Mapping Invasive Species Pedicularis and Background Grassland Using UAV and Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Framework
2.2. Field Data
2.3. UAV Orthoimages
2.4. Machine Learning Algorithms
2.5. Feature Importance and Accuracy Evaluation
3. Results
3.1. Classification Results and Accuracy Evaluation
3.2. Feature Importance
4. Discussion
4.1. Suitability of Machine Learning Methods, UAV and Phenological Period
4.2. Band and Indices for Overall Accuracy Assessment and Model Validity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands-more important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Bolch, E.A.; Santos, M.J.; Ade, C.; Khanna, S.; Basinger, N.T.; Reader, M.O.; Hestir, E.L. Remote Detection of Invasive Alien Species. In Remote Sensing of Plant Biodiversity; Cavender-Bares, J., Gamon, J.A., Townsend, P.A., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 267–307. [Google Scholar]
- Bakacsy, L.; Tobak, Z.; van Leeuwen, B.; Szilassi, P.; Biro, C.; Szatmari, J. Drone-Based Identification and Monitoring of Two Invasive Alien Plant Species in Open Sand Grasslands by Six RGB Vegetation Indices. Drones 2023, 7, 207. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, Z.; Lu, H.; Wang, Z.; Sun, L.; Wan, X.; Guo, X.; Zhao, Y.; Wang, J.; Shi, Z. Damage and Control of Poisonous Weeds in Western Grassland of China. Agric. Sci. China 2010, 9, 1512–1521. [Google Scholar] [CrossRef]
- Biro, E.; Babai, D.; Bodis, J.; Molnar, Z. Lack of knowledge or loss of knowledge? Traditional ecological knowledge of population dynamics of threatened plant species in East-Central Europe. J. Nat. Conserv. 2014, 22, 318–325. [Google Scholar] [CrossRef]
- Krug, R.M.; Roura-Pascual, N.; Richardson, D.M. Clearing of invasive alien plants under different budget scenarios: Using a simulation model to test efficiency. Biol. Invasions 2010, 12, 4099–4112. [Google Scholar] [CrossRef]
- Shen, S.; Xu, G.; Li, D.; Clements, D.R.; Jin, G.; Yin, X.; Gao, R.; Zhang, F. Occurrence and damage of invasive alien plants in Dehong Prefecture, western of Yunnan Province. Acta Ecol. Sin. 2017, 37, 195–200. [Google Scholar] [CrossRef]
- Li, A.; Wu, J.; Zhang, X.; Xue, J.; Liu, Z.; Han, X.; Huang, J. China’s new rural “separating three property rights” land reform results in grassland degradation: Evidence from Inner Mongolia. Land Use Policy 2018, 71, 170–182. [Google Scholar] [CrossRef]
- Wijesingha, J.; Astor, T.; Schulze-Brüninghoff, D.; Wachendorf, M. Mapping Invasive Lupinus polyphyllus Lindl. in Semi-Natural Grasslands Using Object-Based Image Analysis of UAV-Borne Images. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 391–406. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, W.; Wei, P.; Fang, P.; Zhang, X.; Yan, N.; Liu, W.; Zhao, H.; Wu, Q. Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period. Ecol. Indic 2022, 135, 108529. [Google Scholar] [CrossRef]
- Wang, D.; Cui, B.; Duan, S.; Chen, J.; Fan, H.; Lu, B.; Zheng, J. Moving north in China: The habitat of Pedicularis kansuensis in the context of climate change. Sci. Total Environ. 2019, 697, 133979. [Google Scholar] [CrossRef]
- Yu, J.; Hu, Y.; Li, K.; Ma, X. Study on the biological characteristics of the medicinal plant of the Tianshan Mountain. Chin. Tradit. Herb. Drugs 2006, 37, 1884–1886. [Google Scholar]
