A Multi-Objective Black-Winged Kite Algorithm for Multi-UAV Cooperative Path Planning
Abstract
:1. Introduction
- A mathematical model for urban UAV logistics delivery is formulated, with a thorough analysis of the constraints and objectives for multi-UAV cooperative path planning, and the threat distribution under urban logistics delivery is also considered. The multi-objective optimization method is proposed to evaluate each independent cost function;
- The NSBKA algorithm has been introduced based on the BKA. The improved algorithm is now capable of addressing multi-objective optimization problems by integrating the non-dominated sorting technique and the crowding-distance calculation method;
- The NSBKA algorithm is rigorously tested across 22 test functions that are commonly used in multi-objective optimization. The IGD (indicator of generational distance), HV (hypervolume), and CPU running time are selected as metrics for performance assessment. Additionally, the NSBKA’s multi-objective optimization capabilities are compared with the multi-objective grey wolf optimizer (MOGWO), the multi-objective sparrow optimization algorithm (MOSSA), the multi-objective stochastic paint optimizer (MOSPO), and multi-objective generalized normal distribution optimization (MOGNDO) to verify its efficacy;
- Simulation experiments have been conducted by applying the NSBKA and other algorithms to solve the multi-UAV cooperative path-planning problem, with a comparative analysis of the simulation results for scenarios involving three and five UAVs with identical parameters to ascertain the method’s efficacy in tackling such cooperative path-planning issues.
2. Related Work
2.1. Multi-Objective Optimization Problem
- (1)
- x is no worse than y in all objectives;
- (2)
- x is strictly better than y in at least one objective.
2.2. Black-Winged Kite Algorithm
2.2.1. Description of BKA
Algorithm 1: Pseudocode of the BKA. |
Input: The population size N, maximum number of iterations T, and variable dimension dim Output: The best quasi-optimal solution obtained by BKA for a given optimization problem. Initialization phase Initialization of the position of black-winged kites and evaluation of the objective function. Calculate the fitness value of each Black-winged kite while (t < T) do /* Attacking behavior */ if p < r xi,j(t + 1) = xi,j(t) + n(1 + sin(r)) × xi,j(t) end if xi,j(t + 1) = xi,j(t) + n(2r − 1) × xi,j(t) end /* Migration behavior */ if Fi < Fri xi,j(t + 1) = xi,j(t) + C(0, 1) × [xi,j(t) − Lj(t)] end if xi,j(t + 1) = xi,j(t) + C(0, 1) × [Lj(t) – m × xi,j(t)] end /* Select the best individual */ if f[xi,j(t + 1)] < f[Lj(t)] Xbest = xi,j(t + 1), Fbest = f[xi,j(t + 1)] end if Xbest = Lj(t), Fbest = f[Lj(t)] end end while Return Xbest and Fbest |
2.2.2. Foraging Behavior
2.2.3. Migration Behavior
3. Mathematical Model for Cooperative Path Planning of Multiple UAVs
3.1. Problem Description
- (1)
- the flight speed of the UAV is uniform and unchanged during the performance of the mission;
- (2)
- the path of each UAV is divided into a plurality of path segments, in which the UAV can be regarded as flying in a straight line;
- (3)
- all UAVs are isomorphic;
- (4)
- ignoring the influence of external weather and airflow on drone flight;
- (5)
- all UAV information interactions are assumed to be in an ideal state of communication, with no delays, interruptions, etc.
3.2. Differences Between Multi-Objective and Single-Objective Weighting Methods
3.3. Multi-UAV Cooperative Cost Model
- (1)
- Energy Consumption Objective
- (2)
- Safety Objective
3.4. Constraints
3.4.1. Flight Height Constraints
3.4.2. Flight Maximum Distance and Minimum Distance Constraints
3.4.3. Flight Speed Constraints
3.4.4. Flight Angle Constraints
3.4.5. Spatiotemporal Cooperative Constraints
4. Methodology
4.1. Optimization Process of Non-Dominated Sorting Black-Winged Kite Algorithm (NSBKA)
4.1.1. Non-Dominated Sorting
Algorithm 2: Pseudocode of the non-dominated sorting |
Input: The number of solutions in population P is M Output: A list of non-dominant frontiers with different ranks F = {F1, F2, F3, …, Fk} Initialize phase: Initializes the number representing the rank k = 1 for i = 1 to M do Initialize S(i) as an empty set, N(i) = 0 for q = 1 to M do if i dominates q add q to S(i) else N(i) = N(i) + 1 end if end for if N(i) = 0 set irank = 1 add i to F1 end if end for while Fk is not empty initialize an empty set Q for each solution i in Fk for each solution q in S(i) N(q) = N(q) − 1 if N(q) = 0 qrank = k + 1 add q to Q end if end for end for k = k + 1 set Fk = Q while return F |
4.1.2. External Archive
- (1)
- If there exists a solution in the external archive that dominates the new individual generated in each iteration of the algorithm, the new individual will not be added to the external archive;
- (2)
- If the new individual dominates one or more individuals in the external archive, then the new individual will replace the dominated individuals in the external archive;
- (3)
- If the new individual and all the individuals in the external archive do not dominate each other, then the new individual will be added to the external archive;
- (4)
- Set an upper limit for the external archive. If the newly added non-dominated solutions meet the above conditions but the archive is full, then individuals with a high crowding distance will be taken into consideration.
4.1.3. Crowding Distance
- (1)
- the objective function values F(f1, f2, …, fi, …, fN) of each individual in the external archive population are calculated;
- (2)
- all of the objectives of the current individual need to be traversed and calculated to find the extreme values of fimax and fimin of each objective;
- (3)
- the crowding distance of each individual is computed in accordance with Equation (27).
