A Survey on Obstacle Detection and Avoidance Methods for UAVs
Abstract
:1. Introduction
- Comprehensive Classification of ODA Methods: We categorize and review state-of-the-art obstacle detection and avoidance approaches, including those addressing static and dynamic obstacles and NFZ avoidance strategies.
- ODA Process: We present an overview of the components of the UAV ODA mission, as depicted in Figure 1, highlighting the integration of path planning, environmental mapping, and obstacle detection.
- Comparison of ODA Techniques: We compare various ODA methods based on performance metrics, such as efficiency, energy consumption, and adaptability to dynamic environments.
- Analysis of NFZ Handling: We analyze how NFZs are modeled and incorporated into planning algorithms, highlighting effective approaches and identifying research gaps.
- Evolution of ODA Methods: We trace the progression of ODA methodologies over the past decade, outlining trends and emerging challenges in UAV navigation.
2. Method
2.1. Study Design
2.2. Search and Study Selection
- Group 1: Surveys and review articles related to ODA and NFZ in UAV path planning.
- Group 2: Case studies addressing ODA in UAV path planning missions.
- Group 3: Case studies for detecting and avoiding NFZs in UAV path planning.
3. Path Planning and Collision Avoidance Problem
4. Environment Mapping
5. Sensors Used for Obstacle Detection
6. Static and Dynamic Obstacle Detection and Avoidance Methods
6.1. Map Data
6.2. Geometric-Based
6.3. Image Processing
6.4. Machine Learning Methods
6.5. Sense and Avoid
6.6. Vector/Potential Field Methods
7. Avoiding Non-Flying Zones
7.1. Grid-Based Area Partitioning and Path Planning
7.2. Optimization Algorithms
7.3. ML and AI Methods
7.4. Search and Heuristic Algorithms
7.5. Novel and Hybrid Approaches
8. Key Performance Indicators
9. Review and Analysis
9.1. ODA Approaches Review and Analysis
9.2. NFZ Avoidance Approaches Review and Analyses
10. Conclusions and Future Scope
Author Contributions
Funding
Conflicts of Interest
References
- Chaurasia, R.; Mohindru, V. Unmanned aerial vehicle (UAV): A comprehensive survey. In Unmanned Aerial Vehicles for Internet of Things (IoT) Concepts, Techniques, and Applications; Wiley: Hoboken, NJ, USA, 2021; pp. 1–27. [Google Scholar]
- Collins, L.; Ghassemi, P.; Esfahani, E.T.; Doermann, D.; Dantu, K.; Chowdhury, S. Scalable coverage path planning of multi-robot teams for monitoring non-convex areas. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 7393–7399. [Google Scholar]
- Veramendi, W.N.C.; Cruvinel, P.E. Algorithm for the Countering Maize Plants Based on UAV, Digital Image Processing and Semantic Modeling. In Proceedings of the IEEE 15th International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 27–29 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 393–397. [Google Scholar]
- Merei, A.; Mcheick, H.; Ghaddar, A. Survey on Path Planning for UAVs in Healthcare Missions. J. Med. Syst. 2023, 47, 79. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, S.; Zhang, X.; Zhang, X.; Liu, J. Near-Optimal 3-D Visual Coverage for Quadrotor Unmanned Aerial Vehicles Under Photogrammetric Constraints. IEEE Trans. Ind. Electron. 2021, 69, 1694–1704. [Google Scholar] [CrossRef]
- Ghaddar, A.; Merei, A. Energy-Aware Grid Based Coverage Path Planning for UAVs. In Proceedings of the Thirteenth International Conference on Sensor Technologies and Applications SENSORCOMM, Nice, France, 27–31 October 2019; pp. 34–45. [Google Scholar]
- Hassan, J.; Bokani, A.; Kanhere, S.S. Recharging of flying base stations using airborne rf energy sources. In Proceedings of the IEEE Wireless Communications and Networking Conference Workshop (WCNCW), Marrakech, Morocco, 15–19 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Alcántara, A.; Capitán, J.; Cunha, R.; Ollero, A. Optimal trajectory planning for cinematography with multiple unmanned aerial vehicles. Robot. Auton. Syst. 2021, 140, 103778. [Google Scholar] [CrossRef]
- Munawar, H.S.; Hammad, A.W.; Waller, S.T.; Thaheem, M.J.; Shrestha, A. An integrated approach for post-disaster flood management via the use of cutting-edge technologies and UAVs: A review. Sustainability 2021, 13, 7925. [Google Scholar] [CrossRef]
- Wenguang, L.; Zhiming, Z. Intelligent surveillance and reconnaissance mode of police UAV based on grid. In Proceedings of the 7th International Symposium on Mechatronics and Industrial Informatics (ISMII), Zhuhai, China, 22–24 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 292–295. [Google Scholar]
- Shobeiry, P.; Xin, M.; Hu, X.; Chao, H. UAV path planning for wildfire tracking using partially observable Markov decision process. In Proceedings of the AIAA Scitech 2021 Forum, Virtual, 11–21 January 2021; p. 1677. [Google Scholar]
- Cabreira, T.M.; Brisolara, L.B.; Paulo R, F.J. Survey on coverage path planning with unmanned aerial vehicles. Drones 2019, 3, 4. [Google Scholar] [CrossRef]
- Zear, A.; Ranga, V. Path planning of unmanned aerial vehicles: Current state and future challenges. In Proceedings of the First International Conference on Sustainable Technologies for Computational Intelligence, Las Vegas, NV, USA, 16–18 December 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 409–419. [Google Scholar]
- Israr, A.; Ali, Z.A.; Alkhammash, E.H.; Jussila, J.J. Optimization Methods Applied to Motion Planning of Unmanned Aerial Vehicles: A Review. Drones 2022, 6, 126. [Google Scholar] [CrossRef]
- Huang, H.; Savkin, A.V. Towards the internet of flying robots: A survey. Sensors 2018, 18, 4038. [Google Scholar] [CrossRef]
- Yasin, J.N.; Mohamed, S.A.; Haghbayan, M.H.; Heikkonen, J.; Tenhunen, H.; Plosila, J. Unmanned aerial vehicles (uavs): Collision avoidance systems and approaches. IEEE Access 2020, 8, 105139–105155. [Google Scholar] [CrossRef]
- Pham, H.; Smolka, S.A.; Stoller, S.D.; Phan, D.; Yang, J. A survey on unmanned aerial vehicle collision avoidance systems. arXiv 2015, arXiv:1508.07723. [Google Scholar]
- Tang, J.; Lao, S.; Wan, Y. Systematic review of collision-avoidance approaches for unmanned aerial vehicles. IEEE Syst. J. 2021, 16, 4356–4367. [Google Scholar] [CrossRef]
- Dushime, K.; Nkenyereye, L.; Yoo, S.K.; Song, J. A Review on Collision Avoidance Systems for Unmanned Aerial Vehicles. In Proceedings of the International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 20–22 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1150–1155. [Google Scholar]
- Do, H.T.; Hua, H.T.; Nguyen, M.T.; Nguyen, C.V.; Nguyen, H.T.; Nguyen, H.T.; Nguyen, N.T. Formation control algorithms for multiple-uavs: A comprehensive survey. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 2021, 8, e3. [Google Scholar] [CrossRef]
- Sharma, A.; Shoval, S.; Sharma, A.; Pandey, J.K. Path planning for multiple targets interception by the swarm of UAVs based on swarm intelligence algorithms: A review. IETE Tech. Rev. 2022, 39, 675–697. [Google Scholar] [CrossRef]
- Kewang, Z.; Tenghuan, D. Research on Obstacle Avoidance Control Method of Multi-UAV Based on Model Predictive Control. In Proceedings of the International Conference on Electronics, Circuits and Information Engineering (ECIE), Zhengzhou, China, 22–24 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 357–362. [Google Scholar]
