Using Unmanned Aerial Systems Technology to Characterize the Dynamics of Small-Scale Maize Production Systems for Precision Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Unmanned Aerial Systems Technology: Image Capture
2.3. Image Processing and Spatial Analysis
2.3.1. Creation and Description of Orthomosaics
2.3.2. Excess Green Index Classification of Differential Yield Zones
2.3.3. Classification and Characterization of EGI
2.3.4. Identification and Generalization of Differential Yield Zones (DYZs)
2.3.5. Maize Plant Population Count and Yield Assessment
2.3.6. Statistical Analysis
2.3.7. Scenario Analysis
3. Results
3.1. Orthomosaics and Zonation
3.2. Spatial Distribution of Differential Yield Zones in Fields
3.3. Bare Areas in Fields
3.4. Total Vegetation Cover
3.5. Maize Population Density
3.6. Maize Grain Yield and Land Productivity
3.7. Scenario Analysis
4. Discussion
Leveling the Playing Field: Relevance of Study to Small-Scale Precision Agriculture
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godfray, H.C.J.; Bedlington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Thomasson, J.A.; Sui, R.; Cox, M.S.; Al-Rajehy, A. Precision Agriculture for Sustainability and Environmental Protection. Sustainability 2019, 11, 1218. [Google Scholar]
- Fuglie, K.O.; Rada, N.E. Resources, Policies, and Agricultural Productivity in Sub-Saharan Africa; Department of Agriculture, Economic Research Service: Washington, DC, USA, 2013. [Google Scholar]
- Lowenberg-DeBoer, J.; Erickson, B. Setting the record straight on precision agriculture adoption. Agron. J. 2019, 111, 1552–1569. [Google Scholar] [CrossRef]
- Tittonell, P.; Klerkx, L.; Baudron, F.; Félix, G.F.; Ruggia, A.; Van Apeldoorn, D.; Dogliotti, S.; Mapfumo, P.; Rossing, W.A.H. Ecological intensification: Local innovation to address global challenges. Sustain. Agric. Rev. 2016, 19, 1–34. [Google Scholar] [CrossRef]
- Pierce, F.J.; Nowak, P. Aspects of precision agriculture. Adv. Agron. 1999, 67, 1–85. [Google Scholar] [CrossRef]
- Schimmelpfennig, D. Precision agriculture technologies and factors affecting their adoption. USDA Econ. Res. Rep. 2016, 217. [Google Scholar]
- Okello, D.; Macharia, I.; Kariuki, S. Barriers to the adoption of precision agriculture in East Africa: A critical review. Int. J. Agric. Sci. 2021, 12. [Google Scholar]
- Parihar, C.M.; Jat, S.L.; Singh, A.K.; Sharma, A. Role of mobile-based advisory systems in precision agriculture: A case study from India. Int. J. Precis. Agric. 2020, 14. [Google Scholar]
- Ndungu, S.; Mwangi, M.; Maina, J. Low-cost soil sensors for smallholder farmers in sub-Saharan Africa: Opportunities and challenges. Precis. Agric. 2022, 12. [Google Scholar]
- Rashid, A.; Akram, M.; Akhtar, S. Impact of remote sensing in precision agriculture: A case study from Pakistan. J. Agric. Sci. Technol. 2019, 20. [Google Scholar]
- Van Etten, J.; de Sousa, K.; Aguilar, A.; Steinke, J. GeoFarmer: Linking satellite-based insights to smallholders through a participatory approach. Proc. Natl. Acad. Sci. USA 2019, 116, 4194–4199. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R. Precision Agriculture: The Way Forward to Enhance Agricultural Productivity and Sustainability. In Proceedings of the 2010 International Conference on Agricultural Engineering, Venice, Italy, 24–26 November 2010. [Google Scholar]
