Range–Visual–Inertial Odometry with Coarse-to-Fine Image Registration Fusion for UAV Localization
Abstract
:1. Introduction
- We propose an optimization-based RVIO method which utilizes range measurements to effectively suppress scale drift from VIO, thereby enhancing localization accuracy.
- We propose a coarse-to-fine image-registration-based localization method that provides the global pose of the UAV. With the assistance of LRF, the retrieval efficiency of the coarse matching step is improved. Then, the fine matching step calculates the accurate geographic position of the UAV.
- The proposed method is evaluated on both synthesized and real-world datasets. The results demonstrate the effectiveness of our method.
2. Related Works
2.1. Range–Visual–Inertial Odometry
2.2. Image-Registration-Based Localization
3. Method
3.1. Range–Visual–Inertial Odometry
3.1.1. Visual–Inertial Odometry
3.1.2. Range Measurements
3.1.3. Joint Optimization
3.2. Coarse-to-Fine Image-Registration-Based Localization
3.2.1. Coarse Matching
3.2.2. Fine Matching
3.2.3. Global Pose Graph Optimization
3.2.4. Image Registration Evaluation
4. Experiments
4.1. Synthesized Dataset
4.1.1. Setup
4.1.2. RVIO Performance
4.1.3. Geo-Localization Performance
4.2. Real-World Dataset
4.2.1. Setup
4.2.2. Results and Discussion
5. Conclusions
- Based on the planar measurement characteristics of the LRF detection area, it is possible to achieve data association between range measurements and visual feature point depths, thereby achieving accurate and scale-consistent estimation for RVIO.
- The coarse-to-fine image-registration-based geo-localization enables global localization of the UAV and eliminates the drift of odometry methods. Additionally, with the assistance of LRF, the retrieval efficiency can be improved.
- By employing global graph optimization, the results of image-registration-based geo-localization and the outputs from odometry can be effectively fused. Experimental results demonstrate that the proposed method exhibits better localization performance compared with state-of-the-art image-registration-based geo-localization methods.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scherer, J.; Yahyanejad, S.; Hayat, S.; Yanmaz, E.; Andre, T.; Khan, A.; Vukadinovic, V.; Bettstetter, C.; Hellwagner, H.; Rinner, B. An autonomous multi-UAV system for search and rescue. In Proceedings of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, Florence, Italy, 18 May 2015; pp. 33–38. [Google Scholar]
- Messinger, M.; Silman, M.R. Unmanned aerial vehicles for the assessment and monitoring of environmental contamination: An example from coal ash spills. Environ. Pollut. 2016, 218, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Meng, Z.; Zou, Y.; Cao, M. Visual Object Tracking and Servoing Control of a Nano-Scale Quadrotor: System, Algorithms, and Experiments. IEEE/CAA J. Autom. Sin. 2021, 8, 344–360. [Google Scholar] [CrossRef]
- Ganesan, R.; Raajini, X.M.; Nayyar, A.; Sanjeevikumar, P.; Hossain, E.; Ertas, A.H. BOLD: Bio-Inspired Optimized Leader Election for Multiple Drones. Sensors 2020, 20, 3134. [Google Scholar] [CrossRef]
- Yayli, U.; Kimet, C.; Duru, A.; Cetir, O.; Torun, U.; Aydogan, A.; Padmanaban, S.; Ertas, A. Design optimization of a fixed wing aircraft. Int. J. Adv. Aircr. Spacecr. Sci. 2017, 4, 65–80. [Google Scholar] [CrossRef]
- Kos, T.; Markezic, I.; Pokrajcic, J. Effects of multipath reception on GPS positioning performance. In Proceedings of the Proceedings ELMAR-2010, Zadar, Croatia, 15–17 September 2010; pp. 399–402. [Google Scholar]
- Jiang, Z.; Groves, P.D. NLOS GPS Signal Detection Using a Dual-Polarisation Antenna. GPS Solut. 2014, 18, 15–26. [Google Scholar] [CrossRef]
- Huang, K.W.; Wang, H. Combating the Control Signal Spoofing Attack in UAV Systems. IEEE Trans. Veh. Technol. 2018, 67, 7769–7773. [Google Scholar] [CrossRef]
- Fragoso, A.T.; Lee, C.T.; McCoy, A.S.; Chung, S.J. A seasonally invariant deep transform for visual terrain-relative navigation. Sci. Robot. 2021, 6, eabf3320. [Google Scholar] [CrossRef]
- Shetty, A.; Gao, G.X. UAV Pose Estimation using Cross-view Geolocalization with Satellite Imagery. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 1827–1833. [Google Scholar]