- Ghaddar, A.; Merei, A.; Natalizio, E. PPS: Energy-Aware Grid-Based Coverage Path Planning for UAVs Using Area Partitioning in the Presence of NFZs. Sensors 2020, 20, 3742. [Google Scholar] [CrossRef] [PubMed]
- Valente, J.; Del Cerro, J.; Barrientos, A.; Sanz, D. Aerial coverage optimization in precision agriculture management: A musical harmony inspired approach. Comput. Electron. Agric. 2013, 99, 153–159. [Google Scholar] [CrossRef]
- Barrientos, A.; Colorado, J.; Cerro, J.d.; Martinez, A.; Rossi, C.; Sanz, D.; Valente, J. Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots. J. Field Robot. 2011, 28, 667–689. [Google Scholar] [CrossRef]
- Ann, S.; Kim, Y.; Ahn, J. Area allocation algorithm for multiple UAVs area coverage based on clustering and graph method. IFAC-PapersOnLine 2015, 48, 204–209. [Google Scholar] [CrossRef]
- Cabreira, T.M.; Ferreira, P.R.; Di Franco, C.; Buttazzo, G.C. Grid-based coverage path planning with minimum energy over irregular-shaped areas with UAVs. In Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 758–767. [Google Scholar]
- Wu, Y.; Gou, J.; Hu, X.; Huang, Y. A new consensus theory-based method for formation control and obstacle avoidance of UAVs. Aerosp. Sci. Technol. 2020, 107, 106332. [Google Scholar] [CrossRef]
- Dawnee, S.; Kumar, M.M.S.; Jayanth, S.; Singh, V.K. Experimental performance evaluation of various path planning algorithms for obstacle avoidance in UAVs. In Proceedings of the 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 12–14 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1029–1034. [Google Scholar]
- Radmanesh, M.; Kumar, M.; Guentert, P.H.; Sarim, M. Overview of path-planning and obstacle avoidance algorithms for UAVs: A comparative study. Unmanned Syst. 2018, 6, 95–118. [Google Scholar] [CrossRef]
- Madridano, Á.; Al-Kaff, A.; Flores, P.; Martín, D.; de la Escalera, A. Software Architecture for Autonomous and Coordinated Navigation of UAV Swarms in Forest and Urban Firefighting. Appl. Sci. 2021, 11, 1258. [Google Scholar] [CrossRef]
- Khan, M.T.R.; Muhammad Saad, M.; Ru, Y.; Seo, J.; Kim, D. Aspects of unmanned aerial vehicles path planning: Overview and applications. Int. J. Commun. Syst. 2021, 34, e4827. [Google Scholar] [CrossRef]
- Lu, Y.; Xue, Z.; Xia, G.S.; Zhang, L. A survey on vision-based UAV navigation. Geo-Spat. Inf. Sci. 2018, 21, 21–32. [Google Scholar] [CrossRef]
- Norland, K.; Marcellin, M.W. Dynamic obstacle characterization and avoidance for unmanned aerial systems. In Proceedings of the International Telemetering Conference, Glendale, AZ, USA, 5–8 November 2018. [Google Scholar]
- Ahmed, S.; Qiu, B.; Ahmad, F.; Kong, C.W.; Xin, H. A State-of-the-Art Analysis of Obstacle Avoidance Methods from the Perspective of an Agricultural Sprayer UAV’s Operation Scenario. Agronomy 2021, 11, 1069. [Google Scholar] [CrossRef]
- Wang, L.; Lan, Y.; Zhang, Y.; Zhang, H.; Tahir, M.N.; Ou, S.; Liu, X.; Chen, P. Applications and prospects of agricultural unmanned aerial vehicle obstacle avoidance technology in China. Sensors 2019, 19, 642. [Google Scholar] [CrossRef] [PubMed]
- Fevgas, G.; Lagkas, T.; Argyriou, V.; Sarigiannidis, P. Coverage path planning methods focusing on energy efficient and cooperative strategies for unmanned aerial vehicles. Sensors 2022, 22, 1235. [Google Scholar] [CrossRef]
- Ghaddar, A.; Merei, A. EAOA: Energy-Aware Grid-Based 3D-Obstacle Avoidance in Coverage Path Planning for UAVs. Future Internet 2020, 12, 29. [Google Scholar] [CrossRef]
- Yaghmaee, F.; Koohi, H.R. Dynamic obstacle avoidance by distributed algorithm based on reinforcement learning. Int. J. Eng. (IJE) Trans. B Appl. 2015, 28, 198–205. [Google Scholar]
- Zhao, R.; Sidobre, D. Dynamic Obstacle avoidance using online trajectory time-scaling and local replanning. In Proceedings of the 2015 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Colmar, France, 21–23 July 2015; IEEE: Piscataway, NJ, USA, 2015; Volume 2, pp. 414–421. [Google Scholar]
- Zhao, L. 3D Obstacle Avoidance for Unmanned Autonomous System (UAS). Master’s Thesis, University of Nevada, Las Vegas, NV, USA, 2015. [Google Scholar]
- Liu, C.; Wang, H.; Yao, P. UAV Autonomous Collision Avoidance Method Based on Three-dimensional Dynamic Collision Region Model and Interfered Fluid Dynamical System’. In Proceedings of the International Conference on Control And Automation, Bandung, Indonesia, 29–31 August 2016; pp. 263–269. [Google Scholar]
- Huang, S.; Teo, R.S.H.; Tan, K.K. Collision avoidance of multi unmanned aerial vehicles: A review. Annu. Rev. Control 2019, 48, 147–164. [Google Scholar] [CrossRef]
- Delamer, J.A.; Watanabe, Y.; Chanel, C.P. Safe path planning for UAV urban operation under GNSS signal occlusion risk. Robot. Auton. Syst. 2021, 142, 103800. [Google Scholar] [CrossRef]
- UCL. DepthmapX: Visual and Spatial Network Analysis Software; The Bartlett School of Architecture: London, UK, 2020; Available online: https://www.ucl.ac.uk/bartlett/architecture/research/space-syntax/depthmapx (accessed on 3 March 2025).
- Singla, A.; Padakandla, S.; Bhatnagar, S. Memory-based deep reinforcement learning for obstacle avoidance in UAV with limited environment knowledge. IEEE Trans. Intell. Transp. Syst. 2019, 22, 107–118. [Google Scholar] [CrossRef]
- Vanneste, S.; Bellekens, B.; Weyn, M. 3DVFH+: Real-time three-dimensional obstacle avoidance using an Octomap. In Proceedings of the MORSE Model-Driven Robot Software Engineering: 1st International Workshop on Model-Driven Robot Software Engineering Co-Located with International Conference on Software Technologies: Applications and Foundations (STAF 2014), York, UK, 21 July 2014; Assmann, U., Ed.; 2014. Number 1319. pp. 91–102. [Google Scholar]
- Labbé, M.; Michaud, F. RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J. Field Robot. 2019, 36, 416–446. [Google Scholar] [CrossRef]
- Wu, W.; Chen, B.; Liu, D. Simulation of UAV-Based Indoor Mapping for Multi-Story Building Using a RGB-D SLAM Solution. In Proceedings of the 2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 20–23 May 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar]
- Plascencia, A.C.; Beran, V.; Sedlmajer, K. Drone Sensory Data Processing for Advanced Drone Control for Augmented Reality. 2019. Available online: https://www.fit.vut.cz/research/publication/12409 (accessed on 3 March 2025).
- Elfes, A. Occupancy grids: A stochastic spatial representation for active robot perception. arXiv 2013, arXiv:1304.1098. [Google Scholar]
- Tai, J.J.; Phang, S.K.; Wong, F.Y.M. COAA*—An Optimized Obstacle Avoidance and Navigational Algorithm for UAVs Operating in Partially Observable 2D Environments. Unmanned Syst. 2022, 10, 159–174. [Google Scholar] [CrossRef]
- Peng, P.; Dong, W.; Chen, G.; Zhu, X. Obstacle Avoidance of Resilient UAV Swarm Formation with Active Sensing System in the Dense Environment. arXiv 2022, arXiv:2202.13381. [Google Scholar]
- Baeldung. Disparity map in Stereo Vision. Baeldung on Computer Science. 2022. Available online: https://www.baeldung.com/cs/disparity-map-stereo-vision (accessed on 3 March 2025).
