Oxpecker: A Tethered UAV for Inspection of Stone-Mine Pillars
Abstract
:1. Introduction
- 1.
- The design of a tether-powered multi-rotor UAV for long-term robotics,
- 2.
- The design of a tethering perception system,
- 3.
- The design of a cable management system capable of conveying power to the TUAV and also controlling the tension of the tether,
- 4.
- A motion planning and control strategy for unknown pillar surveying and mapping in a GNSS-degraded environment,
- 5.
- A strategy for autonomous landing using tether variables.
2. Related Work
3. System Hardware
3.1. Mission Requirements and Design Decisions
- Able to operate for several hours without human intervention;
- Able to carry mapping and surveying sensors, including LiDARs and cameras;
- Able to precisely land on the UGV before moving from one pillar to the next.
- A tether-powered quadrotor with enough payload capacity to carry localization and 3D mapping sensors, and the weight of the released power cable;
- A tethering system that manages the cable release and retraction and that assists the drone localization and landing by measuring relevant variables, such as tether angles and tether length;
- A self-leveling landing platform that compensates for the roll and pitch of the ground vehicle and assists in drone landing.
3.2. TUAV System
3.2.1. Cable Specification
3.2.2. Frame Selection
3.2.3. Flight Controller Selection
3.2.4. Companion Computer Selection
3.2.5. Sensors Suite Selection
Ranging Sensors
Tracking Camera
Mapping Sensor
Tether Sensors
3.3. Tethering System
3.4. Self-Leveling Landing Platform System
4. Software Architecture
4.1. Autonomy Framework
4.2. Velocity Estimation and Localization
4.3. Wall Coverage
4.4. Tether-Guided Landing
5. Field Experiments and Results
5.1. UAV Path Planning and Mapping
5.2. Landing
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GNSS | Global Navigation Satellite Systems |
3D | Three Dimensional |
VIO | Visual Inertial Odometry |
LiDAR | Light Detection and Ranging |
UAV | Unmanned Aerial Vehicle |
TUAV | Tethered Unmanned Aerial Vehicle |
UGV | Unmanned Ground Vehicle |
ROS | Robot Operating System |
ESC | Electronic Speed Controller |
IMU | Inertial Measurement Unit |
GPS | Global Positioning System |
GLONASS | Global Navigation Satellite System |
SSD | Solid-State Drive |
MCU | Microcontroller Unit |
EKF | Extended Kalman Filter |
SLAM | Simultaneous Localization and Mapping |
V-SLAM | Visual Simultaneous Localization and Mapping |
PID | Proportional Integral Derivative |
ADC | Analog to Digital Converter |
FOV | Field of View |
Appendix A. List of Components
Part Name | Manufacturer | Model | Quantity | Power (W) | Weight (g) |
---|---|---|---|---|---|
Quadrotor Frame | Holybro | X500 | 1 | - | 470 |
Brushless Motors | T-MOTOR | MN3520 KV400 | 4 | 680 | 888 |
Propellers | T-MOTOR | P12x4 Prop | 4 | - | 58 |
Electronic Speed Controllers | T-MOTOR | FLAME HV 60A | 4 | - | 294 |
Flight Management Unit | Holybro | Pixhawk 4 | 1 | 2.5 | 16 |
Power Management Board | Holybro | PM07 | 1 | - | 40 |
Telemetry Transmitter | Holybro | TT Radio V3 915 MHz | 1 | 0.5 | 38 |
GPS Antenna | Holybro | Pixhawk 4 GPS Module | 1 | 0.8 | 32 |
Companion Computer | Intel® | NUC11i5PAH (without case) | 1 | 36 | 210 |
LiDAR Camera | Intel® | RealSense™ L515 | 1 | 3.3 | 95 |