4.1.4. Non-Dominated Sorting Method
Algorithm 3: Pseudocode of the NSBKA |
Input: The population size N, maximum number of iterations T, external archive size M, attacking parameters r = rand() and p = 0.9, and variable dimension dim Output: The Pareto optimal solution obtained by NSBKA for a given optimization problem Initialize phase: Calculate the initial solution X and update the external archive. while (t < T) /* Attacking behavior */ Calculate n by Equation (11) if p < r Xi,new(t) = X i(t) + n(1 + sin(r))Xi(t) else Xi,new(t) = Xi(t) + n(2r − 1)Xi(t) end if if Xi,new(t) < Xi(t) (Xi,new(t) dominates Xi(t)) Update the Xi(t + 1) = Xi,new(t) end if /* Migration behavior */ ∀Xi,L(t)∈Archive() if ∀k∈N, F(Xi,L(t)) ≦ F(Xk(t)) Xi,new(t) = X i(t) + C(0, 1)[X i(t) − Xi,L(t)] else Xi,new(t) = X i(t) + C(0, 1)[Xi,L(t) − m×X i(t)] end if if Xi,new(t) < X i(t) Update the X i(t + 1) = Xi,new(t) end if /* Update the archive*/ Calculate according to the strategiesin Section 4.1 and Equation (27), and then select the solutions that meet the requirements and put them into the archive. t = t + 1 end while Return |
4.2. Performance Analysis on Benchmark Test Functions
4.3. Performance Metrics
4.4. Experimental Setup
5. Results and Discussion
5.1. Comparison Between Algorithms
5.2. Cooperative Path-Planning Experiments
5.2.1. Experiment 1
5.2.2. Experiment 2
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, G.Y.; Song, X.X.; Lyu, Z.H.; Xu, J. Networked ISAC for Low-Altitude Economy: Transmit Beamforming and UAV Trajectory Design. In Proceedings of the IEEE/CIC International Conference on Communications in China (ICCC), Hangzhou, China, 7–9 August 2024. [Google Scholar]
- Huang, C.Q.; Fang, S.F.; Wu, H.; Wang, Y.; Yang, Y.C. Low-altitude intelligent transportation: System architecture, infrastructure, and key technologies. J. Ind. Inf. Integr. 2024, 42, 100694. [Google Scholar] [CrossRef]
- Van, C.L.; Cao, C.X.; Nguyen, A.N.; Pham, C.V.; Nguyen, L.Q. Building 3D CityGML models of mining industrial structures using integrated UAV and TLS point clouds. Int. J. Coal Sci. Technol. 2023, 10, 69. [Google Scholar] [CrossRef]
- Ju, C.; Son, H.I. Multiple UAV Systems for Agricultural Applications: Control, Implementation, and Evaluation. Electronics 2018, 7, 162. [Google Scholar] [CrossRef]
- Kotlinski, M.; Calkowska, J.K. U-Space and UTM Deployment as an Opportunity for More Complex UAV Operations Including UAV Medical Transport. J. Intell. Robot. Syst. 2022, 106, 12. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Yan, X.X.; Han, Y. Multi-mechanism swarm optimization for multi-UAV task assignment and path planning in transmission line inspection under multi-wind field. Appl. Soft Comput. 2024, 150, 111033. [Google Scholar] [CrossRef]
- Qadir, Z.; Ullah, F.; Munawar, H.S.; Al-Turjman, F. Addressing disasters in smart cities through UAVs path planning and 5G communications: A systematic review. Comput. Commun. 2021, 168, 114–135. [Google Scholar] [CrossRef]
- Merei, A.; McHeick, H.; Ghaddar, A. Survey on Path Planning for UAVs in Healthcare Missions. J. Med. Syst. 2023, 47, 79. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, Y.; Yu, R.; Hou, L.; Wang, K.; Xu, L. Integrated perception-communication-logistics multi-objective oriented path planning for emergency UAVs. J. Commun. 2024, 45, 1–12. [Google Scholar]
- Gao, C.X.; Wang, X.Y.; Chen, X.; Chen, B.M. A hierarchical multi-UAV cooperative framework for infrastructure inspection and reconstruction. Control Theory Technol. 2024, 22, 394–405. [Google Scholar] [CrossRef]