- Gullotti, A. 3D Computer Graphics for Digital Humanities: Experiencing 1500–1600 Pavia’s Cultural Heritage Through the Digital Eye. Master’s Thesis, The University of Pavia, Pavia, Italy, 2020. [Google Scholar]
- Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees. Auton. Robot. 2013, 34, 189–206. [Google Scholar] [CrossRef]
- Ruf, B.; Monka, S.; Kollmann, M.; Grinberg, M. Real-time on-board obstacle avoidance for UAVs based on embedded stereo vision. arXiv 2018, arXiv:1807.06271. [Google Scholar] [CrossRef]
- Han, D.; Yang, Q.; Wang, R. Three-dimensional obstacle avoidance for UAV based on reinforcement learning and RealSense. J. Eng. 2020, 2020, 540–544. [Google Scholar] [CrossRef]
- Yaoming, Z.; Yu, S.; Anhuan, X.; Lingyu, K. A newly bio-inspired path planning algorithm for autonomous obstacle avoidance of UAV. Chin. J. Aeronaut. 2021, 34, 199–209. [Google Scholar]
- Iacono, M.; Sgorbissa, A. Path following and obstacle avoidance for an autonomous UAV using a depth camera. Robot. Auton. Syst. 2018, 106, 38–46. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, X.; Dai, B. Design of obstacle avoidance system for micro-uav based on binocular vision. In Proceedings of the International Conference on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII), Wuhan, China, 2–3 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 67–70. [Google Scholar]
- Stefansson, T. 3D Obstacle Avoidance for Drones Using a Realistic Sensor Setup; KTH: Stockholm, Sweden, 2018. [Google Scholar]
- Ferrera, E.; Alcántara, A.; Capitán, J.; Castaño, A.R.; Marrón, P.J.; Ollero, A. Decentralized 3d collision avoidance for multiple uavs in outdoor environments. Sensors 2018, 18, 4101. [Google Scholar] [CrossRef]
- Roghair, J.; Niaraki, A.; Ko, K.; Jannesari, A. A vision based deep reinforcement learning algorithm for uav obstacle avoidance. In Proceedings of the SAI Intelligent Systems Conference, Virtual, 2–3 September 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 115–128. [Google Scholar]
- Xue, Z.; Gonsalves, T. Vision Based Drone Obstacle Avoidance by Deep Reinforcement Learning. AI 2021, 2, 366–380. [Google Scholar] [CrossRef]
- Yu, Y.; Tingting, W.; Long, C.; Weiwei, Z. Stereo vision based obstacle avoidance strategy for quadcopter UAV. In Proceedings of the Chinese Control Furthermore, Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 490–494. [Google Scholar]
- Al-Kaff, A.; García, F.; Martín, D.; De La Escalera, A.; Armingol, J.M. Obstacle detection and avoidance system based on monocular camera and size expansion algorithm for UAVs. Sensors 2017, 17, 1061. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, F.; Huang, P.; Wang, C.; Yuanhao, L. Autonomous obstacle avoidance for uav based on fusion of radar and monocular camera. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 5954–5961. [Google Scholar]
- Mori, T.; Scherer, S. First results in detecting and avoiding frontal obstacles from a monocular camera for micro unmanned aerial vehicles. In Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1750–1757. [Google Scholar]
- Park, B.; Oh, H. Vision-based obstacle avoidance for UAVs via imitation learning with sequential neural networks. Int. J. Aeronaut. Space Sci. 2020, 21, 768–779. [Google Scholar] [CrossRef]
- Lee, H.; Ho, H.W.; Zhou, Y. Deep learning-based monocular obstacle avoidance for unmanned aerial vehicle navigation in tree plantations. J. Intell. Robot. Syst. 2021, 101, 5. [Google Scholar] [CrossRef]
- Chen, H.; Lu, P.; Xiao, C. Dynamic obstacle avoidance for UAVs using a fast trajectory planning approach. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1459–1464. [Google Scholar]
- Santos, M.C.; Santana, L.V.; Brandao, A.S.; Sarcinelli-Filho, M. UAV obstacle avoidance using RGB-D system. In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 312–319. [Google Scholar]
- Wang, D.; Li, W.; Liu, X.; Li, N.; Zhang, C. UAV environmental perception and autonomous obstacle avoidance: A deep learning and depth camera combined solution. Comput. Electron. Agric. 2020, 175, 105523. [Google Scholar] [CrossRef]
- Kuncha, P.; Sastry, A.; Chaitanya, M. Dynamic Route Planning and Obstacle Avoidance Model for Unmanned Aerial Vehicles. Int. J. Pure Appl. Math. 2017, 116, 315–329. [Google Scholar]
- Parappat, P.B.; Kumar, A.; Mittal, R.; Khan, S.A. Obstacle avoidance by unmanned aerial vehicles using image recognition techniques. In Proceedings of the International Conference on Circuits, Systems, Communications and Computers, San Francisco, CA, USA, 22–24 October 2014; Volume 1, pp. 378–381. [Google Scholar]
- Shin, S.Y.; Kang, Y.W.; Kim, Y.G. Obstacle avoidance drone by deep reinforcement learning and its racing with human pilot. Appl. Sci. 2019, 9, 5571. [Google Scholar] [CrossRef]
- Kim, D.H.; Go, Y.G.; Choi, S.M. First-person-view drone flying in mixed reality. In SIGGRAPH Asia 2018 Posters, Proceedings of the SA ’18: SIGGRAPH Asia 2018, Tokyo, Japan, 4–7 December 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–2. [Google Scholar]
- Smolyanskiy, N.; Gonzalez-Franco, M. Stereoscopic first person view system for drone navigation. Front. Robot. AI 2017, 4, 11. [Google Scholar] [CrossRef]
- Tierney, B.B.; Rodenbeck, C.T. 3D-Sensing MIMO Radar for UAV Formation Flight and Obstacle Avoidance. In Proceedings of the IEEE Radio and Wireless Symposium (RWS), Orlando, FL, USA, 20–23 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–3. [Google Scholar]
- Potena, C.; Nardi, D.; Pretto, A. Joint vision-based navigation, control and obstacle avoidance for UAVs in dynamic environments. In Proceedings of the European Conference on Mobile Robots (ECMR), Prague, Czech Republic, 4–6 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. [Google Scholar]
- Xu, Y.; Zhu, M.; Xu, Y.; Liu, M. Design and implementation of UAV obstacle avoidance System. In Proceedings of the 2nd International Conference on Safety Produce Informatization (IICSPI), Chongqing, China, 28–30 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 275–278. [Google Scholar]
- Gageik, N.; Benz, P.; Montenegro, S. Obstacle detection and collision avoidance for a UAV with complementary low-cost sensors. IEEE Access 2015, 3, 599–609. [Google Scholar] [CrossRef]
- Gao, K.; Xu, K. Research on Autonomous Obstacle Avoidance Flight Path Planning of Rotating Wing UAV. In Proceedings of the International Conference on Computer Technology, Electronics and Communication (ICCTEC), Dalian, China, 19–21 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1200–1203. [Google Scholar]
- Kenny, T. CHAPTER 14—Optical and Radiation Sensors. In Sensor Technology Handbook; Wilson, J.S., Ed.; Burlington: Newnes, Australia, 2005; pp. 307–320. [Google Scholar] [CrossRef]
- McGrath, M.J.; Scanaill, C.N. Key Sensor Technology Components: Hardware and Software Overview. In Sensor Technologies: Healthcare, Wellness, and Environmental Applications; Apress: Berkeley, CA, USA, 2013; pp. 51–77. [Google Scholar] [CrossRef]
