Evaluation of Machine Learning Regression Techniques for Estimating Winter Wheat Biomass Using Biophysical, Biochemical, and UAV Multispectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. UAV Imagery
2.3. UAV Image Processing
2.4. Vegetation Indices
2.5. Biochemical Parameters
2.6. Machine Learning Regression Modeling
3. Results
3.1. Biomass Data
3.2. Regression Models with All Variables
3.3. Variable Importance Plot
3.4. Regression Models with Selected Variables
4. Discussion
5. Conclusions
5.1. Contributions of Utilizing Multiple Categories of Variables in AGB Estimation
5.2. Limitations and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, C.S.; Reynolds, W.D. Impacts of Recent Climate Trends on Agriculture in Southwestern Ontario. Can. Water Resour. J. 2003, 28, 87–97. [Google Scholar] [CrossRef]
- Reid, S.; Smit, B.; Caldwell, W.; Belliveau, S. Vulnerability and Adaptation to Climate Risks in Ontario Agriculture. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 609–637. [Google Scholar] [CrossRef]
- Government of Canada. Overview of Canada’s Agriculture and Agri-Food Sector; Agriculture and Agri-Food Canada, Canada; 2023; Available online: https://agriculture.canada.ca/en/sector/overview (accessed on 25 May 2024).
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine Learning Approaches for Crop Yield Prediction and Nitrogen Status Estimation in Precision Agriculture: A Review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-Based Plant Height from Crop Surface Models, Visible, and near Infrared Vegetation Indices for Biomass Monitoring in Barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Li, W.; Niu, Z.; Huang, N.; Wang, C.; Gao, S.; Wu, C. Airborne LiDAR Technique for Estimating Biomass Components of Maize: A Case Study in Zhangye City, Northwest China. Ecol. Indic. 2015, 57, 486–496. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef]
- Guo, Y.; He, J.; Zhang, H.; Shi, Z.; Wei, P.; Jing, Y.; Yang, X.; Zhang, Y.; Wang, L.; Zheng, G. Improvement of Winter Wheat Aboveground Biomass Estimation Using Digital Surface Model Information Extracted from Unmanned-Aerial-Vehicle-Based Multispectral Images. Agriculture 2024, 14, 378. [Google Scholar] [CrossRef]
- Liu, J.; Pattey, E.; Miller, J.R.; McNairn, H.; Smith, A.; Hu, B. Estimating Crop Stresses, Aboveground Dry Biomass and Yield of Corn Using Multi-Temporal Optical Data Combined with a Radiation Use Efficiency Model. Remote Sens. Environ. 2010, 114, 1167–1177. [Google Scholar] [CrossRef]
- Tian, J.; Wang, S.; Zhang, L.; Wu, T.; She, X.; Jiang, H. Evaluating Different Vegetation Index for Estimating Lai of Winter Wheat Using Hyperspectral Remote Sensing Data. In Proceedings of the 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Tokyo, Japan, 2–5 June 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Xie, Q.; Huang, W.; Liang, D.; Chen, P.; Wu, C.; Yang, G.; Zhang, J.; Huang, L.; Zhang, D. Leaf Area Index Estimation Using Vegetation Indices Derived from Airborne Hyperspectral Images in Winter Wheat. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3586–3594. [Google Scholar] [CrossRef]