- Rilwani, M.L.; Ikhuoria, I.A. Precision farming with geoinformatics: A new paradigm for agricultural production in a developing country. Trans. GIS 2006, 10, 177–197. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Lowenberg-Deboer, J. Precision Agriculture and Sustainability. Precis. Agric. 2004, 5, 359–387. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty-five Years of Remote Sensing in Precision Agriculture: Key Advances and Remaining Knowledge Gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Shatar, T.M.; McBratney, A.B. Site-Specific Management of Soil Variability: A Review of Variability Sources and Implications for Precision Agriculture. Comput. Electron. Agric. 2001, 38, 71–91. [Google Scholar]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A.M. Chapter Four—Delineation of Soil Management Zones for Variable-Rate Fertilization: A Review. Adv. Agron. 2017, 143, 175–245. [Google Scholar] [CrossRef]
- Miao, Y.; Mulla, D.J.; Robert, P.C. An integrated approach to site-specific management zone delineation. Front. Agric. Sci. Eng. 2018, 5, 432–441. [Google Scholar] [CrossRef]
- Franzen, D.W.; Hopkins, D.H.; Sweeney, M.D.; Ulmer, M.K.; Halvorson, A.D. Evaluation of soil survey scale for zone development of site-specific nitrogen management. Agron. J. 2002, 94, 381–389. [Google Scholar] [CrossRef]
- Blackmore, S. The Interpretation of Trends from Multiple Yield Maps. Comput. Electron. Agric. 2000, 26, 37–51. [Google Scholar] [CrossRef]
- Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T.; Myer, R.O. A Precision Agriculture Approach to Characterize and Manage Soil Variability in the Corn Belt. Precis. Agric. 2005, 6, 331–348. [Google Scholar]
- Schepers, J.S. Site-specific considerations for managing phosphorus. J. Environ. Val. 2000, 29, 125–130. [Google Scholar] [CrossRef]
- Doerge, T. Defining management zones for precision farming. Crop Insights 1999, 8, 1–5. [Google Scholar]
- Cambouris, A.N.; Nolin, M.C.; Zebarth, B.J.; Laverdiere, M.R. Soil management zones delineated by electrical conductivity to characterize spatial and temporal variations in potato yield and in soil properties. Am. J. Potato Res. 2006, 83, 381–395. [Google Scholar] [CrossRef]
- Mulla, D.J.; Schepers, J.S. Key processes and properties for site-specific soil and crop management. In The State of Site-Specific Management for Agriculture; Sadler, E.J., Ed.; ASA; CSSA; SSSA: Madison, WI, USA, 1997; pp. 1–18. [Google Scholar] [CrossRef]
- Georgi, C.; Spengler, D. Automatic delineation algorithm for site-specific management zones based on satellite remote sensing data. Precis. Agric 2018, 19, 684–707. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Motagh, M. A hybrid classification scheme for land cover mapping with high-resolution remotely sensed images over urban areas. ISPRS J. Photogramm. Remote Sens. 2017, 123, 25–36. [Google Scholar] [CrossRef]