- Wilson, J.S. (Ed.) Chapter 1—Sensor Fundamentals. In Sensor Technology Handbook; Burlington: Newnes, Australia, 2005; pp. 1–20. [Google Scholar] [CrossRef]
- Wilson, J.S. (Ed.) Chapter 3—Measurement Issues and Criteria. In Sensor Technology Handbook; Burlington: Newnes, Australia, 2005; pp. 29–30. [Google Scholar] [CrossRef]
- Kester, W. Chapter 4—Sensor Signal Conditioning. In Sensor Technology Handbook; Wilson, J.S., Ed.; Burlington: Newnes, Australia, 2005; pp. 31–136. [Google Scholar] [CrossRef]
- Aszkler, C. Chapter 5—Acceleration, Shock and Vibration Sensors. In Sensor Technology Handbook; Wilson, J.S., Ed.; Burlington: Newnes, Australia, 2005; pp. 137–159. [Google Scholar] [CrossRef]
- Wilson, J.S. (Ed.) Chapter 15—Position and Motion Sensors. In Sensor Technology Handbook; Burlington: Newnes, Australia, 2005; pp. 321–409. [Google Scholar] [CrossRef]
- Bashir, N.; Boudjit, S.; Dauphin, G.; Zeadally, S. An obstacle avoidance approach for UAV path planning. Simul. Model. Pract. Theory 2023, 129, 102815. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, F.; Qin, T.; Gao, W.; Liu, T.; Wu, W.; Yang, Z.; Shen, S. Autonomous aerial navigation using monocular visual-inertial fusion. J. Field Robot. 2018, 35, 23–51. [Google Scholar] [CrossRef]
- Xu, Z.; Zhan, X.; Chen, B.; Xiu, Y.; Yang, C.; Shimada, K. A real-time dynamic obstacle tracking and mapping system for UAV navigation and collision avoidance with an RGB-D camera. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 10645–10651. [Google Scholar]
- Du, H.; Wang, Z.; Zhang, X. Ef-ttoa: Development of a uav path planner and obstacle avoidance control framework for static and moving obstacles. Drones 2023, 7, 359. [Google Scholar] [CrossRef]
- Geng, Q.; Shuai, H.; Hu, Q. Obstacle avoidance approaches for quadrotor UAV based on backstepping technique. In Proceedings of the 25th Chinese Control and Decision Conference (CCDC), Guiyang, China, 25–27 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 3613–3617. [Google Scholar]
- Choi, M.; Rubenecia, A.; Shon, T.; Choi, H.H. Velocity obstacle based 3D collision avoidance scheme for low-cost micro UAVs. Sustainability 2017, 9, 1174. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Feng, B. Research on obstacle avoidance path planning of UAV in complex environments based on improved Bézier curve. Sci. Rep. 2023, 13, 16453. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, A.; Ghose, D. Obstacle avoidance in a dynamic environment: A collision cone approach. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 1998, 28, 562–574. [Google Scholar] [CrossRef]
- Chakravarthy, A.; Ghose, D. Generalization of the collision cone approach for motion safety in 3-D environments. Auton. Robot. 2012, 32, 243–266. [Google Scholar] [CrossRef]
- Agnel Tony, L.; Ghose, D.; Chakravarthy, A. Unmanned aerial vehicle mid-air collision detection and resolution using avoidance maps. J. Aerosp. Inf. Syst. 2021, 18, 506–529. [Google Scholar] [CrossRef]
- Tony, L.A.; Ghose, D.; Chakravarthy, A. Avoidance maps: A new concept in uav collision avoidance. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL USA, 13–16 June 2017; pp. 1483–1492. [Google Scholar]
- Ma, Z.; Wang, Z.; Ma, A.; Liu, Y.; Niu, Y. A Low-Altitude Obstacle Avoidance Method for UAVs Based on Polyhedral Flight Corridor. Drones 2023, 7, 588. [Google Scholar] [CrossRef]
- Trujillo, M.A.; Becerra, H.M.; Gómez-Gutiérrez, D.; Ruiz-León, J.; Ramírez-Treviño, A. Hierarchical task-based formation control and collision avoidance of UAVs in finite time. Eur. J. Control 2021, 60, 48–64. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Hu, J.; Niu, Y.; Wang, Z. Obstacle avoidance methods for rotor UAVs using RealSense camera. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 7151–7155. [Google Scholar]
- Koenig, N.; Howard, A. Design and use paradigms for gazebo, an open-source multi-robot simulator. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Sendai, Japan, 28 September–2 October 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 3, pp. 2149–2154. [Google Scholar]
- Jiang, W.; Cai, T.; Xu, G.; Wang, Y. Autonomous obstacle avoidance and target tracking of UAV: Transformer for observation sequence in reinforcement learning. Knowl.-Based Syst. 2024, 290, 111604. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Aswini, N.; Uma, S. Custom Based Obstacle Detection Using Yolo v3 for Low Flying Drones. In Proceedings of the 2021 International Conference on Circuits, Controls and Communications (CCUBE), Bangalore, India, 23–24 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Jiang, C.; Ren, H.; Ye, X.; Zhu, J.; Zeng, H.; Nan, Y.; Sun, M.; Ren, X.; Huo, H. Object detection from UAV thermal infrared images and videos using YOLO models. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102912. [Google Scholar] [CrossRef]
- Han, X.; Wang, J.; Xue, J.; Zhang, Q. Intelligent decision-making for 3-dimensional dynamic obstacle avoidance of UAV based on deep reinforcement learning. In Proceedings of the 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an, China, 23–25 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Sonny, A.; Yeduri, S.R.; Cenkeramaddi, L.R. Q-learning-based unmanned aerial vehicle path planning with dynamic obstacle avoidance. Appl. Soft Comput. 2023, 147, 110773. [Google Scholar] [CrossRef]
- Wang, C.; Wei, Z.; Jiang, W.; Jiang, H.; Feng, Z. Cooperative Sensing Enhanced UAV Path-Following and Obstacle Avoidance with Variable Formation. IEEE Trans. Veh. Technol. 2024, 73, 7501–7516. [Google Scholar] [CrossRef]
- Dai, X.; Mao, Y.; Huang, T.; Qin, N.; Huang, D.; Li, Y. Automatic obstacle avoidance of quadrotor UAV via CNN-based learning. Neurocomputing 2020, 402, 346–358. [Google Scholar] [CrossRef]
- Odelga, M.; Stegagno, P.; Bülthoff, H.H. Obstacle detection, tracking and avoidance for a teleoperated UAV. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2984–2990. [Google Scholar]
- Feng, Y.; Wu, Y.; Cao, H.; Sun, J. Uav formation and obstacle avoidance based on improved apf. In Proceedings of the 210th International Conference on Modelling, Identification and Control (ICMIC), Innsbruck, Austria, 17–19 February 2014; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Ma’Arif, A.; Rahmaniar, W.; Vera, M.A.M.; Nuryono, A.A.; Majdoubi, R.; Çakan, A. Artificial Potential Field Algorithm for Obstacle Avoidance in UAV Quadrotor for Dynamic Environment. In Proceedings of the IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), Online, 17–18 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 184–189. [Google Scholar]
- Liu, Y.; Chen, C.; Wang, Y.; Zhang, T.; Gong, Y. A fast formation obstacle avoidance algorithm for clustered UAVs based on artificial potential field. Aerosp. Sci. Technol. 2024, 147, 108974. [Google Scholar] [CrossRef]