- Cavender-Bares, J.; Gamon, J.A.; Townsend, P.A. (Eds.) Remote Sensing of Plant Biodiversity; Springer Nature: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Waltham, MA, USA, 2011; ISBN 978-0-12-384905-2. [Google Scholar]
- Bryant, C.R.; Smit, B.; Brklacich, M.; Johnston, T.R.; Smithers, J.; Chiotti, Q.; Singh, B. Adaptation in Canadian Agriculture to Climatic Variability and Change. In Societal Adaptation to Climate Variability and Change; Kane, S.M., Yohe, G.W., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2000; pp. 181–201. [Google Scholar] [CrossRef]
- Zhao, S.; Lü, J.; Xu, X.; Lin, X.; Luiz, M.R.; Qiu, S.; Ciampitti, I.; He, P. Peanut Yield, Nutrient Uptake and Nutrient Requirements in Different Regions of China. J. Integr. Agric. 2021, 20, 2502–2511. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F.M. The Vegetation N:P Ratio: A New Tool to Detect the Nature of Nutrient Limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A Compilation of UAV Applications for Precision Agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating Chlorophyll Content from Hyperspectral Vegetation Indices: Modeling and Validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Yu, J.; Wang, J.; Leblon, B.; Song, Y. Nitrogen Estimation for Wheat Using UAV-Based and Satellite Multispectral Imagery, Topographic Metrics, Leaf Area Index, Plant Height, Soil Moisture, and Machine Learning Methods. Nitrogen 2022, 3, 1–25. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Silleos, N.G.; Alexandridis, T.K.; Gitas, I.Z.; Perakis, K. Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 Years. Geocarto Int. 2006, 21, 21–28. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Wang, J.; Song, X.; Feng, H. Winter Wheat Biomass Estimation Based on Spectral Indices, Band Depth Analysis and Partial Least Squares Regression Using Hyperspectral Measurements. Comput. Electron. Agric. 2014, 100, 51–59. [Google Scholar] [CrossRef]
- Gómez, D.; Salvador, P.; Sanz, J.; Casanova, J.L. Potato Yield Prediction Using Machine Learning Techniques and Sentinel 2 Data. Remote Sens. 2019, 11, 1745. [Google Scholar] [CrossRef]
- Liao, C.; Wang, J.; Shan, B.; Song, Y.; He, Y.; Dong, T. Near Real-time Yield Forecasting of Winter Wheat Using Sentinel-2 Imagery at the Early Stages. Precis. Agric. 2022, 24, 807–829. [Google Scholar] [CrossRef]
- Bukowiecki, J.; Rose, T.; Kage, H. Sentinel-2 Data for Precision Agriculture?—A UAV-Based Assessment. Sensors 2021, 21, 2861. [Google Scholar] [CrossRef]
- Ontario Ministry of Agriculture, Food and Rural Affairs. Census Farm Data Collection; Ontario Data Catalogue, Canada; 2022; Available online: https://data.ontario.ca/dataset/census-farm-data-collection (accessed on 26 May 2024).
- Atkinson Amorim, J.G.; Schreiber, L.V.; de Souza, M.R.Q.; Negreiros, M.; Susin, A.; Bredemeier, C.; Trentin, C.; Vian, A.L.; de Oliveira Andrades-Filho, C.; Doering, D.; et al. Biomass Estimation of Spring Wheat with Machine Learning Methods Using UAV-Based Multispectral Imaging. Int. J. Remote Sens. 2022, 43, 4758–4773. [Google Scholar] [CrossRef]
- Wang, F.; Yang, M.; Ma, L.; Zhang, T.; Qin, W.; Li, W.; Zhang, Y.; Sun, Z.; Wang, Z.; Li, F.; et al. Estimation of Above-Ground Biomass of Winter Wheat Based on Consumer-Grade Multi-Spectral UAV. Remote Sens. 2022, 14, 1251. [Google Scholar] [CrossRef]
