Enhancing the Performance of Unmanned Aerial Vehicle-Based Estimation of Rape Chlorophyll Content by Reducing the Impact of Crop Coverage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Measurement of Rape Leaf Chlorophyll Content
2.3. Acquisition of UAV RGB Orthomosaic
2.4. Acquisition of Rape Fractional Vegetation Coverage
2.5. Extraction of Spectral Indices from UAV RGB Images
2.6. Modeling and Statistical Analysis
3. Results
3.1. Response of Rape Fractional Vegetation Coverage to Planting Density
3.2. Response of Rape Leaf Chlorophyll Content to Planting Density
3.3. One-Way ANOVA of Spectral Indices by Taking Planting Density as the Factor
3.4. Analysis of the Correlation between Chlorophyll Content and Each Spectral Index
3.5. Rape Leaf Chlorophyll Content Estimation Results Based on Validation and Test Datasets
4. Discussion
4.1. Elimination of the Influence of Soil Background on the Spectral Index
4.2. Enhancing the Leaf Chlorophyll Content Estimation Performance through Background Removal
4.3. Application Potential and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, C.; Napier, J.A.; Clemente, T.E.; Cahoon, E.B. New frontiers in oilseed biotechnology: Meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr. Opin. Biotechnol. 2011, 22, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Marchand, L.; Pelosi, C.; González-Centeno, M.R.; Maillard, A.; Ourry, A.; Galland, W.; Teissedre, P.-L.; Bessoule, J.-J.; Mongrand, S.; Morvan-Bertrand, A.; et al. Trace element bioavailability, yield and seed quality of rapeseed (Brassica napus L.) modulated by biochar incorporation into a contaminated technosol. Chemosphere 2016, 156, 150–162. [Google Scholar] [CrossRef]
- Rathke, G.W.; Behrens, T.; Diepenbrock, W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review. Agric. Ecosyst. Environ. 2006, 117, 80–108. [Google Scholar] [CrossRef]
- Miao, Y.; Stewart, B.A.; Zhang, F. Long-term experiments for sustainable nutrient management in China. A review. Agron. Sustain. Dev. 2011, 31, 397–414. [Google Scholar] [CrossRef]
- Zhao, B.-Z.; Zhang, J.-B.; Flury, M.; Zhu, A.-N.; Jiang, Q.-A.; Bi, J.-W. Groundwater Contamination with NO3-N in a Wheat-Corn Cropping System in the North China Plain. Pedosphere 2007, 17, 721–731. [Google Scholar] [CrossRef]
- Fernandes, F.M.; Soratto, R.P.; Fernandes, A.M.; Souza, E.F.C. Chlorophyll meter-based leaf nitrogen status to manage nitrogen in tropical potato production. Agron. J. 2021, 113, 1733–1746. [Google Scholar] [CrossRef]
- Bian, M.; Ma, Y.; Fan, Y.; Chen, Z.; Yang, G.; Feng, H. Estimation of Potato Chlorophyll Content Based on UAV Multi-source Sensor. Trans. Chin. Soc. Agric. Mach. 2023, 54, 240–248. [Google Scholar]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Daloye, A.M.; Erkbol, H.; Fritschi, F.B. Crop monitoring using satellite/UAV data fusion and machine learning. Remote Sens. 2020, 12, 1357. [Google Scholar] [CrossRef]
- Yin, H.; Huang, W.; Li, F.; Yang, H.; Li, Y.; Hu, Y.; Yu, K. Multi-temporal UAV Imaging-Based Mapping of Chlorophyll Content in Potato Crop. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2023, 91, 91–106. [Google Scholar] [CrossRef]