- Keyu, L.; Yonggen, L.; Yanchi, Z. Dynamic obstacle avoidance path planning of UAV based on improved APF. In Proceedings of the 5th International Conference on Communication, Image and Signal Processing (CCISP), Chengdu, China, 13–15 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 159–163. [Google Scholar]
- Zhao, Y.; Hao, L.Y.; Wu, Z.J. Obstacle avoidance control of unmanned aerial vehicle with motor loss-of-effectiveness fault based on improved artificial potential field. Sustainability 2023, 15, 2368. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.J.; Cheng, P.; Liu, C.; Zhang, Y.; Chen, B. Event-based obstacle avoidance control for time-varying UAV formation under cyber-attacks. J. Frankl. Inst. 2024, 361, 107019. [Google Scholar] [CrossRef]
- Fu, X.; Zhi, C.; Wu, D. Obstacle avoidance and collision avoidance of UAV swarm based on improved VFH algorithm and information sharing strategy. Comput. Ind. Eng. 2023, 186, 109761. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, M.; Zhang, S.; Gong, H. Multi-UAV Cooperative Obstacle Avoidance of 3D Vector Field Histogram Plus and Dynamic Window Approach. Drones 2023, 7, 504. [Google Scholar] [CrossRef]
- Wakabayashi, T.; Suzuki, Y.; Suzuki, S. Dynamic obstacle avoidance for Multi-rotor UAV using chance-constraints based on obstacle velocity. Robot. Auton. Syst. 2023, 160, 104320. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, K.; Niu, T.; Liu, Y. Grid-Based coverage path planning with NFZ avoidance for UAV using parallel self-adaptive ant colony optimization algorithm in cloud IoT. J. Cloud Comput. 2022, 11, 29. [Google Scholar] [CrossRef]
- Zhu, P.; Qin, L.; Wang, J.; Li, Y.; Li, X.; Xie, W. Optimized trajectory and passive beamforming for STAR-RIS-assisted UAV-empowered O2I WPCN. IEEE Wirel. Commun. Lett. 2023. [Google Scholar] [CrossRef]
- Sun, L.; Wang, J.; Wang, J.; Lin, L.; Gen, M. Efficient Joint Deployment of Multi-UAVs for Target Tracking in Traffic Big Data. IEEE Trans. Intell. Transp. Syst. 2024, 25, 7780–7791. [Google Scholar] [CrossRef]
- Wu, Y.; Liang, T.; Gou, J.; Tao, C.; Wang, H. Heterogeneous mission planning for multiple uav formations via metaheuristic algorithms. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 3924–3940. [Google Scholar] [CrossRef]
- Xu, W.; Wang, C.; Xie, H.; Liang, W.; Dai, H.; Xu, Z.; Wang, Z.; Guo, B.; Das, S.K. Reward maximization for disaster zone monitoring with heterogeneous UAVs. IEEE/ACM Trans. Netw. 2023, 32, 890–903. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, S.; Liu, M.; Hu, Y. Multi-agent reinforcement learning for UAVs 3D trajectory designing and mobile ground users scheduling with no-fly zones. In Proceedings of the 2023 IEEE/CIC International Conference on Communications in China (ICCC), Dalian, China, 10–12 August 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Trotti, F.; Farinelli, A.; Muradore, R. A Markov Decision Process Approach for Decentralized UAV Formation Path Planning. In Proceedings of the 2024 European Control Conference (ECC), Stockholm, Sweden, 25–28 June 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 436–441. [Google Scholar]
- Lee, W.; Lee, K. Robust Trajectory and Resource Allocation for UAV Communications in Uncertain Environments With No-Fly Zone: A Deep Learning Approach. IEEE Trans. Intell. Transp. Syst. 2024, 25, 14233–14244. [Google Scholar] [CrossRef]
- Andreou, A.; Mavromoustakis, C.X.; Batalla, J.M.; Markakis, E.K.; Mastorakis, G.; Mumtaz, S. UAV trajectory optimisation in smart cities using modified A* algorithm combined with haversine and vincenty formulas. IEEE Trans. Veh. Technol. 2023, 72, 9757–9769. [Google Scholar] [CrossRef]
- Vannini, V.; de Moura Souza, G.; Toledo, C.F.M. Harpia: A hybrid system for agricultural UAV missions. Smart Agric. Technol. 2023, 4, 100191. [Google Scholar] [CrossRef]
- Kuenz, A.; Lieb, J.; Rudolph, M.; Volkert, A.; Geister, D.; Ammann, N.; Zhukov, D.; Feurich, P.; Gonschorek, J.; Gessner, M.; et al. Live Trials of Dynamic Geo-Fencing for the Tactical Avoidance of Hazard Areas. IEEE Aerosp. Electron. Syst. Mag. 2023, 38, 60–71. [Google Scholar] [CrossRef]
- Kamal, A.; Vidaurri, J.; Rubio-Medrano, C. No-Fly-Zone: Regulating Drone Fly-Overs Via Government and User-Controlled Authorization Zones. In Proceedings of the Twenty-fourth International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, Washington, DC, USA, 23–26 October 2023; pp. 522–527. [Google Scholar]
- Wu, P.; Yuan, X.; Hu, Y.; Schmeink, A. Trajectory and User Assignment Design for UAV Communication Network With No-Fly Zone. IEEE Trans. Veh. Technol. 2024, 73, 15820–15825. [Google Scholar] [CrossRef]
- Lee, H.I.; Shin, H.S.; Tsourdos, A. UAV collision avoidance considering no-fly-zones. IFAC-PapersOnLine 2020, 53, 14748–14753. [Google Scholar] [CrossRef]
- Fei, W.; Xiaoping, Z.; Zhou, Z.; Yang, T. Deep-reinforcement-learning-based UAV autonomous navigation and collision avoidance in unknown environments. Chin. J. Aeronaut. 2024, 37, 237–257. [Google Scholar]
- Heo, K.; Park, G.; Lee, K. On Correcting Errors in Existing Mathematical Approaches for UAV Trajectory Design Considering No-Fly-Zones. arXiv 2023, arXiv:2308.13001. [Google Scholar]
- Modares, J.; Ghanei, F.; Mastronarde, N.; Dantu, K. Ub-anc planner: Energy efficient coverage path planning with multiple drones. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 6182–6189. [Google Scholar]
- Zhan, C.; Hu, H.; Sui, X.; Liu, Z.; Niyato, D. Completion time and energy optimization in the UAV-enabled mobile-edge computing system. IEEE Internet Things J. 2020, 7, 7808–7822. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Ding, G.; Chen, J.; Gao, F.; Han, Z. Completion time minimization with path planning for fixed-wing UAV communications. IEEE Trans. Wirel. Commun. 2019, 18, 3485–3499. [Google Scholar] [CrossRef]
- Lin, Z.; Castano, L.; Mortimer, E.; Xu, H. Fast 3d collision avoidance algorithm for fixed wing uas. J. Intell. Robot. Syst. 2020, 97, 577–604. [Google Scholar] [CrossRef]
- Waqas, A.; Kang, D.; Cha, Y.J. Deep learning-based obstacle-avoiding autonomous UAVs with fiducial marker-based localization for structural health monitoring. Struct. Health Monit. 2024, 23, 971–990. [Google Scholar] [CrossRef]
- Tu, G.T.; Juang, J.G. UAV path planning and obstacle avoidance based on reinforcement learning in 3d environments. Actuators 2023, 12, 57. [Google Scholar] [CrossRef]
- Majumder, S.; Shankar, R.; Prasad, M.S. Obstacle size and proximity detection using stereo images for agile aerial robots. In Proceedings of the 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 19–20 February 2015; pp. 437–442. [Google Scholar]
Search Terms |
---|
Survey on UAV obstacle detection and avoidance |
Non flying zone avoidance for UAVs (a review) |
Surveys on collision avoidance for UAVs |
UAV path planning surveys |
Number of selected studies 20 surveys and review articles |
Search Terms |
---|
UAV obstacle avoidance algorithms |
Static obstacles detection and avoidance techniques for UAV |
Collision-free path planning for UAVs |