- Xu, Y.H.; Wei, Y.R.; Wang, D.; Jiang, K.Y.; Deng, H.B. Multi-UAV Path Planning in GPS and Communication Denial Environment. Sensors 2023, 23, 2997. [Google Scholar] [CrossRef]
- Coutinho, W.P.; Battarra, M.; Fliege, J. The unmanned aerial vehicle routing and trajectory optimisation problem, a taxonomic review. Comput. Ind. Eng. 2018, 120, 116–128. [Google Scholar] [CrossRef]
- Xu, X.J.; Xie, C.Y.; Luo, Z.F.; Zhang, C.F.; Zhang, T. A multi-objective evolutionary algorithm based on dimension exploration and discrepancy evolution for UAV path planning problem. Inf. Sci. 2024, 657, 119977. [Google Scholar] [CrossRef]
- Peng, C.D.; Huang, X.M.; Wu, Y.; Kang, J.W. Constrained Multi-Objective Optimization for UAV-Enabled Mobile Edge Computing: Offloading Optimization and Path Planning. IEEE Wirel. Commun. Lett. 2022, 11, 861–865. [Google Scholar] [CrossRef]
- Güven, I.; Yanmaz, E. Multi-objective path planning for multi-UAV connectivity and area coverage. Ad. Hoc. Netw. 2024, 160, 103520. [Google Scholar] [CrossRef]
- Diao, Q.F.; Zhang, J.F.; Liu, M.; Yang, J.X. A Disaster Relief UAV Path Planning Based on APF-IRRT* Fusion Algorithm. Drones 2023, 7, 323. [Google Scholar] [CrossRef]
- Wang, S.; Li, A. Multi-adjacent-vertexes and Multi-shortest-paths Problem of Dijkstra Algorithm. Comput. Sci. 2014, 41, 217–224. [Google Scholar]
- Hong, Z.H.; Sun, P.F.; Tong, X.H.; Pan, H.Y.; Zhou, R.Y.; Zhang, Y.; Han, Y.L.; Wang, J.; Yang, S.H.; Xu, L.J. Improved A-Star Algorithm for Long-Distance Off-Road Path Planning Using Terrain Data Map. Isprs Int. J. Geo-Inf. 2021, 10, 785. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, J.; Dai, J.Y.; He, C. A Novel Real-Time Penetration Path Planning Algorithm for Stealth UAV in 3D Complex Dynamic Environment. IEEE Access 2020, 8, 122757–122771. [Google Scholar] [CrossRef]
- Ammar, A.; Bennaceur, H.; Châari, I.; Koubâa, A.; Alajlan, M. Relaxed Dijkstra and A* with linear complexity for robot path planning problems in large-scale grid environments. Soft Comput. 2016, 20, 4149–4171. [Google Scholar] [CrossRef]
- Zhang, J.C.; An, Y.Q.; Cao, J.N.; Ouyang, S.B.; Wang, L. UAV Trajectory Planning for Complex Open Storage Environments Based on an Improved RRT Algorithm. IEEE Access 2023, 11, 23189–23204. [Google Scholar] [CrossRef]
- Guo, Y.C.; Liu, X.X.; Liu, X.H.; Yang, Y.; Zhang, W.G. FC-RRT*: An Improved Path Planning Algorithm for UAV in 3D Complex Environment. Isprs Int. J. Geo-Inf. 2022, 11, 112. [Google Scholar] [CrossRef]
- Zhang, T.; Lu, Y.; Zhang, L.; Lu, Y. UAV Path Planning Based on Improved Voronoi Diagram and Dynamic Weights A~* Algorithm. Fire Control Command Control 2015, 40, 156–160. [Google Scholar]
- Cai, X.; Hu, Z.; Zhang, Z.; Wang, Q.; Cui, Z.; Zhang, W. Multi-UAV coordinated path planning based on many-objective optimization. Sci. Sin. Informationis 2021, 51, 985–996. [Google Scholar] [CrossRef]
- Hooshyar, M.; Huang, Y.M. Meta-heuristic Algorithms in UAV Path Planning Optimization: A Systematic Review (2018–2022). Drones 2023, 7, 687. [Google Scholar] [CrossRef]
- Ge, F.W.; Li, K.; Han, Y.; Xu, W.S.; Wang, Y.A. Path planning of UAV for oilfield inspections in a three-dimensional dynamic environment with moving obstacles based on an improved pigeon-inspired optimization algorithm. Appl. Intell. 2020, 50, 2800–2817. [Google Scholar] [CrossRef]
- Wu, Y.; Niu, K.; Li, L.; Chen, Z. Formation flight control of UAV based on 3D-APF and constraint dynamics. Syst. Eng. Electron. 2018, 40, 1104–1108. [Google Scholar]
- Aljalaud, F.; Kurdi, H.; Youcef-Toumi, K. Autonomous Multi-UAV Path Planning in Pipe Inspection Missions Based on Booby Behavior. Mathematics 2023, 11, 2092. [Google Scholar] [CrossRef]