- Wahab, I.; Hall, O.; Jirström, M. Remote Sensing of Yields: Application of UAV Imagery-Derived NDVI for Estimating Maize Vigor and Yields in Complex Farming Systems in Sub-Saharan Africa. Drones 2018, 2, 28. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, Z.; Wang, B.; Kan, H.; Sun, Y.; Qin, Y.; Meng, B.; Li, M.; Chen, J.; Lv, Y. A 250m annual alpine grassland AGB dataset over the Qinghai-Tibetan Plateau (2000–2019) based on in-situ measurements, UAV images, and MODIS Data. Earth Syst. Sci. Data Discuss. 2022, 15, 821–846. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Chen, Y.; Qiao, X.; Qian, W. Water Chlorophyll a Estimation Using UAV-Based Multispectral Data and Machine Learning. Drones 2023, 7, 2. [Google Scholar] [CrossRef]
- Sun, Q.; Gu, X.; Chen, L.; Xu, X.; Wei, Z.; Pan, Y.; Gao, Y. Monitoring maize canopy chlorophyll density under lodging stress based on UAV hyperspectral imagery. Comput. Electron. Agric. 2022, 193, 106671. [Google Scholar] [CrossRef]
- Kang, Y.S.; Ryu, C.S.; Cho, J.G.; Park, K.S. Predicting Apple Tree Macronutrients Using Unmanned Aerial Vehicle-Based Hyperspectral Imagery to Manage Apple Orchard Nutrients. Drones 2024, 8, 369. [Google Scholar] [CrossRef]
- Fu, B.; Li, S.; Lao, Z.; Yuan, B.; Liang, Y.; He, W.; Sun, W.; He, H. Multi-sensor and multi-platform retrieval of water chlorophyll a concentration in karst wetlands using transfer learning frameworks with ASD, UAV, and Planet CubeSate reflectance data. Sci. Total Environ. 2023, 901, 165963. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Gert, K.; Khan, H.A. The impact of variable illumination on vegetation indices and evaluation of illumination correction methods on chlorophyll content estimation using UAV imagery. Plant Methods 2023, 19, 51. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Y.; Zhao, Z.; Xie, M.; Hou, D. Estimation of Relative Chlorophyll Content in Spring Wheat Based on Multi-Temporal UAV Remote Sensing. Agronomy 2023, 13, 211. [Google Scholar] [CrossRef]
- Narmilan, A.; Gonzalez, F.; Salgadoe, A.S.A.; Kumarasiri, U.W.L.M.; Weerasinghe, H.A.S.; Kulasekara, B.R. Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery. Remote Sens. 2022, 14, 1140. [Google Scholar] [CrossRef]
- Jay, S.; Baret, F.; Dutartre, D.; Malatesta, G.; Héno, S.; Comar, A.; Weiss, M.; Maupas, F. Exploiting the centimeter resolution of UAV multispectral imagery to improve remote-sensing estimates of canopy structure and biochemistry in sugar beet crops. Remote Sens. Environ. 2019, 231, 110898. [Google Scholar] [CrossRef]
- Chen, J.; Yi, S.; Qin, Y.; Wang, X. Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai–Tibetan Plateau. Int. J. Remote Sens. 2016, 37, 1922–1936. [Google Scholar] [CrossRef]
- Zhang, D.; Mansaray, L.R.; Jin, H.; Sun, H.; Kuang, Z.; Huang, J. A universal estimation model of fractional vegetation cover for different crops based on time series digital photographs. Comput. Electron. Agric. 2018, 151, 93–103. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, H.; Han, W.; Zhang, L.; Chen, H. A Fixed-Threshold Method for Estimating Fractional Vegetation Cover of Maize under Different Levels of Water Stress. Remote Sens. 2021, 13, 1009. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Hague, T.; Tillett, N.D.; Wheeler, H. Automated crop and weed monitoring in widely spaced cereals. Precis. Agric. 2006, 7, 21–32. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999, 143, 105–117. [Google Scholar] [CrossRef]
- Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.T.; McMurtrey, J.E.; Walthall, C.L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Wu, Q.; Sun, H.; Li, M.-z.; Song, Y.-y.; Zhang, Y.-e. Research on maize multispectral image accurate segmentation and chlorophyll index estimation. Spectrosc. Spectr. Anal. 2015, 35, 178–183. [Google Scholar]