UAV sensor-based obstacle detection |
Local and global path planning for UAVs |
Number of selected studies 68 case studies |
Search Terms |
---|
Non flying zone detection for UAVs |
Non flying zone avoidance algorithms for UAVs |
Non flying zone avoidance for a swarm of UAVs |
Area partitioning for multiple UAVs mission |
Number of selected studies 21 methodologies and case studies |
Mapping Technique | Advantages | Limitations |
---|---|---|
Depth Map [45] | Provides direct distance information; useful for detecting obstacles and localizing objects. | Sensitive to lighting conditions; limited range in low-contrast regions. |
OctoMap [46,47] | Efficient 3D representation; supports volumetric mapping; ideal for large-scale environments. | Computationally expensive; requires significant memory for high-resolution maps. |
RTAB-Map [48,49,50] | Real-time 3D SLAM with visual and LiDAR data integration; handles loop closure detection. | May struggle with rapid UAV motion and sensor noise in dynamic environments. |
Occupancy Grid [51,52,53] | Simple and computationally efficient; effective for 2D navigation and obstacle avoidance. | Limited to 2D environments; cannot represent complex 3D structures. |
Disparity Map [54] | Useful for depth estimation from stereo images; effective for real-time applications. | Errors in depth estimation for long-distance or low-texture objects. |
UV Map [55] | Enhances visual detail on 3D models; useful for texture mapping in virtual simulations. | Not directly useful for path planning; primarily for visualization. |
Sensor | Impact of Ambient Light | Velocity Estimation |
---|---|---|
Stereo Camera | Reduced depth perception in low light | Estimates depth-based velocity |
Monocular Camera | Image quality may degrade in dim conditions | Provides relative velocity only |
RGB-D Camera | Depth accuracy can degrade in low light | Limited velocity estimation |
FPV Camera | Visibility can be hindered in low light | No significant velocity estimation |
LiDAR | Unaffected by ambient light | Highly accurate distance-based velocity |
MIMO Radar | Unaffected by ambient light | Direct velocity measurement via Doppler effect |
Ultrasonic Sensor | Less affected by light; depends on environment | Poor velocity estimation |
Infrared Sensor | Sensitive to ambient infrared radiation | Ineffective for velocity estimation |
Method | Strengths | Weaknesses | Case Study |
---|---|---|---|
Grid-based | Simple, structured, energy-efficient | Limited real-time adaptability | [38,72,92] |
OctoMap | Detailed 3D mapping | High computational cost | [47,59,62] |
Vision-based | Real-time response | Sensitive to lighting | [57,93,94] |
SLAM-based | Works in GPS-denied areas | Sensor fusion complexity | [49,50,95] |
Method | Strengths | Weaknesses | Case Study |
---|---|---|---|
3D-SWAP | Low computation, swarm-friendly | Assumes adequate braking distance | [63] |
Safety Zones | Simple, effective for static obstacles | Limited for dynamic threats | [75,96] |
Velocity Obstacles | Fast, heuristic-based avoidance | Struggles with multiple dynamic obs. | [97,98] |
Collision Cone | Maintains constant speed | Requires precise obstacle modeling | [99,100] |
Avoidance Maps | Efficient, scalable | Control space dependent | [101,102] |
Binocular Vision | Accurate depth estimation | Sensitive to lighting | [61,103] |
Hierarchical Task-Based | Effective in formations | High computational complexity | [104] |
Method | Strengths | Weaknesses | Case Study |
---|---|---|---|
Monocular Vision | Simple, lightweight | Limited depth perception | [69] |
Size Expansion | Real-time collision prediction | Effective within short range | [67] |
Radar-Based | Accurate object size estimation | Requires multiple frames | [76] |
Stereo Vision | Precise depth perception | Sensitive to lighting variations | [106] |
Method | Strengths | Weaknesses | Case Study |
---|---|---|---|
Neural Networks | Human-like learning | Data-intensive training | [70,108] |
CNN-Based | Fast object detection | Limited to trained objects | [71,110,111] |
Reinforcement Learning | Adaptive to dynamic obstacles | Requires exploration | [64,112,113] |
Sensor Fusion | Enhanced perception | Computationally demanding | [58,114,115] |
Method | Strengths | Weaknesses | Case Study |
---|---|---|---|
Vision + Radar | Accurate 3D mapping | Requires sensor fusion | [68] |
Swarm Sensing | Optimized formations | Computational complexity | [53] |
IMU + RGB-D | Predictive obstacle tracking | Limited to known environments | [73,116] |
MIMO Radar | Effective for moving objects | Hardware-intensive | [80] |
Ultrasonic Sensors | Low-cost, multi-directional | Limited range | [82,83] |
Stereo Vision + RRT | Precise depth estimation | Sensitive to lighting conditions | [66] |
Method | Strengths | Weaknesses | Case Study |
---|---|---|---|
Enhanced APF | Flexible, handles formations | Struggles with local minima | [117,118,119] |
Fuzzy APF | Smooth, adaptive to dynamics | Requires parameter tuning | [120,121,122] |
Graph-Based | Optimized path planning | Computational overhead | [52,81] |
Vector Field | Real-time, suitable for unknown areas | Dependent on sensor accuracy | [60,123] |
VFH + DWA | Cooperative swarm navigation | Increased processing complexity | [124] |
Chance Constraints | Accounts for velocity uncertainty | Requires real-time obstacle tracking | [125] |
ODA Case Studies References | [38] | [46] | [47] | [49] | [50] | [52] | [53] | [57] | [58] | [59] | [60] | [61] | [62] | [63] | |
Obstacle Type | Static | ✔ | ✔ | ✔ | ✔ | - | ✔ | - | ✔ | ✔ | - | ✔ | ✔ | - | ✔ |
Dynamic | - | ✔ | - | - | ✔ | ✔ | ✔ | - | - | ✔ | - | - | ✔ | ✔ | |
Environment | 2D | ✔ | - | - | - | - | - | ✔ | - | ✔ | - | - | - | - | - |
3D | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | - | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |
Sensors | Stereo Cam | - | - | ✔ | - | - | - | - | ✔ | ✔ | ✔ | - | ✔ | ✔ | ✔ |
Monocular Cam | ✔ | ✔ | - | - | - | - | - | - | - | - | - | - | - | - | |
RGB-D Cam | - | - | - | ✔ | - | - | - | - | - | - | ✔ | - | - | - | |
FPV Cam | - | - | - | - | ✔ | - | ✔ | - | - | - | - | - | - | - | |
Ultrasonic | - | - | - | ✔ | - | - | - | - | - | - | - | - | - | - | |
Infrared | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
LiDAR Laser | - | - | - | - | - | - | - | - | - | - | - | - | ✔ | ✔ | |
MIMO Radar | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Map Type | Grid-Based | ✔ | - | - | - | - | - | - | - | - | - | - | - | - | - |
Depth | - | ✔ | - | - | ✔ | - | - | - | - | - | - | - | - | - | |
Octo | - | - | ✔ | - | ✔ | - | - | - | - | ✔ | ✔ | - | ✔ | - | |
RTAB | - | - | - | ✔ | - | - | - | - | - | - | - | - | - | - | |
Disparity | - | - | - | - | ✔ | - | - | ✔ | - | - | - | ✔ | - | - | |
UV | - | - | - | - | - | - | - | ✔ | - | - | - | - | - | - | |
Other | - | - | - | - | - | ✔ | ✔ | - | ✔ | - | - | - | - | - | |
Path Status | Online | ✔ | - | - | ✔ | ✔ | ✔ | - | ✔ | ✔ | ✔ | ✔ | - | - | ✔ |