- Goffart, D.; Dvorakova, K.; Crucil, G.; Curnel, Y.; Limbourg, Q.; Van Oost, K.; Castaldi, F.; Planchon, V.; Goffart, J.-P.; van Wesemael, B. UAV Remote Sensing for Detecting within-Field Spatial Variation of Winter Wheat Growth and Links to Soil Properties and Historical Management Practices. A Case Study on Belgian Loamy Soil. Remote Sens. 2022, 14, 2806. [Google Scholar] [CrossRef]
- Schirrmann, M.; Giebel, A.; Gleiniger, F.; Pflanz, M.; Lentschke, J.; Dammer, K.H. Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery. Remote Sens. 2016, 8, 706. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Erkbol, H.; Fritschi, F.B.; Shrestha, R. Crop Monitoring Using Satellite/UAV Data Fusion and Machine Learning. Remote Sens. 2020, 12, 1357. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Menesatti, P. Intercomparison of UAV, Aircraft, and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef]
- Blackmer, T.M.; Schepers, J.S.; Varvel, G.E.; Walter-Shea, E.A. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agron. J. 1996, 88, 1–5. [Google Scholar] [CrossRef]
- Stone, M.L.; Solie, J.B.; Raun, W.R.; Whitney, R.W.; Taylor, S.L.; Ringer, J.D. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Trans. Am. Soc. Agric. Eng. 1996, 39, 1623–1631. [Google Scholar] [CrossRef]
- Asrar, G.Q.; Fuchs, M.; Kanemasu, E.T.; Hatfield, J.L. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat 1. Agron. J. 1984, 76, 300–306. [Google Scholar] [CrossRef]
- Delgado, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2015, 7, 11449–11467. [Google Scholar] [CrossRef]
- Li, F.; Mistele, B.; Hu, Y.; Schmidhalter, U. Reflectance Estimation of Canopy Nitrogen Content in Winter Wheat Using Optimized Hyperspectral Narrow Indices. Precis. Agric. 2014, 15, 95–113. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Cilia, C.; Fava, F.; Benedetto, S.; Morelli, A. Vegetation Indices Performance in the Estimation of Biomass and Nitrogen Content in Wheat. Ital. J. Agron. 2014, 9, 119–126. [Google Scholar] [CrossRef]
- Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.T.; McMurtrey, J.E.; Walthall, C.L. Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status. Precis. Agric. 2011, 12, 675–690. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, Y.; Wu, X.; Li, X.; Huang, Y. Weed Detection Using the Red Edge Band in the Hyperspectral Remote Sensing. Sensors 2011, 18, 2861. [Google Scholar] [CrossRef]
- Liu, J.; Huang, W.; Sun, M.; Zhang, G. Using UAV-Based NDRE for Mapping Weeds in Maize Fields. Remote Sens. 2019, 11, 1143. [Google Scholar] [CrossRef]
- Kelley, J.M.; Kettering, Q.M.; Rodriguez, D. Assessing the Efficacy of Hyperspectral Indices for Mapping Weeds and Crop Health in Precision Agriculture. Precis. Agric. 2020, 21, 1005–1021. [Google Scholar]
- Tiessen, H.; Hauffe, H.K.; Mermut, A.R. Deposition of Harmattan dust and its influence on base saturation of soils in northern Ghana. Geoderma 1991, 49, 285–299. [Google Scholar] [CrossRef]
- SenseFly. eBee: SenseFly, S.A. 2016. Available online: https://www.sensefly.com/drone/ebee-mapping-drone/ (accessed on 3 March 2023).
- United States Naval Academy. Point Cloud Data. Available online: https://www.usna.edu/Users/oceano/pguth/md_help/html/pt_clouds.htm (accessed on 25 September 2023).