- Liu, Y.; Hu, Y.; Yu, J.; Li, K.; Gao, G.; Wang, X. Study on harmfulness of Pedicularis myriophylla and its control measures. Arid Zone Res 2008, 25, 778–782. [Google Scholar] [CrossRef]
- Liu, M.; Dries, L.; Heijman, W.; Zhu, X.; Deng, X.; Huang, J. Land tenure reform and grassland degradation in Inner Mongolia, China. China Econ. Rev. 2019, 55, 181–198. [Google Scholar] [CrossRef]
- Mullerova, J.; Bruna, J.; Bartalos, T.; Dvorak, P.; Vitkova, M.; Pysek, P. Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring. Front. Plant Sci. 2017, 8, 887. [Google Scholar] [CrossRef]
- Huang, C.; Geiger, E.L.; Van Leeuwen, W.J.D.; Marsh, S.E. Discrimination of invaded and native species sites in a semi-desert grassland using MODIS multi-temporal data. Int. J. Remote Sens. 2009, 30, 897–917. [Google Scholar] [CrossRef]
- Sun, Y.; Yi, S.; Hou, F. Unmanned aerial vehicle methods makes species composition monitoring easier in grasslands. Ecol. Indic. 2018, 95, 825–830. [Google Scholar] [CrossRef]
- Lopatin, J.; Fassnacht, F.E.; Kattenborn, T.; Schmidtlein, S. Mapping plant species in mixed grassland communities using close range imaging spectroscopy. Remote Sens. Environ 2017, 201, 12–23. [Google Scholar] [CrossRef]
- Abdollahnejad, A.; Panagiotidis, D. Tree Species Classification and Health Status Assessment for a Mixed Broadleaf-Conifer Forest with UAS Multispectral Imaging. Remote Sens. 2020, 12, 3722. [Google Scholar] [CrossRef]
- Rango, A.; Laliberte, A.; Herrick, J.E.; Winters, C.; Havstad, K.; Steele, C.; Browning, D. Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management. J. Appl. Remote Sens 2009, 3, 033542. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.; Dang, D.; Dou, H.; Wang, K.; Lou, A. Unmanned Aerial Vehicle (UAV) Remote Sensing in Grassland Ecosystem Monitoring: A Systematic Review. Remote Sens. 2022, 14, 1096. [Google Scholar] [CrossRef]
- De Sa, N.C.; Castro, P.; Carvalho, S.; Marchante, E.; Lopez-Nunez, F.A.; Marchante, H. Mapping the Flowering of an Invasive Plant Using Unmanned Aerial Vehicles: Is There Potential for Biocontrol Monitoring? Front. Plant Sci. 2018, 9, 293. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.-M.; Mullerova, J.; Borgniet, L.; Dommanget, F.; Breton, V.; Evette, A. Using Single- and Multi-Date UAV and Satellite Imagery to Accurately Monitor Invasive Knotweed Species. Remote Sens. 2018, 10, 1662. [Google Scholar] [CrossRef]
- Abeysinghe, T.; Milas, A.S.; Arend, K.; Hohman, B.; Reil, P.; Gregory, A.; Vazquez-Ortega, A. Mapping Invasive Phragmites australis in the Old Woman Creek Estuary Using UAV Remote Sensing and Machine Learning Classifiers. Remote Sens. 2019, 11, 1380. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Zhang, G.; Xu, H.; Zeng, R.; Luo, W.; Yu, Y. Study on extraction of foreign invasive species Mikania micrantha based on unmanned aerial vehicle (UAV) hyperspectral remote sensing. In Proceedings of the 5th Symposium on Novel Optoelectronic Detection Technology and Application, Xi’an, China, 24–26 October 2019; p. 53. [Google Scholar]
- Schmidt, J.; Fassnacht, F.E.; Neff, C.; Lausch, A.; Kleinschmit, B.; Foerster, M.; Schmidtlein, S. Adapting a Natura 2000 field guideline for a remote sensing-based assessment of heathland conservation status. Int. J. Appl. Earth Obs. Geoinf. 2017, 60, 61–71. [Google Scholar] [CrossRef]