Offline | ✔ | - | ✔ | - | - | ✔ | - | ✔ | - | - | ✔ | - | - | ✔ | |
N/A | - | ✔ | - | - | - | - | ✔ | - | - | - | - | ✔ | ✔ | - | |
KPIs | Energy | ✔ | - | - | - | - | - | - | ✔ | - | - | - | - | - | - |
Time | ✔ | - | - | - | - | ✔ | ✔ | ✔ | - | ✔ | ✔ | - | ✔ | ✔ | |
Path Length | ✔ | ✔ | - | ✔ | - | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |
Turning Angles | ✔ | - | ✔ | - | - | - | - | - | - | ✔ | - | - | - | ✔ | |
Evaluation | Real-Life | - | ✔ | ✔ | - | - | ✔ | - | ✔ | - | ✔ | ✔ | ✔ | - | ✔ |
Simulator | ✔ | ✔ | - | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | - | ✔ | ✔ | |
ODA Case Studies References | [64] | [65] | [66] | [67] | [68] | [69] | [70] | [71] | [72] | [73] | [74] | [75] | [76] | [77] | |
Obstacle Type | Static | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | - | ✔ | ✔ | ✔ | ✔ | ✔ |
Dynamic | ✔ | - | - | - | ✔ | - | ✔ | - | ✔ | ✔ | ✔ | ✔ | ✔ | - | |
Environment | 2D | - | - | - | ✔ | - | - | - | ✔ | - | - | - | - | ✔ | - |
3D | ✔ | ✔ | ✔ | - | ✔ | ✔ | ✔ | - | ✔ | ✔ | ✔ | ✔ | - | ✔ | |
Sensors | Stereo Cam | ✔ | ✔ | ✔ | - | - | - | - | - | - | - | - | - | - | - |
Monocular Cam | - | - | - | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | - | - | - | - | - | |
RGB-D Cam | - | - | - | - | - | - | - | - | - | ✔ | ✔ | - | - | - | |
FPV Cam | - | - | - | - | - | - | - | - | - | - | - | ✔ | ✔ | ✔ | |
Ultrasonic | - | - | ✔ | - | - | - | - | - | - | - | - | - | - | - | |
Infrared | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
LiDAR Laser | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
MIMO Radar | - | - | - | - | ✔ | - | - | - | - | - | - | - | ✔ | - | |
Map Type | Grid-Based | - | - | - | - | - | - | - | - | ✔ | - | - | - | - | - |
Depth | ✔ | ✔ | ✔ | - | - | - | - | - | - | - | - | - | - | ✔ | |
Octo | - | - | - | - | ✔ | - | - | - | - | - | - | - | - | - | |
RTAB | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Disparity | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
UV | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Other | - | - | - | ✔ | - | - | ✔ | ✔ | - | - | ✔ | - | ✔ | - | |
Path Status | Online | - | - | ✔ | - | ✔ | ✔ | - | ✔ | ✔ | - | ✔ | ✔ | ✔ | - |
Offline | - | - | - | ✔ | - | - | ✔ | - | - | - | - | ✔ | ✔ | - | |
N/A | ✔ | ✔ | - | - | - | - | - | - | - | ✔ | - | - | - | ✔ | |
KPIs | Energy | - | - | - | - | - | - | - | - | ✔ | - | - | - | - | - |
Time | - | - | - | - | - | ✔ | - | - | - | ✔ | ✔ | ✔ | ✔ | ✔ | |
Path Length | - | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | - | |
Turning Angles | ✔ | - | - | ✔ | ✔ | - | - | - | - | ✔ | - | - | - | ✔ | |
Evaluation | Real-Life | - | - | ✔ | ✔ | ✔ | ✔ | - | ✔ | ✔ | - | ✔ | - | - | - |
Simulator | ✔ | ✔ | - | - | ✔ | - | ✔ | - | - | ✔ | ✔ | ✔ | ✔ | ✔ | |
ODA Case Studies References | [78] | [79] | [80] | [81] | [82] | [83] | [84] | [92] | [94] | [93] | [95] | [96] | [97] | [98] | |
Obstacle Type | Static | ✔ | ✔ | - | ✔ | - | - | ✔ | ✔ | ✔ | ✔ | ✔ | - | ✔ | ✔ |
Dynamic | - | ✔ | ✔ | ✔ | ✔ | ✔ | - | ✔ | ✔ | - | ✔ | ✔ | - | ✔ | |
Environment | 2D | - | - | - | - | ✔ | - | ✔ | ✔ | - | - | - | - | ✔ | ✔ |
3D | ✔ | ✔ | ✔ | ✔ | - | ✔ | - | - | ✔ | ✔ | ✔ | ✔ | - | - | |
Sensors | Stereo Cam | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Monocular Cam | - | - | - | ✔ | - | - | - | ✔ | - | ✔ | - | - | - | - | |
RGB-D Cam | - | - | - | - | - | - | - | - | ✔ | - | ✔ | - | - | - | |
FPV Cam | ✔ | ✔ | - | - | - | - | - | - | - | - | - | - | - | - | |
Ultrasonic | - | - | - | - | ✔ | ✔ | ✔ | - | - | - | - | - | - | - | |
Infrared | - | - | - | - | - | ✔ | ✔ | - | - | - | - | - | - | - | |
LiDAR Laser | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
MIMO Radar | - | - | ✔ | - | - | - | - | - | - | - | - | - | - | - | |
Map Type | Grid-Based | - | - | - | - | - | - | - | ✔ | - | - | - | - | - | - |
Depth | ✔ | - | - | ✔ | - | - | - | - | ✔ | ✔ | - | - | - | - | |
Octo | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
RTAB | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Disparity | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
UV | - | - | - | - | - | - | - | - | ✔ | - | - | - | - | - | |
Other | - | ✔ | - | - | - | - | ✔ | - | - | ✔ | ✔ | ✔ | - | - | |
Path Status | Online | ✔ | - | - | - | - | - | ✔ | - | ✔ | ✔ | ✔ | ✔ | - | - |
Offline | - | - | - | - | - | - | - | ✔ | - | - | - | - | - | ✔ | |
N/A | - | ✔ | ✔ | ✔ | ✔ | ✔ | - | - | - | - | - | - | ✔ | - | |
KPIs | Energy | - | - | - | - | - | - | - | - | - | ✔ | - | - | - | - |
Time | ✔ | ✔ | - | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | - | - | - | |
Path Length | - | ✔ | ✔ | ✔ | ✔ | ✔ | - | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |
Turning Angles | - | ✔ | ✔ | - | - | ✔ | ✔ | ✔ | - | ✔ | - | ✔ | - | - | |
Evaluation | Real-Life | ✔ | - | ✔ | - | ✔ | - | ✔ | - | ✔ | ✔ | - | - | - | - |
Simulator | ✔ | ✔ | - | ✔ | ✔ | ✔ | - | ✔ | ✔ | - | ✔ | ✔ | ✔ | ✔ | |
ODA Case Studies References | [99] | [100] | [101] | [102] | [103] | [104] | [106] | [108] | [111] | [112] | [113] | [114] | [115] | [116] | |
Obstacle Type | Static | - | - | - | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | - | ✔ | ✔ | ✔ | ✔ |
Dynamic | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | - | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |
Environment | 2D | ✔ | - | - | ✔ | - | - | - | ✔ | ✔ | - | ✔ | - | - | - |
3D | - | ✔ | ✔ | - | ✔ | ✔ | ✔ | - | - | ✔ | - | ✔ | ✔ | ✔ | |
Sensors | Stereo Cam | - | - | - | - | - | - | ✔ | - | - | - | - | - | - | - |
Monocular Cam | - | ✔ | - | ✔ | - | - | - | - | ✔ | - | - | - | ✔ | - | |
RGB-D Cam | - | - | - | - | ✔ | - | - | - | - | - | - | - | - | ✔ | |
FPV Cam | - | - | ✔ | - | - | - | - | - | - | - | - | - | - | - | |
Ultrasonic | - | - | ✔ | - | - | - | - | - | - | - | - | - | - | - | |
Infrared | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
LiDAR Laser | - | - | ✔ | - | - | - | - | ✔ | - | - | - | - | - | - | |
MIMO Radar | - | - | - | ✔ | - | - | - | - | - | - | - | ✔ | - | - | |
Map Type | Grid-Based | - | - | - | - | - | - | - | - | - | - | ✔ | - | - | - |
Depth | - | - | - | - | ✔ | - | ✔ | - | - | - | - | - | - | - | |
Octo | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
RTAB | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Disparity | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
UV | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Other | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | - | ✔ | - | - | - | - | ✔ | ✔ | |
Path Status | Online | - | ✔ | - | - | ✔ | ✔ | ✔ | - | ✔ | - | ✔ | ✔ | ✔ | - |
Offline | - | - | - | - | - | ✔ | - | - | - | - | - | - | - | - | |
N/A | ✔ | - | ✔ | ✔ | - | - | - | ✔ | - | ✔ | - | - | - | ✔ | |
KPIs | Energy | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Time | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | - | ✔ | - | ✔ | ✔ | ✔ | ✔ | ✔ | |
Path Length | - | - | ✔ | - | ✔ | - | ✔ | - | - | - | ✔ | - | - | - | |
Turning Angles | ✔ | ✔ | ✔ | ✔ | - | - | - | ✔ | - | - | - | ✔ | ✔ | - | |