- Hao, Y.; Liu, J.; Liu, Y.; Liu, X.; Meng, Z.; Xing, F. Global Visual-Inertial Localization for Autonomous Vehicles with Pre-Built Map. Sensors 2023, 23, 4510. [Google Scholar] [CrossRef]
- Mughal, M.H.; Khokhar, M.J.; Shahzad, M. Assisting UAV Localization Via Deep Contextual Image Matching. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2445–2457. [Google Scholar] [CrossRef]
- Couturier, A.; Akhloufi, M.A. A review on absolute visual localization for UAV. Robot. Auton. Syst. 2021, 135, 103666. [Google Scholar] [CrossRef]
- Delmerico, J.; Scaramuzza, D. A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 2502–2509. [Google Scholar]
- Mourikis, A.I.; Roumeliotis, S.I. A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 3565–3572. [Google Scholar]
- Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust visual inertial odometry using a direct EKF-based approach. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015; pp. 298–304. [Google Scholar]
- Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef]
- Zhang, M.; Han, S.; Wang, S.; Liu, X.; Hu, M.; Zhao, J. Stereo Visual Inertial Mapping Algorithm for Autonomous Mobile Robot. In Proceedings of the 2020 3rd International Conference on Intelligent Robotic and Control Engineering (IRCE), Oxford, UK, 10–12 August 2020; pp. 97–104. [Google Scholar]
- Campos, C.; Elvira, R.; Rodríguez, J.J.G.; Montiel, J.M.; Tardós, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, Z. Online Temporal Calibration Based on Modified Projection Model for Visual-Inertial Odometry. IEEE Trans. Instrum. Meas. 2020, 69, 5197–5207. [Google Scholar] [CrossRef]
- He, X.; Gao, W.; Sheng, C.; Zhang, Z.; Pan, S.; Duan, L.; Zhang, H.; Lu, X. LiDAR-Visual-Inertial Odometry Based on Optimized Visual Point-Line Features. Remote Sens. 2022, 14, 622. [Google Scholar] [CrossRef]
- Tyagi, A.; Liang, Y.; Wang, S.; Bai, D. DVIO: Depth-Aided Visual Inertial Odometry for RGBD Sensors. In Proceedings of the 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Bari, Italy, 4–8 October 2021; pp. 193–201. [Google Scholar]
- Giubilato, R.; Chiodini, S.; Pertile, M.; Debei, S. Scale Correct Monocular Visual Odometry Using a LiDAR Altimeter. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 3694–3700. [Google Scholar]
- Giubilato, R.; Chiodini, S.; Pertile, M.; Debei, S. MiniVO: Minimalistic Range Enhanced Monocular System for Scale Correct Pose Estimation. IEEE Sens. J. 2020, 20, 11874–11886. [Google Scholar] [CrossRef]
- Delaune, J.; Bayard, D.S.; Brockers, R. Range-Visual-Inertial Odometry: Scale Observability Without Excitation. IEEE Robot. Autom. Lett. 2021, 6, 2421–2428. [Google Scholar] [CrossRef]
- Hu, J.; Hu, J.; Shen, Y.; Lang, X.; Zang, B.; Huang, G.; Mao, Y. 1D-LRF Aided Visual-Inertial Odometry for High-Altitude MAV Flight. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 22–27 May 2022; pp. 5858–5864. [Google Scholar]
- Martínez, C.; Mondragón, I.F.; Campoy, P.; Sánchez-López, J.L.; Olivares-Méndez, M.A. A Hierarchical Tracking Strategy for Vision-Based Applications On-Board UAVs. J. Intell. Robot. Syst. 2013, 72, 517–539. [Google Scholar] [CrossRef]
- Yol, A.; Delabarre, B.; Dame, A.; Dartois, J.É.; Marchand, E. Vision-based absolute localization for unmanned aerial vehicles. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 3429–3434. [Google Scholar]
- Van Dalen, G.J.; Magree, D.P.; Johnson, E.N. Absolute localization using image alignment and particle filtering. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, CA, USA,, 4–8 January 2016; p. 0647. [Google Scholar]
- Patel, B.; Barfoot, T.D.; Schoellig, A.P. Visual Localization with Google Earth Images for Robust Global Pose Estimation of UAVs. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 6491–6497. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Nassar, A.; Amer, K.; ElHakim, R.; ElHelw, M. A Deep CNN-Based Framework For Enhanced Aerial Imagery Registration with Applications to UAV Geolocalization. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 1594–159410. [Google Scholar]
- Choi, J.; Myung, H. BRM Localization: UAV Localization in GNSS-Denied Environments Based on Matching of Numerical Map and UAV Images. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 4537–4544. [Google Scholar]
- Xu, Y.; Wu, S.; Du, C.; Li, J.; Jing, N. UAV Image Geo-Localization by Point-Line-Patch Feature Matching and ICLK Optimization. In Proceedings of the 2022 29th International Conference on Geoinformatics, Beijing, China, 15–18 August 2022; pp. 1–7. [Google Scholar]
