A Visual Navigation Algorithm for UAV Based on Visual-Geography Optimization
Abstract
:1. Introduction
- We propose a UAV visual navigation algorithm that combines the merits of VO and image matching.
- We introduce a geolocation method based on heterogeneous image matching, which employs the coarse-to-fine and prior-based image-matching methods to enhance the accuracy of geolocation. This method effectively leverages the operational characteristics of VO to provide precise geolocation information.
- We present a tightly coupled information fusion method based on visual-geography optimization that jointly optimizes the visual and geolocation information of keyframes to facilitate tightly coupled geolocation in algorithms. Compared with the existing trajectory fusion method, our method achieves higher positioning accuracy.
2. Method
Algorithm 1 UAV visual navigator algorithm |
Input: UAV images and satellite map tiles. Output: Estimated UAV trajectory. 1: for all UAV images do 2: Extract ORB features. 3: VO initialization. 4: Track UAV movement. 5: if keyframe then 6: if then 7: Visual BA optimization. 8: 9: Calculate the initial value of 10: Reliability check of 11: else if !GeoInitialized then 12: Visual BA optimization. 13: 14: Geographic initialization. 15: else 16: 17: Visual-geography BA optimization. 18: end if 19: end if 20: end for |
2.1. Tightly Coupled Visual and Geographic Information Fusion
2.1.1. Visual-Geography Optimization
2.1.2. Geographic Initializer
- (1)
- Visual BA optimization
- (2)
- Calculate the initial value of
- (3)
- Visual-geography BA
2.1.3. Map Fusion Method and Geographic Weights Update
2.2. Geolocation Based on Heterogeneous Image Matching
2.2.1. Coarse-to-Fine Image-Matching Method
2.2.2. Prior-Based Image-Matching Method
3. Experimental Setups and Results
3.1. Simulation Dataset
3.1.1. Setups
3.1.2. Geolocation Performance
3.2. Real-World Dataset
3.2.1. Setups
3.2.2. Geolocation Performance
3.3. Ablation Study
3.4. Analysis of Experimental Findings
4. Conclusions
- In the geolocation method based on heterogeneous image matching, our proposed prior-based image-matching method utilizes the prior information to enhance the accuracy and efficiency of geolocation for the algorithm.
- The fusion method based on visual-geography optimization achieves stable and reliable estimation of geographic initialization parameters within 5 s, enabling real-time estimation of the UAV’s geographic pose.
- We propose a tightly integrated fusion method that effectively combines the visual information from VO with the geolocation information obtained through the image-matching method. Experimental results demonstrate that our proposed algorithm accurately and in real-time estimates the UAV’s geolocation information solely relying on the vision sensor, even in GNSS-denied environments.
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scherer, J.; Yahyanejad, S.; Hayat, S.; Yanmaz, E.; Andre, T.; Khan, A.; Vukadinovic, V.; Bettstetter, C.; Hellwagner, H.; Rinner, B. An Autonomous Multi-UAV System for Search and Rescue. In Proceedings of the MobiSys’15: The 13th Annual International Conference on Mobile Systems, Applications, and Services, Florence, Italy, 18 May 2015. [Google Scholar]
- Messinger, M.; Silman, M. Unmanned aerial vehicles for the assessment and monitoring of environmental contamination: An example from coal ash spills. Environ. Pollut. 2016, 218, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Meng, Z.; Zou, Y.; Cao, M. Visual Object Tracking and Servoing Control of a Nano-Scale Quadrotor: System, Algorithms, and Experiments. IEEE/CAA J. Autom. Sin. 2021, 8, 344–360. [Google Scholar] [CrossRef]