Tracking Camera | Intel® | RealSense™ T265 | 1 | 1.5 | 55 |
UWB Transceiver Module | Decawave | DWM1001 | 1 | 0.3 | - |
Distance Measurement Sensor | Garmin | LidarLite3 | 1 | 0.7 | 22 |
Distance Measurement Sensor | Garmin | LidarLite4 | 1 | 0.7 | 22 |
Inertial Measurement Unit | Analog Devices | ADIS-16495 2BMLZ-ND | 1 | 0.3 | 42 |
RC Receiver | Spektrum | AR620 DSMX 6-Channel | 1 | - | 8 |
Microcontroller | Arduino | UNO R3 | 1 | 0.2 | 25 |
Flexible Wire (16AWG, 2 cond.) | BNTECHGO | - | 15 | - | 570 |
References
- Said, K.O.; Onifade, M.; Githiria, J.M.; Abdulsalam, J.; Bodunrin, M.O.; Genc, B.; Johnson, O.; Akande, J.M. On the application of drones: A progress report in mining operations. Int. J. Min. Reclam. Environ. 2021, 35, 235–267. [Google Scholar] [CrossRef]
- Shahmoradi, J.; Talebi, E.; Roghanchi, P.; Hassanalian, M. A comprehensive review of applications of drone technology in the mining industry. Drones 2020, 4, 34. [Google Scholar] [CrossRef]
- Tong, X.; Liu, X.; Chen, P.; Liu, S.; Luan, K.; Li, L.; Liu, S.; Liu, X.; Xie, H.; Jin, Y.; et al. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sens. 2015, 7, 6635–6662. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.P.; Kim, S.B.; Back, K.S. Analysis of Mine Change Using 3D Spatial Information Based on Drone Image. Sustainability 2022, 14, 3433. [Google Scholar] [CrossRef]
- Ge, L.; Li, X.; Ng, A.H.M. UAV for mining applications: A case study at an open-cut mine and a longwall mine in New South Wales, Australia. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5422–5425. [Google Scholar]
- Battulwar, R.; Winkelmaier, G.; Valencia, J.; Naghadehi, M.Z.; Peik, B.; Abbasi, B.; Parvin, B.; Sattarvand, J. A practical methodology for generating high-resolution 3D models of open-pit slopes using UAVs: Flight path planning and optimization. Remote Sens. 2020, 12, 2283. [Google Scholar] [CrossRef]
- Padró, J.C.; Cardozo, J.; Montero, P.; Ruiz-Carulla, R.; Alcañiz, J.M.; Serra, D.; Carabassa, V. Drone-based identification of erosive processes in open-pit mining restored areas. Land 2022, 11, 212. [Google Scholar] [CrossRef]
- Herrmann, E.; Jackisch, R.; Zimmermann, R.; Gloaguen, R.; Lünich, K.; Kieschnik, L. Drone-borne spectral monitoring of post-mining areas. Geophys. Res. Abstr. 2019, 21, EGU2019-15001. [Google Scholar]
- Turner, R.; Bhagwat, N.; Galayda, L.; Knoll, C.; Russell, E.; MacLaughlin, M. Geotechnical Characterization of Underground Mine Excavations from UAV-Captured Photogrammetric & Thermal Imagery. In Proceedings of the 52nd US Rock Mechanics/Geomechanics Symposium, Seattle, WA, USA, 17–20 June 2018; OnePetro: Richardson, TX, USA, 2018. [Google Scholar]
- Russell, E.A.; MacLaughlin, M.; Turner, R. UAV-based geotechnical modeling and mapping of an inaccessible underground site. In Proceedings of the 52nd US Rock Mechanics/Geomechanics Symposium, Seattle, WA, USA, 17–20 June 2018; OnePetro: Richardson, TX, USA, 2018. [Google Scholar]
- Dunnington, L.; Nakagawa, M. Fast and safe gas detection from underground coal fire by drone fly over. Environ. Pollut. 2017, 229, 139–145. [Google Scholar] [CrossRef]
- De Petrillo, M.; Beard, J.; Gu, Y.; Gross, J.N. Search planning of a uav/ugv team with localization uncertainty in a subterranean environment. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 6–16. [Google Scholar] [CrossRef]
