation and dual-stream spatiotemporal fusion neural network for automatic modulation classification in drone communications. Drones 2023, 7, 346. [Google Scholar] [CrossRef]
- Fu, X.; Gui, G.; Wang, Y.; Ohtsuki, T.; Adebisi, B.; Gacanin, H.; Adachi, F. Lightweight automatic modulation classification based on decentralized learning. IEEE Trans. Cogn. Commun. Netw. 2021, 8, 57–70. [Google Scholar] [CrossRef]
- Huan, C.Y.; Polydoros, A. Likelihood methods for MPSK modulation classification. IEEE Trans. Commun. 1995, 43, 1493–1504. [Google Scholar] [CrossRef]
- Tadaion, A.A.; Derakhtian, M.; Gazor, S.; Aref, M.R. Likelihood ratio tests for PSK modulation classification in unknown noise environment. In Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, Saskatoon, SK, Canada, 1–4 May 2005; pp. 151–154. [Google Scholar]
- Panagiotou, P.; Anastasopoulos, A.; Polydoros, A. Likelihood ratio tests for modulation classification. In Proceedings of the IEEE 21st Century Military Communications. Architectures and Technologies for Information Superiority (Cat. No. 00CH37155), Los Angeles, CA, USA, 22–25 October 2000; Volume 2, pp. 670–674. [Google Scholar]
- Xie, L.; Wan, Q. Cyclic feature based modulation recognition using compressive sensing. IEEE Wirel. Commun. Lett. 2017, 6, 402–405. [Google Scholar] [CrossRef]
- Li, T.; Li, Y.; Dobre, O.A. Modulation classification based on fourth-order cumulants of superposed signal in NOMA systems. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2885–2897. [Google Scholar] [CrossRef]
- Carnì, D.L.; Balestrieri, E.; Tudosa, I.; Lamonaca, F. Application of machine learning techniques and empirical mode decomposition for the classification of analog modulated signals. Acta Imeko 2020, 9, 66–74. [Google Scholar] [CrossRef]
- Wei, Y.; Fang, S.; Wang, X. Automatic modulation classification of digital communication signals using SVM based on hybrid features, cyclostationary, and information entropy. Entropy 2019, 21, 745. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, C.; Wang, D.; Chen, X.; Wang, L.; Yang, T.; Du, J. Low-complexity and nonlinearity-tolerant modulation format identification using random forest. IEEE Photonics Technol. Lett. 2019, 31, 853–856. [Google Scholar] [CrossRef]
- Zheng, Q.; Tian, X.; Yu, Z.; Jiang, N.; Elhanashi, A.; Saponara, S.; Yu, R. Application of wavelet-packet transform driven deep learning method in PM2.5 concentration prediction: A case study of Qingdao, China. Sustain. Cities Soc. 2023, 92, 104486. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhao, P.; Zhang, D.; Wang, H. MR-DCAE: Manifold regularization-based deep convolutional autoencoder for unauthorized broadcasting identification. Int. J. Intell. Syst. 2021, 36, 7204–7238. [Google Scholar] [CrossRef]
- Wang, Y.; Gui, G.; Lin, Y.; Wu, H.C.; Yuen, C.; Adachi, F. Few-shot specific emitter identification via deep metric ensemble learning. IEEE Internet Things J. 2022, 9, 24980–24994. [Google Scholar] [CrossRef]
- Zhang, Q.; Nicolson, A.; Wang, M.; Paliwal, K.K.; Wang, C. DeepMMSE: A deep learning approach to MMSE-based noise power spectral density estimation. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 1404–1415. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhao, P.; Li, Y.; Wang, H.; Yang, Y. Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification. Neural Comput. Appl. 2021, 33, 7723–7745. [Google Scholar] [CrossRef]
- Wang, Y.; Gui, G.; Ohtsuki, T.; Adachi, F. Multi-task learning for generalized automatic modulation classification under non-Gaussian noise with varying SNR conditions. IEEE Trans. Wirel. Commun. 2021, 20, 3587–3596. [Google Scholar] [CrossRef]
- Daldal, N.; Yıldırım, Ö.; Polat, K. Deep long short-term memory networks-based automatic recognition of six different digital modulation types under varying noise conditions. Neural Comput. Appl. 2019, 31, 1967–1981. [Google Scholar] [CrossRef]