- van Klompenburg, T.; Kassahun, A.; Catal, C. Crop Yield Prediction Using Machine Learning: A Systematic Literature Review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Tausch, R.J. Comparison of Regression Methods for Biomass Estimation of Sagebrush and Bunchgrass. Great Basin Nat. 1989, 49, 373–380. [Google Scholar]
- Di Bella, C.M.; Paruelo, J.M.; Becerra, J.E.; Bacour, C.; Baret, F. Effect of Senescent Leaves on NDVI-Based Estimates of fAPAR: Experimental and Modelling Evidences. Int. J. Remote Sens. 2004, 25, 5415–5427. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, Q.; Ren, H.; Sun, Y.; Li, M.; Zhang, T.; Ren, S. Optimal Hyperspectral Characteristics Determination for Winter Wheat Yield Prediction. Remote Sens. 2018, 10, 2015. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote Estimation of Leaf Area Index and Green Leaf Biomass in Maize Canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef]
- Fernandes, R.; Butson, C.; Leblanc, S.; Latifovic, R. Landsat-5 TM and Landsat-7 ETM+ Based Accuracy Assessment of Leaf Area Index Products for Canada Derived from SPOT-4 VEGETATION Data. Can. J. Remote Sens. 2003, 29, 241–258. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative Estimation of Chlorophyll-a Using Reflectance Spectra: Experiments with Autumn Chestnut and Maple Leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Novoa, R.; Loomis, R.S. Nitrogen and Plant Production. Plant Soil 1981, 58, 177–204. [Google Scholar] [CrossRef]
- Shi, Q.; Pang, J.; Yong, J.W.H.; Bai, C.; Pereira, C.G.; Song, Q.; Wu, D.; Dong, Q.; Cheng, X.; Wang, F.; et al. Phosphorus-Fertilisation Has Differential Effects on Leaf Growth and Photosynthetic Capacity of Arachis hypogaea L. Plant Soil 2020, 447, 99–116. [Google Scholar] [CrossRef]
- Oosterhuis, D.M.; Loka, D.A.; Kawakami, E.M.; Pettigrew, W.T. The Physiology of Potassium in Crop Production. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 126, pp. 203–233. [Google Scholar] [CrossRef]
- Blake-Kalff, M.M.A.; Hawkesford, M.J.; Zhao, F.J.; McGrath, S.P. Diagnosing Sulfur Deficiency in Field-Grown Oilseed Rape (Brassica napus L.) and Wheat (Triticum aestivum L.). Plant Soil 2000, 225, 95–107. [Google Scholar] [CrossRef]
- Pagani, A.; Echeverría, H.E. Performance of Sulfur Diagnostic Methods for Corn. Agron. J. 2011, 103, 413–421. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, J.; Tao, X.; Su, X.; Li, W.; Zha, H.; Wu, W.; Li, X. A Three-Dimensional Conceptual Model for Estimating the Above-Ground Biomass of Winter Wheat Using Digital and Multispectral Unmanned Aerial Vehicle Images at Various Growth Stages. Remote Sens. 2023, 15, 3332. [Google Scholar] [CrossRef]
- Wei, L.; Yang, H.; Niu, Y.; Zhang, Y.; Xu, L.; Chai, X. Wheat Biomass, Yield, and Straw-Grain Ratio Estimation from Multi-Temporal UAV-Based RGB and Multispectral Images. Biosyst. Eng. 2023, 234, 187–205. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Hu, Z.; Xiao, W. Unmanned Aerial System-Based Wheat Biomass Estimation Using Multispectral, Structural and Meteorological Data. Agriculture 2023, 13, 1621. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Jin, X.; Xia, X.; Xiao, Y.; He, Z. Time-Series Multispectral Indices from Unmanned Aerial Vehicle Imagery Reveal Senescence Rate in Bread Wheat. Remote Sens. 2018, 10, 809. [Google Scholar] [CrossRef]