- De Croon, G.; De Wagter, C. Challenges of autonomous flight in indoor environments. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1003–1009. [Google Scholar]
- Azpúrua, H.; Saboia, M.; Freitas, G.M.; Clark, L.; Agha-mohammadi, A.a.; Pessin, G.; Campos, M.F.; Macharet, D.G. A Survey on the autonomous exploration of confined subterranean spaces: Perspectives from real-word and industrial robotic deployments. Robot. Auton. Syst. 2023, 160, 104304. [Google Scholar] [CrossRef]
- Chowdhary, G.; Johnson, E.N.; Magree, D.; Wu, A.; Shein, A. GPS-denied indoor and outdoor monocular vision aided navigation and control of unmanned aircraft. J. Field Robot. 2013, 30, 415–438. [Google Scholar] [CrossRef]
- Cvišić, I.; Ćesić, J.; Marković, I.; Petrović, I. SOFT-SLAM: Computationally efficient stereo visual simultaneous localization and mapping for autonomous unmanned aerial vehicles. J. Field Robot. 2018, 35, 578–595. [Google Scholar] [CrossRef]
- Ebadi, K.; Bernreiter, L.; Biggie, H.; Catt, G.; Chang, Y.; Chatterjee, A.; Denniston, C.E.; Deschênes, S.P.; Harlow, K.; Khattak, S.; et al. Present and future of slam in extreme underground environments. arXiv 2022, arXiv:2208.01787. [Google Scholar]
- Zhang, J.; Singh, S. Low-drift and real-time lidar odometry and mapping. Auton. Robot. 2017, 41, 401–416. [Google Scholar] [CrossRef]
- Khattak, S.; Mascarich, F.; Dang, T.; Papachristos, C.; Alexis, K. Robust thermal-inertial localization for aerial robots: A case for direct methods. In Proceedings of the 2019 IEEE International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; pp. 1061–1068. [Google Scholar]
- Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A. ROS: An open-source Robot Operating System. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) Workshop on Open Source Robotics, Kobe, Japan, 12–17 May 2009. [Google Scholar]
- Neumann, T.; Ferrein, A.; Kallweit, S.; Scholl, I. Towards a mobile mapping robot for underground mines. In Proceedings of the 2014 PRASA, RobMech and AfLaT International Joint Symposium, Cape Town, South Africa, 27–28 November 2014; pp. 27–28. [Google Scholar]
- Gill, P.S.; Hatfield, M.C.; Randle, D.; Wies, R.; Ganguli, R.; Rosetti, S.; Vanderwaal, S. Team of Unmanned Aircraft Systems (UAS) and Unmanned Ground Vehicles (UGV) for Emergency Response in Mining Applications. In Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, FL, USA, 27–29 July 2015; p. 4111. [Google Scholar]
- Tranzatto, M.; Miki, T.; Dharmadhikari, M.; Bernreiter, L.; Kulkarni, M.; Mascarich, F.; Andersson, O.; Khattak, S.; Hutter, M.; Siegwart, R.; et al. CERBERUS in the DARPA Subterranean Challenge. Sci. Robot. 2022, 7, eabp9742. [Google Scholar] [CrossRef] [PubMed]
- Hudson, N.; Talbot, F.; Cox, M.; Williams, J.; Hines, T.; Pitt, A.; Wood, B.; Frousheger, D.; Surdo, K.L.; Molnar, T.; et al. Heterogeneous Ground and Air Platforms, Homogeneous Sensing: Team CSIRO Data61’s Approach to the DARPA Subterranean Challenge. arXiv 2021, arXiv:2104.09053. [Google Scholar] [CrossRef]
- Best, G.; Garg, R.; Keller, J.; Hollinger, G.A.; Scherer, S. Resilient Multi-Sensor Exploration of Multifarious Environments with a Team of Aerial Robots. In Proceedings of the Robotics: Science and Systems (RSS), New York, NY, USA, 27 June–1 July 2022. [Google Scholar]