- Qiao, L.; Gao, D.; Zhang, J.; Li, M.; Sun, H.; Ma, J. Dynamic Influence Elimination and Chlorophyll Content Diagnosis of Maize Using UAV Spectral Imagery. Remote Sens. 2020, 12, 2650. [Google Scholar] [CrossRef]
- Zhou, L.; Nie, C.; Su, T.; Xu, X.; Song, Y.; Yin, D.; Liu, S.; Liu, Y.; Bai, Y.; Jia, X.; et al. Evaluating the Canopy Chlorophyll Density of Maize at the Whole Growth Stage Based on Multi-Scale UAV Image Feature Fusion and Machine Learning Methods. Agriculture 2023, 13, 895. [Google Scholar] [CrossRef]
- Han, M.; Zhang, H.; DeJonge, K.C.; Comas, L.H.; Gleason, S. Comparison of three crop water stress index models with sap flow measurements in maize. Agric. Water Manag. 2018, 203, 366–375. [Google Scholar] [CrossRef]
- Qiao, L.; Tang, W.; Gao, D.; Zhao, R.; An, L.; Li, M.; Sun, H.; Song, D. UAV-based chlorophyll content estimation by evaluating vegetation index responses under different crop coverages. Comput. Electron. Agric. 2022, 196, 106775. [Google Scholar] [CrossRef]
Spectral Index | Equation |
---|---|
Visible atmospherically resistant index [23] | |
Vegetative index [24] | |
Green–red vegetation index [25] | |
Excess green index [26] | |
Excess G minus excess red index [27] | |
Red–green ratio index [28] | |
Normalized blue–red difference index [23] | |
Normalized blue–green difference index [29] |
Spectral Index | 2024-01-27 | 2024-02-27 | 2024-03-08 | 2024-03-16 | 2024-03-29 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | Before | After | |
H channel | **** | ns | **** | ns | **** | * | **** | ns | ns | ns |
A channel | **** | * | *** | ns | *** | ns | * | ns | ns | ns |
VARI | ** | ** | * | ns | **** | **** | **** | ** | ns | ns |
RGRI | *** | ** | ** | ns | **** | **** | **** | **** | * | ns |
NGBDI | **** | * | **** | * | **** | **** | **** | ** | ns | ns |
NGRDI | *** | ** | ** | ns | **** | **** | **** | **** | * | ns |
GRVI | *** | ** | ** | ns | **** | **** | **** | **** | * | ns |
ExG | **** | * | ** | ns | ** | ns | ns | ns | ns | ns |
ExGR | **** | ** | *** | ns | **** | ns | ** | ns | ns | ns |
VEG | **** | ** | *** | ns | **** | **** | **** | **** | ** | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Xu, L.; Zhang, Y.; Xu, L.; Zhu, Q.; Wang, A.; Huang, S.; Zhang, L. Enhancing the Performance of Unmanned Aerial Vehicle-Based Estimation of Rape Chlorophyll Content by Reducing the Impact of Crop Coverage. Drones 2024, 8, 578. https://doi.org/10.3390/drones8100578
Niu Y, Xu L, Zhang Y, Xu L, Zhu Q, Wang A, Huang S, Zhang L. Enhancing the Performance of Unmanned Aerial Vehicle-Based Estimation of Rape Chlorophyll Content by Reducing the Impact of Crop Coverage. Drones. 2024; 8(10):578. https://doi.org/10.3390/drones8100578
Chicago/Turabian StyleNiu, Yaxiao, Longfei Xu, Yanni Zhang, Lizhang Xu, Qingzhen Zhu, Aichen Wang, Shenjin Huang, and Liyuan Zhang. 2024. "Enhancing the Performance of Unmanned Aerial Vehicle-Based Estimation of Rape Chlorophyll Content by Reducing the Impact of Crop Coverage" Drones 8, no. 10: 578. https://doi.org/10.3390/drones8100578
APA StyleNiu, Y., Xu, L., Zhang, Y., Xu, L., Zhu, Q., Wang, A., Huang, S., & Zhang, L. (2024). Enhancing the Performance of Unmanned Aerial Vehicle-Based Estimation of Rape Chlorophyll Content by Reducing the Impact of Crop Coverage. Drones, 8(10), 578. https://doi.org/10.3390/drones8100578