Evaluation | Real-Life | - | - | - | - | - | ✔ | ✔ | ✔ | ✔ | - | - | - | ✔ | ✔ |
Simulator | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | - | ✔ | ✔ | ✔ | - | - | |
ODA Case Studies References | [117] | [118] | [119] | [120] | [121] | [122] | [123] | [124] | [125] | [145] | [146] | [147] | |||
Obstacle Type | Static | ✔ | - | ✔ | - | ✔ | ✔ | ✔ | ✔ | - | ✔ | ✔ | ✔ | ||
Dynamic | ✔ | ✔ | ✔ | ✔ | - | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | - | |||
Environment | 2D | ✔ | ✔ | - | - | ✔ | ✔ | ✔ | ✔ | - | ✔ | - | - | ||
3D | - | - | ✔ | ✔ | - | - | - | ✔ | ✔ | ✔ | ✔ | ✔ | |||
Sensors | Stereo Cam | - | - | - | - | - | - | - | - | - | - | - | - | ||
Monocular Cam | - | - | - | - | - | - | - | - | - | - | ✔ | - | |||
RGB-D Cam | - | - | - | - | - | - | - | - | - | - | - | ✔ | |||
FPV Cam | - | - | - | - | ✔ | - | - | - | ✔ | - | - | ||||
Ultrasonic | - | - | - | - | - | - | - | - | - | - | ✔ | ✔ | |||
Infrared | - | - | - | - | - | - | - | - | - | - | - | - | |||
LiDAR Laser | - | - | - | - | ✔ | - | ✔ | - | - | - | - | - | |||
MIMO Radar | - | - | - | - | - | - | - | - | ✔ | - | - | - | |||
Map Type | Grid-Based | - | - | - | - | - | - | ✔ | - | - | - | - | ✔ | ||
Depth | - | - | - | - | - | - | - | - | - | - | - | - | |||
Octo | - | - | - | - | - | - | - | ✔ | - | - | - | - | |||
RTAB | - | - | - | - | - | - | - | - | - | - | - | - | |||
Disparity | - | - | - | - | - | - | - | - | - | - | - | - | |||
UV | - | - | - | - | - | - | - | - | - | - | - | - | |||
Other | - | - | - | - | - | - | - | - | - | - | ✔ | - | |||
Path Status | Online | ✔ | ✔ | ✔ | - | ✔ | ✔ | ✔ | ✔ | - | ✔ | ✔ | ✔ | ||
Offline | - | - | - | - | - | - | - | - | - | ✔ | - | - | |||
N/A | - | - | - | ✔ | - | - | - | - | ✔ | - | - | - | |||
KPIs | Energy | - | - | - | - | - | ✔ | - | - | - | - | - | - | ||
Time | ✔ | ✔ | ✔ | - | - | - | - | ✔ | ✔ | - | - | - | |||
Path Length | - | - | - | ✔ | - | ✔ | ✔ | - | - | - | - | ✔ | |||
Turning Angles | ✔ | - | ✔ | - | - | - | ✔ | ✔ | - | ✔ | - | ✔ | |||
Evaluation | Real-Life | - | - | ✔ | - | - | - | - | - | - | - | ✔ | - | ||
Simulator | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Years | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
---|---|---|---|---|---|---|---|---|---|---|
Machine Learning and AI | - | - | - | - | [46,77,112] | [58,70,74,115] | [64,65,71] | - | [98,113] | [146] |
Sensor Fusion | [83] | - | [84] | [62,63,66] | - | [68] | [101] | - | - | [49] |
SLAM | [83] | - | - | [60,93] | [50] | - | - | - | [95] | [114] |
Reactive Control | - | - | [61,100] | [60,117] | - | [120] | [118,145] | [52] | [94,103,121,124] | [92] |
Bio-Inspired | - | - | [67] | - | - | - | [59] | - | - | - |
Collaborative UAV system | - | - | - | - | - | - | [102] | [53] | - | - |
Single Sensor Navigation | - | - | [75] | [78] | [80,82] | - | - | - | [125] | - |
Energy-Aware | - | - | - | [57] | [72] | [38] | - | - | - | - |
Perception | [73,148] | [116] | [61,97] | [60] | [81] | [53] | [104] | [111] | [123,147] | [119,146] |
Computer Vision and VR | - | - | [79,106] | [78] | - | - | - | [111] | - | - |
NFZ Case Studies References | [23] | [24] | [25] | [26] | [27] | [126] | [127] | |
---|---|---|---|---|---|---|---|---|
Area Cellular Decomposition | Approximate | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | - |
Exact | ✔ | - | - | - | - | - | - | |
Area Decomposition Technique | Grid-based | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | - |
Grid sub-division | ✔ | - | - | - | - | - | - | |
Other | - | - | - | - | - | - | - | |
Non-flying Zones | Presence of NFZ inside the area | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
NFZ located around the area | ✔ | - | - | ✔ | ✔ | ✔ | - | |
More than one NFZ inside the area | - | - | - | ✔ | - | ✔ | - | |
Area Partitioning | Provide partition algorithm | ✔ | ✔ | ✔ | ✔ | - | ✔ | - |
Exclude partition border cells | - | ✔ | ✔ | - | - | ✔ | - | |
Number of UAVs | Single UAV | ✔ | - | - | - | ✔ | ✔ | ✔ |
Multiple UAVs | ✔ | ✔ | ✔ | ✔ | - | - | - | |
KPI | Energy consumption | ✔ | - | - | ✔ | ✔ | ✔ | ✔ |
Completion time | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |
Quality of coverage | ✔ | ✔ | ✔ | - | - | - | - | |
NFZ Case Studies References | [128] | [129] | [130] | [131] | [132] | [133] | [134] | |
Area Cellular Decomposition | Approximate | - | - | - | - | - | - | - |
Exact | - | - | - | - | - | - | - | |
Area Decomposition Technique | Grid-based | - | - | ✔ | - | - | - | ✔ |
Grid sub-division | - | - | - | - | - | - | - | |
Other | ✔ | ✔ | - | - | - | ✔ | - | |
Non-flying Zones | Presence of NFZ inside the area | ✔ | ✔ | ✔ | - | - | ✔ | ✔ |
NFZ located around the area | - | - | - | - | - | - | ✔ | |
More than one NFZ inside the area | ✔ | ✔ | - | ✔ | ✔ | ✔ | ✔ | |
Area Partitioning | Provide partition algorithm | ✔ | - | - | - | - | ✔ | - |
Exclude partition border cells | - | - | - | - | - | - | - | |
Number of UAVs | Single UAV | - | - | - | - | - | ✔ | ✔ |
Multiple UAVs | ✔ | ✔ | ✔ | ✔ | ✔ | - | - | |
KPI | Energy consumption | ✔ | - | ✔ | - | - | - | - |
Completion time | ✔ | ✔ | ✔ | ✔ | - | ✔ | ✔ | |
Quality of coverage | ✔ | - | - | - | - | ✔ | - | |
NFZ Case Studies References | [135] | [136] | [137] | [138] | [139] | [140] | [141] | |
Area Cellular Decomposition | Approximate | - | - | - | - | - | - | - |
Exact | - | - | - | ✔ | - | - | - | |
Area Decomposition Technique | Grid-based | ✔ | - | ✔ | - | - | - | - |
Grid sub-division | - | - | - | - | - | - | - | |
Other | - | ✔ | - | ✔ | ✔ | - | - | |
Non-flying Zones | Presence of NFZ inside the area | - | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
NFZ located around the area | ✔ | - | - | - | - | - | - | |
More than one NFZ inside the area | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |
Area Partitioning | Provide partition algorithm | ✔ | ✔ | ✔ | ✔ | - | ✔ | - |
Exclude partition border cells | ✔ | - | - | - | - | - | - | |
Number of UAVs | Single UAV | ✔ | - | ✔ | ✔ | ✔ | ✔ | ✔ |
Multiple UAVs | - | ✔ | - | - | - | - | - | |
KPI | Energy consumption | ✔ | - | - | - | - | - | - |
Completion time | ✔ | ✔ | ✔ | - | ✔ | ✔ | - | |
Quality of coverage | - | - | ✔ | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merei, A.; Mcheick, H.; Ghaddar, A.; Rebaine, D. A Survey on Obstacle Detection and Avoidance Methods for UAVs. Drones 2025, 9, 203. https://doi.org/10.3390/drones9030203
Merei A, Mcheick H, Ghaddar A, Rebaine D. A Survey on Obstacle Detection and Avoidance Methods for UAVs. Drones. 2025; 9(3):203. https://doi.org/10.3390/drones9030203
Chicago/Turabian StyleMerei, Ahmad, Hamid Mcheick, Alia Ghaddar, and Djamal Rebaine. 2025. "A Survey on Obstacle Detection and Avoidance Methods for UAVs" Drones 9, no. 3: 203. https://doi.org/10.3390/drones9030203
APA StyleMerei, A., Mcheick, H., Ghaddar, A., & Rebaine, D. (2025). A Survey on Obstacle Detection and Avoidance Methods for UAVs. Drones, 9(3), 203. https://doi.org/10.3390/drones9030203