- Zhang, J.W.; Zhu, X.J.; Li, J. Intelligent Path Planning with an Improved Sparrow Search Algorithm for Workshop UAV Inspection. Sensors 2024, 24, 1104. [Google Scholar] [CrossRef]
- Ji, X.; Meng, X.J.; Wang, A.W.; Hua, Q.Y.; Wang, F.W.; Chen, R.; Zhang, J.; Fang, D.Y. E2PP: An Energy-Efficient Path Planning Method for UAV-Assisted Data Collection. Secur. Commun. Netw. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Xu, C.; Xu, M.; Yin, C.J. Optimized multi-UAV cooperative path planning under the complex confrontation environment. Comput. Commun. 2020, 162, 196–203. [Google Scholar] [CrossRef]
- Yang, L.Q.; Guo, J.; Liu, Y.B. THREE-DIMENSIONAL UAV COOPERATIVE PATH PLANNING BASED ON THE MP-CGWO ALGORITHM. Int. J. Innov. Comput. Inf. Control 2020, 16, 991–1006. [Google Scholar] [CrossRef]
- Wang, X.; Pan, J.S.; Yang, Q.Y.; Kong, L.P.; Snásel, V.; Chu, S.C. Modified Mayfly Algorithm for UAV Path Planning. Drones 2022, 6, 134. [Google Scholar] [CrossRef]
- Deng, M.Y.; Yang, Q.Q.; Peng, Y. A Real-Time Path Planning Method for Urban Low-Altitude Logistics UAVs. Sensors 2023, 23, 7472. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, P.; Li, X.; Zhang, K. Cooperative path planning of multi-UAV based on multi-objective optimization algorithm. Syst. Eng. Electron. 2017, 39, 782–787. [Google Scholar]
- Tan, L.; Shi, J.Q.; Gao, J.; Wang, H.Y.; Zhang, H.T.; Zhang, Y. Multi-UAV path planning based on IB-ABC with restricted planned arrival sequence. Robotica 2023, 41, 1244–1257. [Google Scholar] [CrossRef]
- Li, W.H.; Zhang, T.; Wang, R.; Huang, S.J.; Liang, J. Multimodal multi-objective optimization: Comparative study of the state-of-the-art. Swarm Evol. Comput. 2023, 77, 101253. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.C.; Hu, X.X.; Qiu, L.; Zang, H.F. Black-winged kite algorithm: A nature-inspired meta-heuristic for solving benchmark functions and engineering problems. Artif. Intell. Rev. 2024, 57, 98. [Google Scholar] [CrossRef]
- Wu, Y.; Nie, M.T.; Ma, X.L.; Guo, Y.C.; Liu, X.X. Co-Evolutionary Algorithm-Based Multi-Unmanned Aerial Vehicle Cooperative Path Planning. Drones 2023, 7, 606. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, Y.N.; Ren, J. Dynamic Mission Planning Algorithm for UAV Formation in Battlefield Environment. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 3750–3765. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, H.D.; Zhang, X.Y.; Jin, Y.C. Effectiveness and efficiency of non-dominated sorting for evolutionary multi- and many-objective optimization. Complex Intell. Syst. 2017, 3, 247–263. [Google Scholar] [CrossRef]
- Niu, B.; Liu, J.; Tan, L.J. Multi-swarm cooperative multi-objective bacterial foraging optimisation. Int. J. Bio-Inspired Comput. 2019, 13, 21–31. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Mirjalili, S.; Saremi, S.; Mirjalili, S.M.; Coelho, L.D. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Syst. Appl. 2016, 47, 106–119. [Google Scholar] [CrossRef]
- Huband, S.; Hingston, P.; Barone, L.; While, L. A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 2006, 10, 477–506. [Google Scholar] [CrossRef]
- Liu, T.Y.; Jiao, L.C.; Ma, W.P.; Ma, J.J.; Shang, R.H. A new quantum-behaved particle swarm optimization based on cultural evolution mechanism for multiobjective problems. Knowl.-Based Syst. 2016, 101, 90–99. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, A.; Zhao, S.-Z.; Suganthan, P.N.; Liu, W.; Tiwari, S. Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition; Technical Report CES-887; University of Essex and Nanyang Technological University: Singapore, 2009. [Google Scholar]