- Zheng, Q.; Tian, X.; Yu, Z.; Wang, H.; Elhanashi, A.; Saponara, S. DL-PR: Generalized automatic modulation classification method based on deep learning with priori regularization. Eng. Appl. Artif. Intell. 2023, 122, 106082. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Yang, C. Modulation recognition with graph convolutional network. IEEE Wirel. Commun. Lett. 2020, 9, 624–627. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhao, P.; Wang, H.; Elhanashi, A.; Saponara, S. Fine-grained modulation classification using multi-scale radio transformer with dual-channel representation. IEEE Commun. Lett. 2022, 26, 1298–1302. [Google Scholar] [CrossRef]
- Nan, Y.; Ju, J.; Hua, Q.; Zhang, H.; Wang, B. A-MobileNet: An approach of facial expression recognition. Alex. Eng. J. 2022, 61, 4435–4444. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, X.; Chen, D.; Liu, M.; Dong, X.; Yuan, L.; Liu, Z. Mobile-former: Bridging mobilenet and transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 5270–5279. [Google Scholar]
- Zheng, Q.; Tian, X.; Yang, M.; Wu, Y.; Su, H. PAC-Bayesian framework based drop-path method for 2D discriminative convolutional network pruning. Multidimens. Syst. Signal Process. 2020, 31, 793–827. [Google Scholar] [CrossRef]
- O’Shea, T.J.; Roy, T.; Clancy, T.C. Over-the-air deep learning based radio signal classification. IEEE J. Sel. Top. Signal Process. 2018, 12, 168–179. [Google Scholar] [CrossRef]
- O’shea, T.J.; West, N. Radio machine learning dataset generation with gnu radio. In Proceedings of the 6th GNU Radio Conference, Charlotte, NC, USA, 20–24 September 2016; Volume 1, pp. 1–6. [Google Scholar]
- Zheng, J.; Lv, Y. Likelihood-based automatic modulation classification in OFDM with index modulation. IEEE Trans. Veh. Technol. 2018, 67, 8192–8204. [Google Scholar] [CrossRef]
- Abu-Romoh, M.; Aboutaleb, A.; Rezki, Z. Automatic modulation classification using moments and likelihood maximization. IEEE Commun. Lett. 2018, 22, 938–941. [Google Scholar] [CrossRef]
- Chen, J.; Cui, H.; Miao, S.; Wu, C.; Zheng, H.; Zheng, S.; Huang, H.; Xuan, Q. FEM: Feature extraction and mapping for radio modulation classification. Phys. Commun. 2021, 45, 101279. [Google Scholar] [CrossRef]
- Venkata Subbarao, M.; Samundiswary, P. Automatic modulation classification using cumulants and ensemble classifiers. In Advances in VLSI, Signal Processing, Power Electronics, IoT, Communication and Embedded Systems: Select Proceedings of VSPICE 2020; Springer: Singapore, 2021; pp. 109–120. [Google Scholar]
- Shah, S.I.H.; Coronato, A.; Ghauri, S.A.; Alam, S.; Sarfraz, M. Csa-assisted gabor features for automatic modulation classification. Circuits Syst. Signal Process. 2022, 41, 1660–1682. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Liu, M.; Gui, G. LightAMC: Lightweight automatic modulation classification via deep learning and compressive sensing. IEEE Trans. Veh. Technol. 2020, 69, 3491–3495. [Google Scholar] [CrossRef]
- Teng, C.F.; Chou, C.Y.; Chen, C.H.; Wu, A.Y. Accumulated polar feature-based deep learning for efficient and lightweight automatic modulation classification with channel compensation mechanism. IEEE Trans. Veh. Technol. 2020, 69, 15472–15485. [Google Scholar] [CrossRef]
- Luan, S.; Gao, Y.; Zhou, J.; Zhang, Z. Automatic modulation classification based on cauchy-score constellation and lightweight network under impulsive noise. IEEE Wirel. Commun. Lett. 2021, 10, 2509–2513. [Google Scholar] [CrossRef]