- Agha, A.; Otsu, K.; Morrell, B.; Fan, D.D.; Thakker, R.; Santamaria-Navarro, A.; Kim, S.K.; Bouman, A.; Lei, X.; Edlund, J.; et al. Nebula: Quest for robotic autonomy in challenging environments; team costar at the darpa subterranean challenge. arXiv 2021, arXiv:2103.11470. [Google Scholar]
- Rouček, T.; Pecka, M.; Čížek, P.; Petříček, T.; Bayer, J.; Šalanskỳ, V.; Azayev, T.; Heřt, D.; Petrlík, M.; Báča, T.; et al. System for multi-robotic exploration of underground environments CTU-CRAS-NORLAB in the DARPA Subterranean Challenge. arXiv 2021, arXiv:2110.05911. [Google Scholar] [CrossRef]
- Ohradzansky, M.T.; Rush, E.R.; Riley, D.G.; Mills, A.B.; Ahmad, S.; McGuire, S.; Biggie, H.; Harlow, K.; Miles, M.J.; Frew, E.W.; et al. Multi-agent autonomy: Advancements and challenges in subterranean exploration. arXiv 2021, arXiv:2110.04390. [Google Scholar] [CrossRef]
- De Petris, P.; Nguyen, H.; Dharmadhikari, M.; Kulkarni, M.; Khedekar, N.; Mascarich, F.; Alexis, K. RMF-owl: A collision-tolerant flying robot for autonomous subterranean exploration. arXiv 2022, arXiv:2202.11055. [Google Scholar]
- Flyability. Elios 3—Digitizing the Inaccessible. 2022. Available online: https://info.flyability.com/elios-3-inspection-drone (accessed on 12 January 2023).
- De Petris, P.; Khattak, S.; Dharmadhikari, M.; Waibel, G.; Nguyen, H.; Montenegro, M.; Khedekar, N.; Alexis, K.; Hutter, M. Marsupial Walking-and-Flying Robotic Deployment for Collaborative Exploration of Unknown Environments. arXiv 2022, arXiv:2205.05477. [Google Scholar]
- Papachristos, C.; Tzes, A. The power-tethered UAV-UGV team: A collaborative strategy for navigation in partially-mapped environments. In Proceedings of the 22nd IEEE Mediterranean Conference on Control and Automation, Palermo, Italy, 31 May–2 June 2014; pp. 1153–1158. [Google Scholar]
- Walendziuk, W.; Oldziej, D.; Slowik, M. Power supply system analysis for tethered drones application. In Proceedings of the 2020 IEEE International Conference Mechatronic Systems and Materials (MSM), Bialystok, Poland, 1–3 July 2020; pp. 1–6. [Google Scholar]
- Jain, K.P.; Kotaru, P.; de Sa, M.; Mueller, M.W.; Sreenath, K. Tethered Power Supply for Quadcopters: Architecture, Analysis and Experiments. arXiv 2022, arXiv:2203.08180. [Google Scholar]
- Lee, D.; Zhou, J.; Lin, W.T. Autonomous battery swapping system for quadcopter. In Proceedings of the 2015 IEEE International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; pp. 118–124. [Google Scholar]
- Alyassi, R.; Khonji, M.; Karapetyan, A.; Chau, S.C.K.; Elbassioni, K.; Tseng, C.M. Autonomous recharging and flight mission planning for battery-operated autonomous drones. IEEE Trans. Autom. Sci. Eng. 2022. [Google Scholar] [CrossRef]
- Boukoberine, M.N.; Zhou, Z.; Benbouzid, M. Power supply architectures for drones-a review. In Proceedings of the IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; Volume 1, pp. 5826–5831. [Google Scholar]
- Lima, R.R.; Pereira, G.A. On the Development of a Tether-based Drone Localization System. In Proceedings of the 2021 IEEE International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 195–201. [Google Scholar]
- Al-Radaideh, A.; Sun, L. Observability Analysis and Bayesian Filtering for Self-Localization of a Tethered Multicopter in GPS-Denied Environments. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; pp. 1041–1047. [Google Scholar]