- Cui, Y.Y.; Meng, X.; Qiao, J.F. A multi-objective particle swarm optimization algorithm based on two-archive mechanism. Appl. Soft Comput. 2022, 119, 108532. [Google Scholar] [CrossRef]
- Wang, L.; Pan, X.; Shen, X.; Zhao, P.; Qiu, Q. Balancing convergence and diversity in resource allocation strategy for decomposition-based multi-objective evolutionary algorithm. Appl. Soft Comput. 2021, 100, 106968. [Google Scholar] [CrossRef]
- Chen, N.; Chen, W.N.; Gong, Y.J.; Zhan, Z.H.; Zhang, J.; Li, Y.; Tan, Y.S. An Evolutionary Algorithm with Double-Level Archives for Multiobjective Optimization. IEEE Trans. Cybern. 2015, 45, 1851–1863. [Google Scholar] [CrossRef]
- Wu, W.; Tian, L.; Wang, Z.; Zhang, Y.; Wu, J.; Gui, F. Novel multi-objective sparrow optimization algorithm with improved non-dominated sorting. Appl. Res. Comput. 2022, 39, 2012–2019. [Google Scholar]
- Khodadadi, N.; Abualigah, L.; Mirjalili, S. Multi-objective Stochastic Paint Optimizer (MOSPO). Neural Comput. Appl. 2022, 34, 18035–18058. [Google Scholar] [CrossRef]
- Khodadadi, N.; Khodadadi, E.; Abdollahzadeh, B.; Ei-Kenawy, E.S.M.; Mardanpour, P.; Zhao, W.G.; Gharehchopogh, F.S.; Mirjalili, S. Multi-objective generalized normal distribution optimization: A novel algorithm for multi-objective problems. Clust. Comput.-J. Netw. Softw. Tools Appl. 2024, 27, 10589–10631. [Google Scholar] [CrossRef]
Problem | Dimension of Variables | Dimension of Objectives | Features of PF | Sample Size in PF |
---|---|---|---|---|
ZDT1 | 10 | 2 | Convex | 1000 |
ZDT2 | 10 | 2 | Concave | 1000 |
ZDT3 | 10 | 2 | Discontinuous | 1000 |
ZDT4 | 10 | 2 | Convex | 1000 |
ZDT6 | 10 | 2 | Concave, Non-uniform | 1000 |
DTLZ1 | 7 | 3 | Continues | 990 |
DTLZ2 | 12 | 3 | Concave, Continues | 990 |
DTLZ3 | 12 | 3 | Concave | 990 |
DTLZ4 | 12 | 3 | Concave, Non-uniform | 990 |
DTLZ5 | 12 | 3 | Concave | 1000 |
DTLZ6 | 12 | 3 | Concave | 1000 |
DTLZ7 | 22 | 3 | Disconnected, Mixed | 1024 |
UF1 | 10 | 2 | Convex | 1000 |
UF2 | 10 | 2 | Convex | 1000 |
UF3 | 10 | 2 | Convex | 1000 |
UF4 | 10 | 2 | Concave | 1000 |
UF5 | 10 | 2 | Discontinuous | 21 |
UF6 | 10 | 2 | Discontinuous | 501 |
UF7 | 10 | 2 | Linear | 1000 |
UF8 | 10 | 3 | Concave | 990 |
UF9 | 10 | 3 | Mixed | 522 |
UF10 | 10 | 3 | Concave | 990 |
Test Problem | IGD Metric | MOSSA | MOGWO | MOSPO | MOGNDO | NSBKA |
---|---|---|---|---|---|---|
ZDT1 | Mean std | 2.226 × 10−3(−) 6.328 × 10−5 | 4.518 × 10−3(−) 8.161 × 10−4 | 6.725 × 10−3(−) 1.959 × 10−4 | 1.692 × 10−2(−) 3.656 × 10−3 | 2.087 × 10−3 2.730 × 10−5 |
ZDT2 | Mean std | 2.307 × 10−3(−) 6.440 × 10−5 | 5.109 × 10−3(−) 9.231 × 10−4 | 7.072 × 10−3(−) 1.102 × 10−4 | 1.960 × 10−2(−) 1.951 × 10−3 | 2.058 × 10−3 7.820 × 10−5 |
ZDT3 | Mean std | 2.498 × 10−3(−) 6.060 × 10−5 | 5.046 × 10−3(−) 7.153 × 10−4 | 8.425 × 10−3(−) 8.943 × 10−4 | 1.092 × 10−2(−) 3.902 × 10−3 | 2.292 × 10−3 1.894 × 10−4 |
ZDT4 | Mean std | 2.192 × 10−3(−) 4.342 × 10−5 | 1.096 × 100(−) 2.437 × 100 | 7.204 × 10−3(−) 2.013 × 10−4 | 4.358 × 100(−) 1.658 × 100 | 2.083 × 10−3 1.108 × 10−4 |
ZDT6 | Mean std | 1.814 × 10−3(−) 7.277 × 10−5 | 3.459 × 10−3(−) 5.349 × 10−4 | 1.153 × 10−2(−) 5.579 × 10−3 | 3.457 × 10−1(−) 7.963 × 10−2 | 1.691 × 10−3 9.870 × 10−5 |
DTLZ1 | Mean std | 2.702 × 10−2(+) 8.902 × 10−3 | 8.955 × 100(−) 3.484 × 100 | 1.036 × 101(−) 3.756 × 100 | 1.403 × 101(−) 2.439 × 100 | 5.586 × 10−2 2.381 × 10−2 |
DTLZ2 | Mean std | 5.965 × 10−2(+) 2.518 × 10−3 | 1.124 × 10−1(−) 1.234 × 10−2 | 1.091 × 10−1(−) 3.676 × 10−3 | 1.248 × 10−1(−) 2.961 × 10−2 | 6.661 × 10−2 4.167 × 10−3 |