- Luan, S.; Gao, Y.; Liu, T.; Li, J.; Zhang, Z. Automatic modulation classification: Cauchy-Score-function-based cyclic correlation spectrum and FC-MLP under mixed noise and fading channels. Digit. Signal Process. 2022, 126, 103476. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, W.; Zhao, L.; Xiao, J.; Li, X.; Zhao, F.; Yu, J. A new scheme to generate multi-frequency mm-wave signals based on cascaded phase modulator and I/Q modulator. IEEE Photonics J. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Wu, Y.; He, K. Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Kim, H.; Park, J.; Lee, C.; Kim, J.J. Improving accuracy of binary neural networks using unbalanced activation distribution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 7862–7871. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Adam, H.; et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Hua, B.S.; Tran, M.K.; Yeung, S.K. Pointwise convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 984–993. [Google Scholar]
- Zhang, R.; Zhu, F.; Liu, J.; Liu, G. Depth-wise separable convolutions and multi-level pooling for an efficient spatial CNN-based steganalysis. IEEE Trans. Inf. Forensics Secur. 2019, 15, 1138–1150. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Luo, F.; Wei, S. Modulation classification based on denoising autoencoder and convolutional neural network with GNU radio. J. Eng. 2019, 19, 6188–6191. [Google Scholar] [CrossRef]
Hyper-Parameters | MobileRaT-A | MobileRaT-B |
---|---|---|
learning rate | 0.05 | 0.01 |
momentum rate | 0.9 | 0.9 |
batch size | 128 | 64 |
weight decay rate | 0.0005 | 0.0005 |
small constant | 10−5 | 10−5 |
pruning rate | >30% | >60% |
accuracy loss | <3% | <5% |
Evaluation Metrics | MobileRaT-A (1×) | MobileRaT-A (0.67×) | MobileRaT-B (1×) | MobileRaT-B (0.38×) |
---|---|---|---|---|
Training accuracy (%) | 74.6 | 72.2 | 78.8 | 74.7 |
Validation accuracy (%) | 65.3 | 65.0 | 68.7 | 67.2 |
Testing accuracy (%) | 62.3 | 61.8 | 65.9 | 63.2 |
Number of weights (k) | 271 | 182 | 268 | 102 |
Inference speed (ms) | 1.3 | 0.9 | 7.6 | 4.4 |
Methods | AMC Accuracy (%) | Number of Weights (k) | Inference Speed (ms) |
---|---|---|---|
HCGDNN [5] | 57.9 | 242 | 1.4 |
DSSFNN [13] | 57.4 | 608 | 4.3 |
Deep-LSTM [29] | 60.2 | 565 | 9.8 |
GCN [31] | 59.6 | 442 | 7.5 |
MobileRaT-A (1×) | 62.3 | 271 | 1.3 |
MobileRaT-A (0.84×) | 62.1 | 228 | 1.2 |
MobileRaT-A (0.72×) | 62.0 | 195 | 1.2 |
MobileRaT-A (0.67×) | 61.8 | 182 | 0.9 |
Methods | AMC Accuracy (%) | Number of Weights (k) | Inference Speed (ms) |
---|---|---|---|
Augmented CNN [27] | 58.8 | 92 | 3.2 |
DL-PR: CNN [30] | 62.6 | 224 | 7.9 |
MS-Transformer [32] | 61.4 | 220 | 9.0 |
FC-MLP [46] | 57.6 | 170 | 6.8 |
MobileRaT-B (1×) | 65.9 | 268 | 7.6 |
MobileRaT-B (0.71×) | 64.4 | 190 | 7.1 |
MobileRaT-B (0.54×) | 63.7 | 145 | 5.9 |
MobileRaT-B (0.38×) | 63.2 | 102 | 4.4 |
Models | [I Q]T | [A P]T | [I Q A P]T |
---|---|---|---|
MobileRaT-A (1×) | 61.2 | 60.8 | 62.3 |
MobileRaT-A (0.84×) | 60.9 | 60.4 | 62.1 |
MobileRaT-A (0.72×) | 60.7 | 60.1 | 62.0 |
MobileRaT-A (0.67×) | 60.6 | 59.4 | 61.8 |
MobileRaT-B (1×) | 63.9 | 61.8 | 65.9 |
MobileRaT-B (0.71×) | 62.7 | 61.1 | 64.4 |
MobileRaT-B (0.54×) | 62.2 | 60.6 | 63.7 |
MobileRaT-B (0.38×) | 61.8 | 60.8 | 63.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Q.; Tian, X.; Yu, Z.; Ding, Y.; Elhanashi, A.; Saponara, S.; Kpalma, K. MobileRaT: A Lightweight Radio Transformer Method for Automatic Modulation Classification in Drone Communication Systems. Drones 2023, 7, 596. https://doi.org/10.3390/drones7100596
Zheng Q, Tian X, Yu Z, Ding Y, Elhanashi A, Saponara S, Kpalma K. MobileRaT: A Lightweight Radio Transformer Method for Automatic Modulation Classification in Drone Communication Systems. Drones. 2023; 7(10):596. https://doi.org/10.3390/drones7100596
Chicago/Turabian StyleZheng, Qinghe, Xinyu Tian, Zhiguo Yu, Yao Ding, Abdussalam Elhanashi, Sergio Saponara, and Kidiyo Kpalma. 2023. "MobileRaT: A Lightweight Radio Transformer Method for Automatic Modulation Classification in Drone Communication Systems" Drones 7, no. 10: 596. https://doi.org/10.3390/drones7100596
APA StyleZheng, Q., Tian, X., Yu, Z., Ding, Y., Elhanashi, A., Saponara, S., & Kpalma, K. (2023). MobileRaT: A Lightweight Radio Transformer Method for Automatic Modulation Classification in Drone Communication Systems. Drones, 7(10), 596. https://doi.org/10.3390/drones7100596