- Lu, B.; He, Y. Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland. Int. J. Photogramm. Remote Sens. 2017, 128, 73–85. [Google Scholar] [CrossRef]
- Meng, B.; Yang, Z.; Yu, H.; Qin, Y.; Sun, Y.; Zhang, J.; Chen, J.; Wang, Z.; Zhang, W.; Li, M.; et al. Mapping of Kobresia pygmaea Community Based on Umanned Aerial Vehicle Technology and Gaofen Remote Sensing Data in Alpine Meadow Grassland: A Case Study in Eastern of Qinghai-Tibetan Plateau. Remote Sens. 2021, 13, 2483. [Google Scholar] [CrossRef]
- Yang, H.; Du, J. Classification of desert steppe species based on unmanned aerial vehicle hyperspectral remote sensing and continuum removal vegetation indices. Optik 2021, 247, 167877. [Google Scholar] [CrossRef]
- Masemola, C.; Cho, M.A.; Ramoelo, A. Sentinel-2 time series based optimal features and time window for mapping invasive Australian native Acacia species in KwaZulu Natal, South Africa Cecilia. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102207. [Google Scholar] [CrossRef]
- Ollinger, S.V. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 2011, 189, 375–394. [Google Scholar] [CrossRef]
- Bradley, B.A. Remote detection of invasive plants: A review of spectral, textural and phenological approaches. Biol. Invasions 2014, 16, 1411–1425. [Google Scholar] [CrossRef]
- Skowronek, S.; Ewald, M.; Isermann, M.; Van de Kerchove, R.; Lenoir, J.; Aerts, R.; Warrie, J.; Hattab, T.; Honnay, O.; Schmidtlein, S.; et al. Mapping an invasive bryophyte species using hyperspectral remote sensing data. Biol. Invasions 2017, 19, 239–254. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P. Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests. Remote Sens. Environ. 2013, 136, 14–27. [Google Scholar] [CrossRef]
- Gioria, M.; Pysek, P.; Osborne, B.A. Timing is everything: Does early and late germination favor invasions by herbaceous alien plants? J. Plant Ecol. 2018, 11, 4–16. [Google Scholar] [CrossRef]
- Somodi, I.; Carni, A.; Ribeiro, D.; Podobnikar, T. Recognition of the invasive species Robinia pseudacacia from combined remote sensing and GIS sources. Biol. Conserv. 2012, 150, 59–67. [Google Scholar] [CrossRef]
- Mirik, M.; Chaudhuri, S.; Surber, B.; Ale, S.; Ansley, R.J. Detection of two intermixed invasive woody species using color infrared aerial imagery and the support vector machine classifier. J. Appl. Remote Sens. 2013, 7, 073588. [Google Scholar] [CrossRef]
- Laliberte, A.S.; Rango, A.; Havstad, K.M.; Paris, J.F.; Beck, R.F.; McNeely, R.; Gonzalez, A.L. Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico. Remote Sens. Environ. 2004, 93, 198–210. [Google Scholar] [CrossRef]
- Yang, H. Comparative Study of Object-Oriented Forest Classification Methods Considering Feature Type and Feature Selection. Master’s Thesis, Shaanxi Normal University, Xi’an, China, 2019. [Google Scholar]
- Wang, W.; Tang, J.; Zhang, N.; Xu, X.; Zhang, A.; Wang, Y. Automated Detection Method to Extract Pedicularis Based on UAV Images. Drones 2022, 6, 399. [Google Scholar] [CrossRef]