DTLZ3 | Mean std | 1.577 × 10−1(+) 1.330 × 10−1 | 1.802 × 102(−) 2.572 × 101 | 1.759 × 102(−) 1.477 × 101 | 2.139 × 102(−) 1.152 × 101 | 2.161 × 10−1 2.058 × 10−1 |
DTLZ4 | Mean std | 4.936 × 10−2(+) 1.772 × 10−3 | 8.608 × 10−2(−) 8.541 × 10−2 | 1.975 × 10−1(−) 5.000 × 10−3 | 2.665 × 10−1(−) 2.082 × 10−2 | 5.944 × 10−2 3.821 × 10−2 |
DTLZ5 | Mean std | 2.994 × 10−3(−) 1.467 × 10−4 | 1.196 × 10−2(−) 1.655 × 10−3 | 5.464 × 10−2(−) 6.043 × 10−3 | 8.049 × 10−3(−) 5.991 × 10−4 | 2.591 × 10−3 1.059 × 10−4 |
DTLZ6 | Mean std | 2.562 × 10−3(−) 8.612 × 10−5 | 4.069 × 10−3(−) 4.003 × 10−4 | 2.632 × 10−2(−) 1.617 × 10−3 | 6.633 × 10−1(−) 4.852 × 10−2 | 2.250 × 10−3 7.815 × 10−5 |
DTLZ7 | Mean std | 6.241 × 10−2(+) 2.523 × 10−2 | 1.435 × 10−1(+) 2.234 × 10−1 | 2.611 × 10−1(+) 1.241 × 10−1 | 1.284 × 10−1(+) 8.856 × 10−3 | 4.359 × 10−1 5.313 × 10−1 |
UF1 | Mean std | 6.883 × 10−2(−) 9.406 × 10−3 | 8.095 × 10−2(−) 1.366 × 10−2 | 7.321 × 10−2(−) 2.680 × 10−3 | 9.093 × 10−2(−) 1.614 × 10−2 | 3.051 × 10−2 5.083 × 10−3 |
UF2 | Mean std | 4.440 × 10−2(−) 6.084 × 10−3 | 3.992 × 10−2(−) 7.258 × 10−3 | 3.848 × 10−2(−) 1.395 × 10−3 | 4.028 × 10−2(−) 4.784 × 10−3 | 1.861 × 10−2 6.154 × 10−3 |
UF3 | Mean std | 3.790 × 10−1(−) 1.694 × 10−2 | 3.914 × 10−1(−) 7.032 × 10−2 | 3.633 × 10−1(+) 1.058 × 10−2 | 3.431 × 10−1(+) 1.192 × 10−1 | 3.644 × 10−1 5.377 × 10−3 |
UF4 | Mean std | 8.718 × 10−1(−) 9.023 × 10−4 | 6.036 × 10−2(−) 7.211 × 10−3 | 7.941 × 10−2(−) 1.012 × 10−3 | 5.247 × 10−2(−) 4.552 × 10−3 | 4.150 × 10−2 5.317 × 10−3 |
UF5 | Mean std | 4.645 × 10−1(+) 1.211 × 10−1 | 7.064 × 10−1(−) 2.217 × 10−1 | 3.513 × 10−1(+) 4.813 × 10−2 | 1.098 × 100(−) 1.000 × 10−1 | 4.857 × 10−1 1.173 × 10−1 |
UF6 | Mean std | 5.131 × 10−1(−) 1.039 × 10−1 | 7.751 × 10−1(−) 2.077 × 10−1 | 5.960 × 10−1(−) 2.894 × 10−2 | 1.248 × 100(−) 8.605 × 10−2 | 4.767 × 10−1 1.132 × 10−1 |
UF7 | Mean std | 3.659 × 10−2(−) 4.734 × 10−3 | 7.740 × 10−2(−) 4.152 × 10−2 | 5.989 × 10−2(−) 4.014 × 10−3 | 1.125 × 10−1(−) 1.833 × 10−2 | 2.660 × 10−2 1.226 × 10−2 |
UF8 | Mean std | 2.675 × 10−1(−) 1.825 × 10−2 | 2.506 × 10−1(−) 6.762 × 10−2 | 1.234 × 100(−) 1.262 × 10−1 | 1.748 × 10−1(−) 1.072 × 10−2 | 1.253 × 10−1 1.655 × 10−2 |
UF9 | Mean Std | 1.298 × 10−1(+) 1.958 × 10−2 | 4.557 × 10−1(−) 5.472 × 10−1 | 2.352 × 10−1(−) 2.979 × 10−2 | 2.334 × 10−1(−) 1.316 × 10−1 | 1.755 × 10−1 3.832 × 10−2 |
UF10 | Mean std | 2.549 × 10−1(+) 1.667 × 10−1 | 1.916 × 100(−) 4.009 × 10−1 | 7.638 × 10−1(−) 1.098 × 10−2 | 7.734 × 10−1(−) 3.102 × 10−2 | 3.530 × 10−1 1.127 × 10−1 |
+/−/= Best/All | - | 8/14/0 8/22 | 1/21/0 1/22 | 3/19/0 3/22 | 2/20/0 2/22 | - 13/22 |
Test Problem | HV Metric | MOSSA | MOGWO | MOSPO | MOGNDO | NSBKA |
---|---|---|---|---|---|---|
ZDT1 | Mean std | 7.222 × 10−1(−) 5.060 × 10−5 | 7.191 × 10−1(−) 9.644 × 10−4 | 7.163 × 10−1(−) 2.826 × 10−4 | 7.010 × 10−1(−) 4.866 × 10−3 | 7.223 × 10−1 8.856 × 10−5 |
ZDT2 | Mean std | 4.468 × 10−1(−) 3.711 × 10−5 | 4.416 × 10−1(−) 1.724 × 10−3 | 4.416 × 10−1(−) 1.461 × 10−3 | 4.255 × 10−1(−) 2.048 × 10−2 | 4.470 × 10−1 1.066 × 10−4 |
ZDT3 | Mean std | 6.005 × 10−1(−) 4.098 × 10−5 | 5.995 × 10−1(−) 1.651 × 10−3 | 5.975 × 10−1(−) 1.843 × 10−3 | 5.979 × 10−1(−) 5.251 × 10−3 | 6.005 × 10−1 6.044 × 10−5 |
ZDT4 | Mean std | 7.223 × 10−1(−) 4.554 × 10−5 | 5.741 × 10−1(−) 3.210 × 10−1 | 7.169 × 10−1(−) 1.947 × 10−3 | 0.000 × 100(−) 0.000 × 100 | 7.223 × 10−1 1.047 × 10−4 |
ZDT6 | Mean std | 3.901 × 10−1(−) 9.325 × 10−5 | 3.869 × 10−1(−) 2.643 × 10−3 | 3.804 × 10−1(−) 5.078 × 10−3 | 2.103 × 10−1(−) 2.624 × 10−2 | 3.902 × 10−1 1.163 × 10−4 |