- Borgese, A.; Guastella, D.C.; Sutera, G.; Muscato, G. Tether-Based Localization for Cooperative Ground and Aerial Vehicles. IEEE Robot. Autom. Lett. 2022, 7, 8162–8169. [Google Scholar] [CrossRef]
- Alarcón, F.; García, M.; Maza, I.; Viguria, A.; Ollero, A. A Precise and GNSS-Free Landing System on Moving Platforms for Rotary-Wing UAVs. Sensors 2019, 19, 886. [Google Scholar] [CrossRef] [Green Version]
- Al-Radaideh, A.; Sun, L. Self-Localization of Tethered Drones without a Cable Force Sensor in GPS-Denied Environments. Drones 2021, 5, 135. [Google Scholar] [CrossRef]
- Xiao, X.; Fan, Y.; Dufek, J.; Murphy, R. Indoor UAV Localization Using a Tether. In Proceedings of the 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Philadelphia, PA, USA, 6–8 August 2018; pp. 1–6. [Google Scholar]
- Chang, C.W.; Lo, L.Y.; Cheung, H.C.; Feng, Y.; Yang, A.S.; Wen, C.Y.; Zhou, W. Proactive Guidance for Accurate UAV Landing on a Dynamic Platform: A Visual–Inertial Approach. Sensors 2022, 22, 404. [Google Scholar] [CrossRef]
- Wang, J.; Wang, T.; He, Z.; Cai, W.; Sun, C. Towards better generalization in quadrotor landing using deep reinforcement learning. Appl. Intell. 2022, 1–19. [Google Scholar] [CrossRef]
- Keipour, A.; Pereira, G.A.; Bonatti, R.; Garg, R.; Rastogi, P.; Dubey, G.; Scherer, S. Visual Servoing Approach to Autonomous UAV Landing on a Moving Vehicle. Sensors 2022, 22, 6549. [Google Scholar] [CrossRef]
- Gonçalves, V.M.; McLaughlin, R.; Pereira, G.A. Precise landing of autonomous aerial vehicles using vector fields. IEEE Robot. Autom. Lett. 2020, 5, 4337–4344. [Google Scholar] [CrossRef]
- Alarcón, F.; Santamaría, D.; Viguria, A.; Ollero, A.; Heredia, G. Helicopter GNC System for Autonomous Landing by Using a Tether in a GPS Denied Scenario. In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; pp. 1067–1073. [Google Scholar]
- Oh, S.R.; Pathak, K.; Agrawal, S.K.; Pota, H.R.; Garratt, M. Approaches for a Tether-guided Landing of an Autonomous Hlicopter. IEEE Trans. Robot. 2006, 22, 536–544. [Google Scholar]
- Mfiri, J.T.; Treurnicht, J.; Engelbrecht, J.A.A. Automated Landing of a Tethered Quad-rotor UAV with Constant Winching Force. In Proceedings of the 2016 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), Stellenbosch, South Africa, 30 November–2 December 2016; pp. 1–6. [Google Scholar]
- Mulgaonkar, Y.; Whitzer, M.; Morgan, B.; Kroninger, C.M.; Harrington, A.M.; Kumar, V. Power and weight considerations in small, agile quadrotors. In Proceedings of the Micro-and Nanotechnology Sensors, Systems, and Applications VI, Baltimore, MD, USA, 5–9 May 2014; SPIE: Bellingham, WA, USA, 2014; Volume 9083, pp. 376–391. [Google Scholar]
- Foehn, P.; Kaufmann, E.; Romero, A.; Penicka, R.; Sun, S.; Bauersfeld, L.; Laengle, T.; Cioffi, G.; Song, Y.; Loquercio, A.; et al. Agilicious: Open-source and open-hardware agile quadrotor for vision-based flight. Sci. Robot. 2022, 7, eabl6259. [Google Scholar] [CrossRef] [PubMed]
- Koubâa, A.; Allouch, A.; Alajlan, M.; Javed, Y.; Belghith, A.; Khalgui, M. Micro air vehicle link (mavlink) in a nutshell: A survey. IEEE Access 2019, 7, 87658–87680. [Google Scholar] [CrossRef]
- Ermakov, V. MAVROS. 2020. Available online: https://github.com/mavlink/mavros (accessed on 12 January 2023).