- Treccani, D.; Adami, A.; Fregonese, L. Drones and Real-Time Kinematic Base Station Integration for Documenting Inaccessible Ruins: A Case Study Approach. Drones. 2024, 8, 268. [Google Scholar] [CrossRef]
- Shao, Z.; Ahmad, M.N.; Javed, A. Comparison of Random Forest and XGBoost Classifiers Using Integrated Optical and SAR Features for Mapping Urban Impervious Surface. Remote Sens. 2024, 16, 665. [Google Scholar] [CrossRef]
- Bartold, M.; Kluczek, M. A Machine Learning Approach for Mapping Chlorophyll Fluorescence at Inland Wetlands. Remote Sens. 2023, 15, 2392. [Google Scholar] [CrossRef]
- Costa, L.S.; Sano, E.E.; Ferreira, M.E.; Munhoz, C.B.R.; Costa, J.V.S.; Alves Junior, L.R.; de Mello, T.R.B.; Bustamante, M.M.d.C. Woody Plant Encroachment in a Seasonal Tropical Savanna: Lessons about Classifiers and Accuracy from UAV Images. Remote Sens. 2023, 15, 2342. [Google Scholar] [CrossRef]
- Torresani, M.; Kleijn, D.; de Vries, J.P.R.; Bartholomeus, H.; Chieffallo, L.; Gatti, R.C.; Moudry, V.; Da Re, D.; Tomelleri, E.; Rocchini, D. A novel approach for surveying flowers as a proxy for bee pollinators using drone images. Ecol. Indic. 2023, 149, 110123. [Google Scholar] [CrossRef]
- Gonzales, D.; de Ibarra, N.H.; Anderson, K. Remote Sensing of Floral Resources for Pollinators—New Horizons from Satellites to Drones. Front. Ecol. Evol. 2022, 10, 869751. [Google Scholar] [CrossRef]
- Riihimaki, H.; Luoto, M.; Heiskanen, J. Estimating fractional cover of tundra vegetation at multiple scales using unmanned aerial systems and optical satellite data. Remote Sens. Environ. 2019, 224, 119–132. [Google Scholar] [CrossRef]
- Blasi, M.; Bartomeus, I.; Bommarco, R.; Gagic, V.; Garratt, M.; Holzschuh, A.; Kleijn, D.; Lindstrom, S.A.M.; Olsson, P.; Polce, C.; et al. Evaluating predictive performance of statistical models explaining wild bee abundance in a mass-flowering crop. Ecography 2021, 44, 525–536. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, X.; Wang, X.; Xu, X.; Chen, B.; Wang, J.; Ma, J.; Bin, Z.; Li, B. Quantifying expansion and removal of Spartina alterniflora on Chongming island, China, using time series Landsat images during 1995–2018. Remote Sens. Environ. 2020, 247, 111916. [Google Scholar] [CrossRef]
- Wu, N.; Shi, R.; Zhuo, W.; Zhang, C.; Zhou, B.; Xia, Z.; Tao, Z.; Gao, W.; Tian, B. A Classification of Tidal Flat Wetland Vegetation Combining Phenological Features with Google Earth Engine. Remote Sens. 2021, 13, 443. [Google Scholar] [CrossRef]
- Niphadkar, M.; Nagendra, H. Remote Sensing of Invasive Plants: Incorporating Functional Traits into the Picture. Int. J. Remote Sens. 2016, 37, 3074–3085. [Google Scholar] [CrossRef]
- Graenzig, T.; Fassnacht, F.E.; Kleinschmit, B.; Foerster, M. Mapping the fractional coverage of the invasive shrub Ulex europaeus with multi-temporal Sentinel-2 imagery utilizing UAV orthoimages and a new spatial optimization approach. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102281. [Google Scholar] [CrossRef]
- Altamirano, A.; Paola Cely, J.; Etter, A.; Miranda, A.; Fuentes-Ramirez, A.; Acevedo, P.; Salas, C.; Vargas, R. The invasive species Ulex europaeus (Fabaceae) shows high dynamism in a fragmented landscape of south-central Chile. Environ. Monit. Assess. 2016, 188, 495. [Google Scholar] [CrossRef]