- Ganesan, R.; Raajini, X.M.; Nayyar, A.; Sanjeevikumar, P.; Hossain, E.; Ertas, A.H. BOLD: Bio-Inspired Optimized Leader Election for Multiple Drones. Sensors 2020, 20, 3134. [Google Scholar] [CrossRef]
- Yayli, U.; Kimet, C.; Duru, A.; Cetir, O.; Torun, U.; Aydogan, A.; Padmanaban, S.; Ertas, A. Design optimization of a fixed wing aircraft. Int. J. Adv. Aircr. Spacecr. Sci. 2017, 4, 65–80. [Google Scholar] [CrossRef]
- Huang, K.W.; Wang, H.M. Combating the Control Signal Spoofing Attack in UAV Systems. IEEE Trans. Veh. Technol. 2018, 67, 7769–7773. [Google Scholar] [CrossRef]
- Li, Y.; Yang, D.; Wang, S.; He, H.; Hu, J.; Liu, H. Road-Network-Based Fast Geolocalization. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6065–6076. [Google Scholar] [CrossRef]
- Fragoso, A.T.; Lee, C.T.; McCoy, A.S.; Chung, S.-J. A seasonally invariant deep transform for visual terrain-relative navigation. Sci. Robot. 2021, 6, eabf3320. [Google Scholar] [CrossRef] [PubMed]
- Klein, G.; Murray, D. Parallel Tracking and Mapping for Small AR Workspaces. In Proceedings of the 2007 6th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Nara, Japan, 13–16 November 2007. [Google Scholar]
- Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011. [Google Scholar]
- Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef]
- Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Engel, J.; Koltun, V.; Cremers, D. Direct Sparse Odometry. IEEE Trans. Pattern Anal. 2018, 40, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef]
- Forster, C.; Pizzoli, M.; Scaramuzza, D. SVO: Fast semi-direct monocular visual odometry. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014. [Google Scholar]
- Leutenegger, S.; Lynen, S.; Bosse, M.; Siegwart, R.; Furgale, P. Keyframe-based visual–inertial odometry using nonlinear optimization. Int. J. Robot. Res. 2015, 34, 314–334. [Google Scholar] [CrossRef]
- Strasdat, H.; Montiel, J.M.; Davison, A.J. Visual SLAM: Why filter? Image Vis. Comput. 2012, 30, 65–77. [Google Scholar] [CrossRef]
- Sarlin, P.-E.; Unagar, A.; Larsson, M.; Germain, H.; Toft, C.; Larsson, V.; Pollefeys, M.; Lepetit, V.; Hammarstrand, L.; Kahl, F.; et al. Back to the Feature: Learning Robust Camera Localization from Pixels to Pose. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021. [Google Scholar]
- Shetty, A.; Gao, G.X. UAV Pose Estimation using Cross-view Geolocalization with Satellite Imagery. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–22 May 2019. [Google Scholar]
- Shi, Y.; Li, H. Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization Using Satellite Image. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 19–24 June 2022. [Google Scholar]
- Goforth, H.; Lucey, S. GPS-Denied UAV Localization using Pre-existing Satellite Imagery. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019. [Google Scholar]
- Chen, S.; Wu, X.; Mueller, M.W.; Sreenath, K. Real-time Geo-localization Using Satellite Imagery and Topography for Unmanned Aerial Vehicles. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021. [Google Scholar]
- Hu, S.; Lee, G.H. Image-Based Geo-Localization Using Satellite Imagery. Int. J. Comput. Vis. 2020, 128, 1205–1219. [Google Scholar]
- Kinnari, J.; Verdoja, F.; Kyrki, V. GNSS-denied geolocalization of UAVs by visual matching of onboard camera images with orthophotos. In Proceedings of the 2021 20th International Conference on Advanced Robotics (ICAR), Ljubljana, Slovenia, 6–10 December 2021. [Google Scholar]