- Goforth, H.; Lucey, S. GPS-Denied UAV Localization using Pre-existing Satellite Imagery. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 2974–2980. [Google Scholar]
- Chen, S.; Wu, X.; Mueller, M.W.; Sreenath, K. Real-Time Geo-Localization Using Satellite Imagery and Topography for Unmanned Aerial Vehicles. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 2275–2281. [Google Scholar]
- Kinnari, J.; Verdoja, F.; Kyrki, V. GNSS-denied geolocalization of UAVs by visual matching of onboard camera images with orthophotos. In Proceedings of the 2021 20th International Conference on Advanced Robotics (ICAR), Ljubljana, Slovenia, 6–10 December 2021; pp. 555–562. [Google Scholar]
- Kinnari, J.; Verdoja, F.; Kyrki, V. Season-Invariant GNSS-Denied Visual Localization for UAVs. IEEE Robot. Autom. Lett. 2022, 7, 10232–10239. [Google Scholar] [CrossRef]
- Kanade, T.; Amidi, O.; Ke, Q. Real-time and 3D vision for autonomous small and micro air vehicles. In Proceedings of the 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No. 04CH37601), Nassau, Bahamas, 14–17 December 2004; Volume 2, pp. 1655–1662. [Google Scholar]
- Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. On-Manifold Preintegration for Real-Time Visual–Inertial Odometry. IEEE Trans. Robot. 2017, 33, 1–21. [Google Scholar] [CrossRef]
- Agarwal, S.; Mierle, K.; Team, T.C.S. Ceres Solver. 2022. Available online: https://github.com/ceres-solver/ceres-solver (accessed on 1 May 2023).
- Arandjelović, R.; Gronat, P.; Torii, A.; Pajdla, T.; Sivic, J. NetVLAD: CNN Architecture for Weakly Supervised Place Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1437–1451. [Google Scholar] [CrossRef]
- Jégou, H.; Douze, M.; Schmid, C.; Pérez, P. Aggregating local descriptors into a compact image representation. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 3304–3311. [Google Scholar]
- DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperPoint: Self-Supervised Interest Point Detection and Description. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 337–33712. [Google Scholar]
- Sarlin, P.E.; DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperGlue: Learning Feature Matching With Graph Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 4937–4946. [Google Scholar]
- Qin, T.; Cao, S.; Pan, J.; Shen, S. A General Optimization-based Framework for Global Pose Estimation with Multiple Sensors. arXiv 2019, arXiv:1901.03642. [Google Scholar]
- Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In Field and Service Robotics; Springer: Cham, Switzerland, 2018; pp. 621–635. [Google Scholar]
- Grupp, M. evo: Python Package for the Evaluation of Odometry and SLAM. 2017. Available online: https://github.com/MichaelGrupp/evo (accessed on 1 May 2023).
Sequence | VIO | HVIO | RVIO | Proposed Method |
---|---|---|---|---|
1 | 14.846 | 4.566 | 4.288 | - |
2 | 49.503 | 27.479 | 21.453 | 16.149 |
Dataset | Color | Length (m) | Altitude (m) | Duration (s) |
---|---|---|---|---|
1 | orange | 4426 | 160 | 663 |
2 | green | 3371 | 160 | 477 |
Dataset | Encoding Time | Retrieval Time |
---|---|---|
1 | 0.11 | 2.96 |
2 | 0.13 | 2.93 |
Dataset | VIO | HVIO | RVIO | [36] | Proposed Method |
---|---|---|---|---|---|
1 | 71.944 | 65.442 | 38.820 | - | 12.744 |
2 | 101.395 | 87.541 | 29.064 | - | 23.099 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; He, M.; Liu, Y.; Liu, J.; Meng, Z. Range–Visual–Inertial Odometry with Coarse-to-Fine Image Registration Fusion for UAV Localization. Drones 2023, 7, 540. https://doi.org/10.3390/drones7080540
Hao Y, He M, Liu Y, Liu J, Meng Z. Range–Visual–Inertial Odometry with Coarse-to-Fine Image Registration Fusion for UAV Localization. Drones. 2023; 7(8):540. https://doi.org/10.3390/drones7080540
Chicago/Turabian StyleHao, Yun, Mengfan He, Yuzhen Liu, Jiacheng Liu, and Ziyang Meng. 2023. "Range–Visual–Inertial Odometry with Coarse-to-Fine Image Registration Fusion for UAV Localization" Drones 7, no. 8: 540. https://doi.org/10.3390/drones7080540
APA StyleHao, Y., He, M., Liu, Y., Liu, J., & Meng, Z. (2023). Range–Visual–Inertial Odometry with Coarse-to-Fine Image Registration Fusion for UAV Localization. Drones, 7(8), 540. https://doi.org/10.3390/drones7080540