- Wang, W.; Tang, J.; Zhang, N.; Wang, Y.; Xu, X.; Zhang, A. Spatiotemporal Pattern of Invasive Pedicularis in the Bayinbuluke Land, China, during 2019-2021: An Analysis Based on PlanetScope and Sentinel-2 Data. Remote Sens. 2023, 15, 4383. [Google Scholar] [CrossRef]
- Gao, S.; Lin, J.; Ma, T.; Wu, J.; Zheng, J. Extraction and Analysis of Hyperspectral Data and Characteristics from Pedicularis on Bayanbulak Grassland in Xinjiang. Remote Sens. Technol. Appl. 2018, 33, 908–914. [Google Scholar]
- Hu, J.D.; Li, K.H.; Deng, C.J.; Gong, Y.M.; Liu, Y.Y.; Wang, L. Seed Germination Ecology of Semiparasitic Weed Pedicularis kansuensis in Alpine Grasslands. Plants 2022, 11, 1777. [Google Scholar] [CrossRef] [PubMed]
Feature Category | Band Name | Feature | Formula and Wavelength |
---|---|---|---|
Spectral band | B1 | Blue | R450 * |
B2 | Green | R555 | |
B3 | Red | R660 | |
B4 | Rededge720 | R720 | |
B5 | Rededge750 | R750 | |
B6 | NIR | R840 | |
Characteristics index | B7 | RENDVI720 | (R720 − R660)/(R720 + R660) |
B8 | RENDVI750 | (R750 − R660)/(R750 + R660) | |
B9 | NDVI | (R840 − R660)/(R840 + R660) | |
B10 | NDRG | (R660 − R555)/(R660 + R555) | |
B11 | NDGB | (R555 − R450)/(R555 + R450) | |
B12 | NDBG | (R450 − R555)/(R555 + R450) | |
B13 | NDRB | (R660 − R450)/(R660 + R450) | |
B14 | NDBR | (R450 − R660)/(R660 + R450) | |
B15 | V | 4/PI × arctan((R555 − R450)/(R555 + R450)) | |
B16 | S | 4/PI × arctan(1 − (R555 − R450)/(R555 + R450)) | |
B17 | GNDVI | (R840 − R555)/(R840 + R555) | |
B18 | GRVI | R840/R555 | |
B19 | MTCI720 | (R840 − R720)/(R840 + R720) | |
B20 | MTCI750 | (R840 − R750)/(R840 + R750) | |
B21 | CI720 | (R840 − R720)/R720 | |
B22 | CI750 | (R840 − R750)/R750 | |
B23 | EVI | 2.5 × (R840 − R660)/(R840 + R660 + 1) | |
B24 | SR-RG | R660/R555 | |
B25 | SR-GB | R555/R450 |
Grassland | Main Communities | Flowering Stage Species | Land Cover | Date |
---|---|---|---|---|
Alpine steppe1 | Stipa purpurea, Festuca ovina, Agropyron cristatum, P. kansuensis | P. kansuensis | Litter, Soil Grass (green), | 2 August 2022 |
Alpine steppe2 | Carex turkestanica, Festuca kryloviana, P. kansuensis | Gentiana scabra (purple), P. kansuensis | Grass (green), Soil, Water | 2 August 2022 |
Swamp meadow | Carex stipitiutriculata, P. kansuensis | Oxytropis glabra/Astragalus (purple), P. kansuensis, Umbelliferae (white) | Grass (green), Soil, Water | 3 August 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Li, K.; Zhang, J.; Liu, Y.; Li, X. Mapping Invasive Species Pedicularis and Background Grassland Using UAV and Machine Learning Algorithms. Drones 2024, 8, 639. https://doi.org/10.3390/drones8110639
Zhao J, Li K, Zhang J, Liu Y, Li X. Mapping Invasive Species Pedicularis and Background Grassland Using UAV and Machine Learning Algorithms. Drones. 2024; 8(11):639. https://doi.org/10.3390/drones8110639
Chicago/Turabian StyleZhao, Jin, Kaihui Li, Jiarong Zhang, Yanyan Liu, and Xuan Li. 2024. "Mapping Invasive Species Pedicularis and Background Grassland Using UAV and Machine Learning Algorithms" Drones 8, no. 11: 639. https://doi.org/10.3390/drones8110639
APA StyleZhao, J., Li, K., Zhang, J., Liu, Y., & Li, X. (2024). Mapping Invasive Species Pedicularis and Background Grassland Using UAV and Machine Learning Algorithms. Drones, 8(11), 639. https://doi.org/10.3390/drones8110639