DTLZ1 | Mean std | 8.151 × 10−1(+) 2.329 × 10−2 | 0.000 × 100(−) 0.000 × 100 | 0.000 × 100(−) 0.000 × 100 | 0.000 × 100(−) 0.000 × 100 | 7.264 × 10−1 7.982 × 10−2 |
DTLZ2 | Mean std | 5.308 × 10−1(+) 5.021 × 10−3 | 4.466 × 10−1(−) 1.525 × 10−2 | 4.491 × 10−1(−) 4.189 × 10−3 | 4.420 × 10−1(−) 3.729 × 10−2 | 5.286 × 10−1 4.906 × 10−3 |
DTLZ3 | Mean std | 4.492 × 10−1(+) 1.027 × 10−1 | 0.000 × 100(−) 0.000 × 100 | 0.000 × 100(−) 0.000 × 100 | 0.000 × 100(−) 0.000 × 100 | 3.872 × 10−1 1.652 × 10−1 |
DTLZ4 | Mean std | 5.545 × 10−1(+) 4.142 × 10−3 | 5.211 × 10−1(−) 6.889 × 10−2 | 3.839 × 10−1(−) 4.758 × 10−3 | 3.344 × 10−1(−) 3.779 × 10−2 | 5.485 × 10−1 3.032 × 10−2 |
DTLZ5 | Mean std | 5.016 × 10−1(+) 7.374 × 10−1 | 1.935 × 10−1(−) 3.326 × 10−3 | 1.452 × 10−1(−) 5.615 × 10−3 | 1.964 × 10−1(−) 8.787 × 10−4 | 2.007 × 10−1 1.314 × 10−4 |
DTLZ6 | Mean std | 2.013 × 10−1(−) 2.663 × 10−5 | 1.998 × 10−1(−) 8.263 × 10−4 | 1.884 × 10−1(−) 8.767 × 10−4 | 5.299 × 10−2(−) 9.178 × 10−2 | 2.014 × 10−1 3.615 × 10−5 |
DTLZ7 | Mean std | 9.091 × 10−2(−) 0.000 × 100 | 2.679 × 10−1(+) 2.550 × 10−2 | 1.850 × 10−1(−) 4.305 × 10−2 | 2.379 × 10−1(+) 6.678 × 10−3 | 2.198 × 10−1 8.052 × 10−2 |
UF1 | Mean std | 6.249 × 10−1(−) 1.108 × 10−2 | 6.039 × 10−1(−) 2.339 × 10−2 | 6.102 × 10−1(−) 8.521 × 10−4 | 5.783 × 10−1(−) 2.800 × 10−2 | 1.900 × 100 2.719 × 100 |
UF2 | Mean std | 6.706 × 10−1(−) 6.248 × 10−3 | 6.739 × 10−1(−) 9.297 × 10−3 | 6.755 × 10−1(−) 7.854 × 10−4 | 6.737 × 10−1(−) 7.245 × 10−3 | 7.012 × 10−1 8.176 × 10−3 |
UF3 | Mean std | 1.870 × 10−1(+) 1.110 × 10−2 | 2.323 × 10−1(+) 5.034 × 10−2 | 2.215 × 10−1(+) 1.482 × 10−2 | 2.783 × 10−1(+) 1.249 × 10−1 | 1.802 × 10−1 3.002 × 10−3 |
UF4 | Mean std | 3.768 × 10−1(−) 1.115 × 10−3 | 3.623 × 10−1(−) 7.499 × 10−3 | 1.453 × 10−1(−) 2.132 × 10−3 | 3.732 × 10−1(−) 3.768 × 10−3 | 3.901 × 10−1 8.037 × 10−3 |
UF5 | Mean std | 8.106 × 10−2(+) 4.729 × 10−2 | 3.420 × 10−2(−) 6.594 × 10−2 | 6.743 × 10−2(+) 1.701 × 10−2 | 0.000 × 100(−) 0.000 × 100 | 4.870 × 10−2 4.492 × 10−2 |
UF6 | Mean std | 1.076 × 10−2(−) 1.500 × 10−2 | 8.682 × 10−3(−) 2.107 × 10−2 | 3.638 × 10−3(−) 2.995 × 10−3 | 0.000 × 100(−) 0.000 × 100 | 8.447 × 10−2 6.252 × 10−2 |
UF7 | Mean std | 5.319 × 10−1(−) 6.393 × 10−3 | 4.717 × 10−1(−) 5.361 × 10−2 | 4.965 × 10−1(−) 2.757 × 10−3 | 4.156 × 10−1(−) 2.924 × 10−2 | 5.471 × 10−1 1.806 × 10−2 |
UF8 | Mean std | 3.256 × 10−1(−) 3.210 × 10−2 | 2.627 × 10−1(−) 5.815 × 10−2 | 9.416 × 10−1(+) 1.186 × 10−3 | 3.185 × 10−1(−) 4.249 × 10−2 | 4.638 × 10−1 3.373 × 10−2 |
UF9 | Mean std | 6.507 × 10−1(+) 2.384 × 10−2 | 4.231 × 10−1(−) 8.086 × 10−2 | 2.691 × 10−1(−) 2.255 × 10−2 | 5.316 × 10−1(−) 1.132 × 10−1 | 5.930 × 10−1 5.372 × 10−2 |
UF10 | Mean std | 2.375 × 10−1(−) 3.469 × 10−2 | 0.000 × 100(−) 0.000 × 100 | 5.479 × 10−1(+) 7.714 × 10−4 | 3.602 × 10−2(−) 3.561 × 10−2 | 3.335 × 10−1 1.639 × 10−2 |
+/−/= Best/All | - | 8/14/0 8/22 | 2/20/0 2/22 | 4/18/0 4/22 | 2/20/0 2/22 | - 12/22 |
Test Problem | MOSSA | MOGWO | MOSPO | MOGNDO | NSBKA |
---|---|---|---|---|---|
ZDT1 | 22.903 | 276.681 | 63.630 | 19.967 | 9.778 |
ZDT2 | 20.522 | 283.777 | 53.035 | 23.972 | 7.393 |
ZDT3 | 25.893 | 191.588 | 48.050 | 24.910 | 27.827 |
ZDT4 | 23.799 | 211.554 | 36.342 | 40.614 | 18.919 |
ZDT6 | 24.179 | 208.017 | 47.564 | 15.924 | 6.611 |
DTLZ1 | 30.581 | 32.286 | 61.738 | 33.079 | 71.357 |
DTLZ2 | 9.087 | 227.445 | 86.683 | 70.663 | 17.773 |
DTLZ3 | 32.567 | 36.621 | 85.754 | 55.923 | 79.326 |
DTLZ4 | 10.812 | 125.061 | 71.944 | 21.479 | 18.051 |
DTLZ5 | 12.063 | 135.800 | 80.109 | 55.696 | 27.667 |
DTLZ6 | 26.358 | 297.774 | 58.704 | 21.798 | 9.031 |