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Wang, J.; Zhang, H.; Chen, X.; Xu, J. A seed-extended algorithm for detecting protein complexes based on density and modularity with topological structure and GO annotations. BMC Genom. 2019, 20, 637. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS® 9.4 Software; SAS Institute Inc.: Cary, NC, USA, 2023. [Google Scholar]
- Meyer, F.; Beucher, S. Morphological Segmentation. J. Vis. Commun. Image Represent. 1990, 1, 21–46. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. Am. Soc. Agric. Eng. 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Dellinger, A.E.; Schmidt, J.P.; Beegle, D.B. Developing nitrogen fertilizer recommendations for corn using an active sensor. Agron. J. 2008, 100, 1546–1552. [Google Scholar] [CrossRef]
- Harris, M.A.; Johnston, A.M.; Bertram, M.G. Exploring the effectiveness of UAV-based NDRE for assessing crop health and stress. Precis. Agric. 2021, 22, 967–984. [Google Scholar]
- González, R.A.; Suárez, R.R.; Martínez, M.F. Effects of light quality on the growth and chlorophyll content of lettuce. Plants 2021, 10, 610. [Google Scholar] [CrossRef]
- Miao, Z.; Cheng, Y.; Zhang, D.; Liu, J. Effects of light spectrum on the growth and quality of cucumber seedlings. Sci. Hortic. 2019, 244, 146–153. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Jin, Z. Effects of chlorophyll content on light interception and photosynthesis of cucumber under different light intensities. J. Plant Physiol. 2018, 227, 154–162. [Google Scholar]
- Sharma, S.; Franzen, D.W. Corn height improves the relationship between active optical sensor readings and yield estimates. Precis. Agric. 2014, 15, 588–603. [Google Scholar] [CrossRef]
- Labrière, N.; Locatelli, B.; Laumonier, Y.; Freycon, V.; Bernoux, M. Soil erosion in the humid tropics: A systematic quantitative review. Agric. Ecosyst. Environ. 2015, 203, 127–139. [Google Scholar] [CrossRef]
- Brummel Daniel, P. Delineation of NDVI-Based Soil Management Zones: Applications of UAS Technology. Master’s Thesis, Iowa State University, Ames, IA, USA, 2019. [Google Scholar]
- Tokatlidis, I.S.; Remountakis, E. The impacts of interplant variation on aboveground biomass, grain yield, and harvest index in maize. Int. J. Plant Prod. 2020, 14, 57–65. [Google Scholar] [CrossRef]
- Asafu-Agyei, J.N. Effect of plant density on the yield of maize (Zea mays L.) in Ghana. Ghana J. Agric. Sci. 1987, 20, 85–92. [Google Scholar]
- Ebong, U.U. Effects of Plant Population Density and Nitrogen Fertilizer on Selection Criteria for Maize (Zea mays). Ph.D. Dissertation, Department of Agronomy, River State University of Science and Technology, Port Harcourt, Nigeria, 1988. [Google Scholar]
- Statistics, Research and Information Directorate (SRID): Agriculture in Ghana—Facts and Figures, Ministry of Food and Agriculture. MoFA. 2010. Available online: http://gis4agricgh.net/POLICIES/AGRICULTURE-IN-GHANA-FF-2010.pdf (accessed on 3 March 2023).
- McBratney, A.B.; Pringle, M.J. Estimating Average and Proportional Variograms of Soil Properties and Their Potential Use in Precision Agriculture. Precis. Agric. 1999, 1, 125–1152. [Google Scholar] [CrossRef]
- Van der Heijden, K. Scenarios: The Art of Strategic Conversation; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
Coordinates † | ||
---|---|---|
Field Name | Latitude | Longitude |
Sombolouna | 11.0054 | −0.3927 |
Tilli | 10.9050 | −0.5633 |
Yendi | 9.4419 | 0.1720 |
UAS Platform | eBee Ag (Sensefly) |
---|---|
Flight planning software | eMotion (Sensefly) |
Flight altitude | 77 m above elevation data (AED) |
Resolution | 7.0 cm/px |
Lateral Overlap | 60% |
Longitudinal overlap | 80% |