- Hao, Y.; He, M.; Liu, Y.; Liu, J.; Meng, Z. Range–Visual–Inertial Odometry with Coarse-to-Fine Image Registration Fusion for UAV Localization. Drones 2023, 7, 540. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, Y.; Wang, S.; Vora, A.; Perincherry, A.; Chen, Y.; Li, H. Increasing SLAM Pose Accuracy by Ground-to-Satellite Image Registration. In Proceedings of the 2024 International Conference on Robotics and Automation (ICRA), Tokyo, Japan, 13–17 May 2024. [Google Scholar]
- Lepetit, V.; Moreno-Noguer, F.; Fua, P. EPnP: An Accurate O(n) Solution to the PnP Problem. Int. J. Comput. Vis. 2009, 81, 155–166. [Google Scholar] [CrossRef]
- Arandjelovic, R.; Gronat, P.; Torii, A.; Pajdla, T.; Sivic, J. NetVLAD: CNN Architecture for Weakly Supervised Place Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1437–1451. [Google Scholar] [PubMed]
- DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperPoint: Self-Supervised Interest Point Detection and Description. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Sarlin, P.-E.; DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperGlue: Learning Feature Matching with Graph Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Horn, B.K.P. Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. 1987, 4, 629. [Google Scholar] [CrossRef]
Dataset | Length (km) | Altitude (m) | Speed (m/s) | Duration (s) | Resolution | Frame Rate (fps) |
---|---|---|---|---|---|---|
simulation | 29.1 | 500 | 30 | 960 | 960 × 540 | 20 |
Dataset | Length (km) | Altitude (m) | Speed (m/s) | Duration (s) | Resolution | Frame Rate (fps) |
---|---|---|---|---|---|---|
1 | 7.7 | 500 | 9.5 | 808 | 960 × 540 | 20 |
2 | 7.8 | 500 | 12.2 | 640 | 960 × 540 | 20 |
Dataset | Metric | Geo-Init | Image Matching | Trajectory Fusion | Full |
---|---|---|---|---|---|
Simulation | Mean (m) | 161.12 | 14.36 | 15.36 | 10.32 |
RMSE (m) | 181.04 | 14.94 | 17.21 | 11.11 | |
Real-World 1 | Mean (m) | 241.16 | 17.36 | 19.36 | 12.47 |
RMSE (m) | 275.79 | 19.21 | 21.33 | 12.72 | |
Real-World 2 | Mean (m) | 150.37 | 16.33 | 14.13 | 7.53 |
RMSE (m) | 161.99 | 18.96 | 16.52 | 8.31 |
Metric | VO | Geo-Initialized VO | Coarse-to-Fine Method | Proposed Algorithm |
---|---|---|---|---|
Mean (m) | 254.58 | 161.12 | 20.59 | 10.32 |
RMSE (m) | 282.35 | 181.04 | 25.40 | 11.11 |
Dataset | Metric | VO | Geo-Initialized VO | Coarse-to-Fine Method | Proposed Algorithm |
---|---|---|---|---|---|
1 | Mean (m) | 330.63 | 241.16 | 25.45 | 12.47 |
RMSE (m) | 376.23 | 275.79 | 37.11 | 12.72 | |
2 | Mean (m) | 255.54 | 150.37 | 19.08 | 7.53 |
RMSE (m) | 293.14 | 161.99 | 26.47 | 8.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Yang, D.; Liu, J.; Li, Y.; Zhou, M. A Visual Navigation Algorithm for UAV Based on Visual-Geography Optimization. Drones 2024, 8, 313. https://doi.org/10.3390/drones8070313
Xu W, Yang D, Liu J, Li Y, Zhou M. A Visual Navigation Algorithm for UAV Based on Visual-Geography Optimization. Drones. 2024; 8(7):313. https://doi.org/10.3390/drones8070313
Chicago/Turabian StyleXu, Weibo, Dongfang Yang, Jieyu Liu, Yongfei Li, and Maoan Zhou. 2024. "A Visual Navigation Algorithm for UAV Based on Visual-Geography Optimization" Drones 8, no. 7: 313. https://doi.org/10.3390/drones8070313
APA StyleXu, W., Yang, D., Liu, J., Li, Y., & Zhou, M. (2024). A Visual Navigation Algorithm for UAV Based on Visual-Geography Optimization. Drones, 8(7), 313. https://doi.org/10.3390/drones8070313