DTLZ7 | 26.604 | 212.110 | 57.270 | 35.114 | 16.001 |
UF1 | 45.653 | 28.803 | 53.278 | 18.208 | 81.651 |
UF2 | 30.507 | 82.242 | 69.724 | 30.177 | 49.404 |
UF3 | 32.877 | 17.760 | 69.055 | 64.518 | 63.076 |
UF4 | 16.239 | 86.085 | 113.499 | 38.367 | 29.600 |
UF5 | 51.507 | 16.475 | 49.090 | 17.163 | 108.676 |
UF6 | 52.808 | 17.822 | 51.002 | 16.457 | 108.967 |
UF7 | 44.307 | 33.439 | 52.846 | 16.662 | 72.203 |
UF8 | 29.180 | 110.546 | 67.876 | 28.492 | 59.556 |
UF9 | 36.805 | 87.084 | 74.437 | 28.732 | 58.940 |
UF10 | 37.159 | 46.341 | 52.309 | 19.524 | 35.824 |
Number of Obstacles | Position | Length (m) | Width (m) | Altitude (m) |
---|---|---|---|---|
1 | (230, 100, 0) | 110 | 90 | 23 |
1 | (0, 580, 0) | 150 | 160 | 30 |
3 | (585, 520, 0) | 80 | 100 | 48 |
4 | (300, 520, 0) | 160 | 100 | 30 |
5 | (810, 100, 0) | 80 | 150 | 38 |
6 | (500, 0, 0) | 150 | 40 | 28 |
7 | (50, 300, 0) | 60 | 130 | 9 |
8 | (600, 230, 0) | 100 | 80 | 24 |
9 | (500, 720, 0) | 110 | 90 | 14 |
10 | (320, 330, 0) | 120 | 60 | 14 |
11 | (840, 330, 0) | 120 | 100 | 14 |
Parameters of the UAV | Numeric Value |
---|---|
Flight speed V | [9 m/s, 17 m/s] |
Flight altitude H | [5 m, 20 m] |
The minimum track segment Lmin | 12 m |
Pitch angle q | [−45°, 45°] |
Yaw angle j | [−60°, 60°] |
Safe distance between UAVs dsafe | 5 m |
Maximum flight range Lmax | 1800 m |
Experiment Type | UAV Number | Initial Position (m) | Goal Position (m) |
---|---|---|---|
1 | UAV1 | (12, 94, 2) | (620, 910, 4) |
UAV2 | (12, 22, 2) | (875, 830, 4) | |
UAV3 | (86, 20, 2) | (970, 510, 4) | |
2 | UAV1 | (20, 140, 2) | (82, 930, 4) |
UAV2 | (20, 20, 2) | (620, 910, 4) | |
UAV3 | (60, 105, 2) | (875, 930, 4) | |
UAV4 | (105, 60, 2) | (970, 510, 4) | |
UAV5 | (140, 20, 2) | (860, 30, 4) |
Algorithm Name | Running Time of the CPU | Representative Solution | Safety Factor | Energy Consumption Coefficient |
---|---|---|---|---|
NSBKA | 1150.66 s | Safety | 3.40 | - |
Energy consump | - | 3321.64 | ||
MOSSA | 1217.83 s | Safety | 3.64 | - |
Energy consump | - | 3400.82 | ||
MOGWO | 1855.74 s | Safety | 3.48 | - |
Energy consump | - | 3397.07 | ||
MOSPO | 1768.76 s | Safety | 3.32 | - |
Energy consump | - | 3432.18 | ||
MOGNDO | 1109.10 s | Safety | 3.99 | - |
Energy consump | - | 3421.16 |
Algorithm Name | Running Time of the CPU | Representative Solution | Safety Factor | Energy Consumption Coefficient |
---|---|---|---|---|
NSBKA | 1894.02 s | Safety | 9.53 | - |
Energy consump | - | 4909.34 | ||
MOSSA | 2010.13 s | Safety | 8.50 | - |
Energy consump | - | 4914.05 | ||
MOGWO | 2416.51s | Safety | 9.90 | - |
Energy consump | - | 4814.62 | ||
MOSPO | 2169.78 s | Safety | 8.47 | - |
Energy consump | - | 5020.19 | ||
MOGNDO | 1698.09 s | Safety | 9.94 | - |
Energy consump | - | 4980.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, F.; Liu, Y.; Li, L. A Multi-Objective Black-Winged Kite Algorithm for Multi-UAV Cooperative Path Planning. Drones 2025, 9, 118. https://doi.org/10.3390/drones9020118
Liu X, Wang F, Liu Y, Li L. A Multi-Objective Black-Winged Kite Algorithm for Multi-UAV Cooperative Path Planning. Drones. 2025; 9(2):118. https://doi.org/10.3390/drones9020118
Chicago/Turabian StyleLiu, Xiukang, Fufu Wang, Yu Liu, and Long Li. 2025. "A Multi-Objective Black-Winged Kite Algorithm for Multi-UAV Cooperative Path Planning" Drones 9, no. 2: 118. https://doi.org/10.3390/drones9020118
APA StyleLiu, X., Wang, F., Liu, Y., & Li, L. (2025). A Multi-Objective Black-Winged Kite Algorithm for Multi-UAV Cooperative Path Planning. Drones, 9(2), 118. https://doi.org/10.3390/drones9020118