- Sharma, P.; Leigh, L.; Chang, J.; Maimaitijiang, M.; Caffé, M. Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning. Sensors 2022, 22, 601. [Google Scholar] [CrossRef]
- Lu, N.; Zhou, J.; Han, Z.; Li, D.; Cao, Q.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cheng, T. Improved Estimation of Aboveground Biomass in Wheat from RGB Imagery and Point Cloud Data Acquired with a Low-Cost Unmanned Aerial Vehicle System. Plant Methods 2019, 15, 17. [Google Scholar] [CrossRef]
- Guo, Y.; Xiao, Y.; Hao, F.; Zhang, X.; Chen, J.; de Beurs, K.; He, Y.; Fu, Y.H. Comparison of Different Machine Learning Algorithms for Predicting Maize Grain Yield Using UAV-Based Hyperspectral Images. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103528. [Google Scholar] [CrossRef]
Fieldwork Dates | Field Sample Point Groups | # of Sample Points | UAV Flight Dates | Phenology (BBCH Scale 1) |
---|---|---|---|---|
June 4 | Winter Wheat Field W4 and W5 | 12 in W4, 16 in W5 | June 8 | Inflorescence emergence, heading (high 50 s to low 60 s) |
June 10 | June 10 | Flowering, anthesis (60 s) | ||
June 17 | June 19 | Development of fruit (70 s) | ||
June 23 | June 24 | Ripening (low 80 s) |
Band | Name | Band Range (nm) | Center Wavelength (nm) | Bandwidth (nm) |
---|---|---|---|---|
1 | Blue | 465–485 | 475 | 20 |
2 | Green | 550–570 | 560 | 20 |
3 | Red | 663–673 | 668 | 10 |
4 | Red Edge | 712–722 | 717 | 10 |
5 | NIR | 820–860 | 840 | 40 |
VI 1 | Formula 2 | Authors |
---|---|---|
ARVI | Kaufman and Tanre [33] | |
Cl_RE | Gitelson et al. [34] | |
EVI | Huete et al. [35] | |
GCVI | Gitelson et al. [36] | |
ISR | Fernades et al. [37] | |
MCARI | Daughtry et al. [38] | |
MSAVI | Qi et al. [39] | |
NDRE | Gitelson and Merzyak [40] | |
NDVI | Rouse et al. [41] | |
OSAVI | Rondeaux et al. [42] | |
RDVI | Roujean and Breon [43] | |
RVI | Jordan [44] | |
SAVI | Huete [45] |
Date | Model | (n) | Calibration | Validation | |||
---|---|---|---|---|---|---|---|
R2 | RMSE (g/m2) | R2 | p-Value | RMSE (g/m2) | |||
June 4 | RF | 28 | 0.95 | 41.90 | 0.21 | NS | 137.37 |
SVR | 28 | 0.93 | 40.11 | 0.47 | <0.05 | 132.17 | |
June 10 | RF | 28 | 0.96 | 54.64 | −0.13 | NS | 86.19 |
SVR | 28 | 0.85 | 58.74 | −0.14 | NS | 99.63 | |
June 17 | RF | 28 | 0.93 | 52.62 | −0.02 | NS | 162.74 |
SVR | 28 | 0.76 | 76.20 | −0.14 | NS | 132.08 | |
June 23 | RF | 28 | 0.95 | 80.82 | −0.14 | NS | 245.32 |
SVR | 28 | 0.70 | 113.80 | −0.14 | NS | 238.80 | |
June 4, 10 | RF | 56 | 0.95 | 44.03 | −0.06 | NS | 134.58 |
SVR | 56 | 0.75 | 63.90 | 0.09 | NS | 130.63 | |
June 4, 17 | RF | 56 | 0.94 | 60.62 | 0.57 | <0.001 | 138.11 |
SVR | 56 | 0.85 | 77.20 | 0.47 | 0.001 | 155.47 | |
June 4, 23 | RF | 56 | 0.97 | 75.91 | 0.68 | <0.001 | 237.24 |
SVR | 56 | 0.96 | 83.87 | 0.59 | <0.001 | 257.60 | |
June 10, 17 | RF | 56 | 0.92 | 59.01 | 0.40 | <0.01 | 123.23 |
SVR | 56 | 0.84 | 71.79 | 0.46 | 0.001 | 120.43 | |
June 10, 23 | RF | 56 | 0.97 | 71.46 | 0.66 | <0.001 | 212.96 |
SVR | 56 | 0.96 | 83.51 | 0.68 | <0.001 | 201.40 | |