Sensor | Sequoia multispectral |
Spectral bands captured | Green, Red, Red Edge, Near infrared |
Spacing of images | 13 m |
Vegetation Index | Sensor Type | Spectral Bands | Equation (1) | Equation (2) | Equation (3) | Formula | Reference |
---|---|---|---|---|---|---|---|
Excess Green Index | Sequoia Sensor Optimized for Drone Applications (SODA) | Normalized green, red, and blue. | [41,42] | ||||
Normalized Difference Red-edge Index | Sequoia Sensor Optimized for Drone Applications (SODA) | Near Infrared Red edge | [39] |
Differential Yield Zone | Size (ha) | Average Yield (kg/ha) | Production Based on Zone Size and Potential (mt) | Output per Hectare of Land (kg/ha) |
---|---|---|---|---|
Sombolouna | ||||
Low | 0.61 | 860 | 520 | |
Medium | 2.34 | 4020 | 9410 | |
High | 3.92 | 4150 | 1627 | |
Total field | 6.87 | 3010 | 2620 | 3810 A* |
Tilli | ||||
Low | 0.69 | 2830 | 1950 | |
Medium | 8.26 | 3650 | 30,150 | |
High | 2.66 | 4900 | 13,030 | |
Total field | 11.61 | 3790 | 45,130 | 3890 A* |
Yendi | ||||
Low | 0.39 | 1800 | 760 | |
Medium | 7.50 | 2620 | 19,650 | |
High | 1.60 | 4540 | 7260 | |
Total field | 9.49 | 2990 | 27,610 | 2910 B* |
Differential Yield Zone | Size (ha) | Average Yield (kg/ha) | Production Based on Zone Size and Potential (kg) | Output per Hectare of Land (kg/ha) | Potential Yield Differential from Initial Conditions (%) |
---|---|---|---|---|---|
Sombolouna | |||||
Low | - | - | - | ||
Medium | 2.95 | 4020 | 11,860 | ||
High | 3.92 | 4150 | 16,270 | ||
Total field size | 6.87 | 4090 | 28,060 | 4090 | 7.34 |
Tilli | |||||
Low | - | - | - | ||
Medium | 8.95 | 3650 | 32,670 | ||
High | 2.66 | 4900 | 13,040 | ||
Total field size | 11.61 | 4280 | 45,700 | 3400 | 12.9 |
Yendi | |||||
Low | - | - | - | ||
Medium | 7.89 | 2620 | 20,670 | ||
High | 1.60 | 4540 | 2260 | ||
Total field | 9.49 | 3580 | 33,970 | 3580 | 23.02 |
Differential Yield Zone | Size (ha) | Average Yield (kg/ha) | Production Based on Zone Size and Potential (kg) | Output per Hectare of Land (kg) | Potential Yield Differential from Initial Conditions (%) |
---|---|---|---|---|---|
Sombolouna | |||||
Low | - | - | - | ||
Medium | - | - | - | ||
High | 6.87 | 4150 | 28,510 | ||
Total field size | 6.87 | 4150 | 28,510 | 4150 | 8.92 |
Tilli | |||||
Low | - | - | - | ||
Medium | - | - | - | ||
High | 11.61 | 4900 | 56,890 | ||
Total field size | 11.61 | 4900 | 56,890 | 4900 | 25.96 |
Yendi | |||||
Low | - | - | - | ||
Medium | - | - | - | ||
High | 9.49 | 4540 | 43,080 | ||
Total field | 9.49 | 4540 | 43,080 | 4540 | 56.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manu, A.; McDanel, J.; Brummel, D.; Avornyo, V.K.; Lawler, T. Using Unmanned Aerial Systems Technology to Characterize the Dynamics of Small-Scale Maize Production Systems for Precision Agriculture. Drones 2024, 8, 633. https://doi.org/10.3390/drones8110633
Manu A, McDanel J, Brummel D, Avornyo VK, Lawler T. Using Unmanned Aerial Systems Technology to Characterize the Dynamics of Small-Scale Maize Production Systems for Precision Agriculture. Drones. 2024; 8(11):633. https://doi.org/10.3390/drones8110633
Chicago/Turabian StyleManu, Andrew, Joshua McDanel, Daniel Brummel, Vincent Kodjo Avornyo, and Thomas Lawler. 2024. "Using Unmanned Aerial Systems Technology to Characterize the Dynamics of Small-Scale Maize Production Systems for Precision Agriculture" Drones 8, no. 11: 633. https://doi.org/10.3390/drones8110633
APA StyleManu, A., McDanel, J., Brummel, D., Avornyo, V. K., & Lawler, T. (2024). Using Unmanned Aerial Systems Technology to Characterize the Dynamics of Small-Scale Maize Production Systems for Precision Agriculture. Drones, 8(11), 633. https://doi.org/10.3390/drones8110633