- Samarakoon, K.Y. UAV Path Planning and Multi-Modal Localization for Mapping in a Subterranean Environment. Master’s Thesis, West Virginia University, Morgantown, WV, USA, 2022. [Google Scholar]
- Sivaneri, V.O.; Gross, J.N. UGV-to-UAV cooperative ranging for robust navigation in GNSS-challenged environments. Aerosp. Sci. Technol. 2017, 71, 245–255. [Google Scholar] [CrossRef]
- Clarke, J.; Mills, S. Sensor Evaluation for Voxel-Based RGB-D SLAM. In Proceedings of the 2021 36th IEEE International Conference on Image and Vision Computing New Zealand (IVCNZ), Tauranga, New Zealand, 8–10 December 2021; pp. 1–6. [Google Scholar]
- Denavit, J.; Hartenberg, R.S. A kinematic notation for lower-pair mechanisms based on matrices. J. Appl. Mech. 1955, 22, 215–221. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Er, M.J.; Wang, X. Coverage path planning for UAVs based on enhanced exact cellular decomposition method. Mechatronics 2011, 21, 876–885. [Google Scholar] [CrossRef]
- Avellar, G.S.; Pereira, G.A.; Pimenta, L.C.; Iscold, P. Multi-UAV routing for area coverage and remote sensing with minimum time. Sensors 2015, 15, 27783–27803. [Google Scholar] [CrossRef]
- Samarakoon, K.Y.; Pereira, G.A.; Gross, J.N. Impact of the Trajectory on the Performance of RGB-D SLAM Executed by a UAV in a Subterranean Environment. In Proceedings of the 2022 IEEE International Conference on Unmanned Aircraft Systems (ICUAS), Dubrovnik, Croatia, 21–24 June 2022; pp. 812–820. [Google Scholar]
- He, J.; Li, Y.; Zhang, K. Research of UAV flight planning parameters. Positioning 2012, 4, 43–45. [Google Scholar] [CrossRef] [Green Version]
- Labbé, M.; Michaud, F. RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J. Field Robot. 2019, 36, 416–446. [Google Scholar] [CrossRef]
Action | [m s] | [m s] | [m s] |
---|---|---|---|
45° Ascent | |||
XY Approach | 0 | ||
45° Descent | |||
Vertical Descent | |||
Descent w/P Control | |||
Landed/Disarm | 0 | 0 | 0 |
Max Error (m) | Mean Error (m) | RMSE (m) | |||||||
---|---|---|---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | X | Y | Z | |
Visual Odom | 0.558 | 0.779 | 0.188 | 0.177 | 0.405 | 0.095 | 0.074 | 0.180 | 0.072 |
Sensor Fusion Odom | 0.178 | 0.162 | 0.071 | 0.035 | 0.067 | 0.050 | 0.032 | 0.067 | 0.050 |
Parameter | Value |
---|---|
Speed | m/s |
Rows | 2 |
Dist. from Wall | m, m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez Rocamora, B., Jr.; Lima, R.R.; Samarakoon, K.; Rathjen, J.; Gross, J.N.; Pereira, G.A.S. Oxpecker: A Tethered UAV for Inspection of Stone-Mine Pillars. Drones 2023, 7, 73. https://doi.org/10.3390/drones7020073
Martinez Rocamora B Jr., Lima RR, Samarakoon K, Rathjen J, Gross JN, Pereira GAS. Oxpecker: A Tethered UAV for Inspection of Stone-Mine Pillars. Drones. 2023; 7(2):73. https://doi.org/10.3390/drones7020073
Chicago/Turabian StyleMartinez Rocamora, Bernardo, Jr., Rogério R. Lima, Kieren Samarakoon, Jeremy Rathjen, Jason N. Gross, and Guilherme A. S. Pereira. 2023. "Oxpecker: A Tethered UAV for Inspection of Stone-Mine Pillars" Drones 7, no. 2: 73. https://doi.org/10.3390/drones7020073
APA StyleMartinez Rocamora, B., Jr., Lima, R. R., Samarakoon, K., Rathjen, J., Gross, J. N., & Pereira, G. A. S. (2023). Oxpecker: A Tethered UAV for Inspection of Stone-Mine Pillars. Drones, 7(2), 73. https://doi.org/10.3390/drones7020073