June 17, 23 | RF | 56 | 0.94 | 86.27 | 0.23 | <0.05 | 252.59 |
SVR | 56 | 0.90 | 103.30 | 0.22 | <0.05 | 249.10 | |
June 4, 10, 17 | RF | 84 | 0.94 | 58.61 | 0.41 | <0.001 | 131.64 |
SVR | 84 | 0.84 | 73.80 | 0.38 | <0.001 | 130.17 | |
June 4, 10, 23 | RF | 84 | 0.96 | 82.96 | 0.67 | <0.001 | 207.08 |
SVR | 84 | 0.94 | 98.08 | 0.71 | <0.001 | 184.32 | |
June 4, 17, 23 | RF | 84 | 0.94 | 91.83 | 0.76 | <0.001 | 177.09 |
SVR | 84 | 0.90 | 112.88 | 0.72 | <0.001 | 187.79 | |
June 10, 17, 23 | RF | 84 | 0.94 | 89.50 | 0.72 | <0.001 | 177.91 |
SVR | 84 | 0.90 | 108.79 | 0.77 | <0.001 | 156.61 | |
June 4, 10, 17, 23 | RF | 112 | 0.93 | 90.98 | 0.80 | <0.001 | 152.71 |
SVR | 112 | 0.89 | 113.81 | 0.77 | <0.001 | 165.71 |
Variables | Number of Variables | Calibration | Validation | ||
---|---|---|---|---|---|
R2 | RMSE (g/m2) | R2 | RMSE (g/m2) | ||
All VIs + 5 MicaSense bands | 18 | 0.91 | 102.19 | 0.73 | 175.63 |
All plant nutrient content + ratios | 22 | 0.93 | 100.79 | 0.68 | 196.54 |
Top 4: NDVI, ISR, ARVI, RVI | 4 | 0.87 | 119.81 | 0.59 | 213.49 |
Top 7: top 4 + height, N, KMg_ACT | 7 | 0.91 | 100.90 | 0.76 | 167.32 |
Top 10: top 7 + NS_ACT, K, OSAVI | 10 | 0.93 | 92.36 | 0.79 | 156.00 |
Top 14: Top 10 + red, NK_ACT, GCVI, NDRE | 14 | 0.93 | 89.53 | 0.78 | 160.04 |
Top 20: Top 14 + green, Cl_RE, P, Fe, RE, Mg | 20 | 0.93 | 89.19 | 0.81 | 149.95 |
Top 29: top 20 + NO3N, Ca, PZn_ACT, Al, MSAVI, MCARI, RDVI, CaB_ACT, Cu | 29 | 0.94 | 89.41 | 0.81 | 151.52 |
Variables | Number of Variables | Calibration | Validation | ||
---|---|---|---|---|---|
R2 | RMSE (g/m2) | R2 | RMSE (g/m2) | ||
All VIs + 5 MicaSense bands | 18 | 0.81 | 145.51 | 0.62 | 190.51 |
All nutrient content + ratios | 22 | 0.85 | 136.75 | 0.69 | 206.40 |
Top 5: ISR, NDVI, RVI, ARVI, K | 5 | 0.72 | 178.05 | 0.66 | 187.07 |
Top 7: Top 5 + P, Red | 7 | 0.76 | 162.81 | 0.62 | 198.99 |
Top 10: top 7 + GCVI, Na, green | 10 | 0.81 | 147.21 | 0.66 | 184.68 |
Top 14: top 10 + RE, Cl_RE, blue, NDRE | 14 | 0.81 | 145.18 | 0.69 | 179.08 |
Top 20: top 14 + OSAVI, B, KMg_ACT, height, NO3N, KMn_ACT | 20 | 0.86 | 128.30 | 0.73 | 165.47 |
Top 28: Top 20 + CaB_ACT, NIR, SAVI, MSAVI, NS_ACT, N, PZn_ACT, Fe | 28 | 0.88 | 119.65 | 0.77 | 154.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, M.S.; Wang, J. Evaluation of Machine Learning Regression Techniques for Estimating Winter Wheat Biomass Using Biophysical, Biochemical, and UAV Multispectral Data. Drones 2024, 8, 287. https://doi.org/10.3390/drones8070287
Chiu MS, Wang J. Evaluation of Machine Learning Regression Techniques for Estimating Winter Wheat Biomass Using Biophysical, Biochemical, and UAV Multispectral Data. Drones. 2024; 8(7):287. https://doi.org/10.3390/drones8070287
Chicago/Turabian StyleChiu, Marco Spencer, and Jinfei Wang. 2024. "Evaluation of Machine Learning Regression Techniques for Estimating Winter Wheat Biomass Using Biophysical, Biochemical, and UAV Multispectral Data" Drones 8, no. 7: 287. https://doi.org/10.3390/drones8070287
APA StyleChiu, M. S., & Wang, J. (2024). Evaluation of Machine Learning Regression Techniques for Estimating Winter Wheat Biomass Using Biophysical, Biochemical, and UAV Multispectral Data. Drones, 8(7), 287. https://doi.org/10.3390/drones8070287