Geostatistical Vegetation Filtering for Rapid UAV-RGB Mapping of Sudden Geomorphological Events in the Mediterranean Areas †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Drone Characteristics and Flight Planification
2.3. Generation of Digital Surface Model (DSM) and Orthomosaic
2.4. Designing Specific Steps for Smoothing and Vegetation Filter
2.5. Assessment of the Highest Statistical Significant Interpolation Methods
3. Results
3.1. Smoothing and Vegetation Filter
3.2. Interpolation Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Viles, H. Technology and Geomorphology: Are Improvements in Data Collection Techniques Transforming Geomorphic Science? Geomorphology 2016, 270, 121–133. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Keesstra, S.D.; Cerdà, A. Updating the Scientific Content of the Modern Geography of Viticulture for Human, Physical and Regional Applied Studies. Mediterr. Geosci. Rev. 2024, 6, 111–121. [Google Scholar] [CrossRef]
- Chen, H.-W.; Chen, C.-Y.; Yang, P.-Z. Using Drone-Based Multispectral Imaging for Investigating Gravelly Debris Flows and Geomorphic Characteristics. Environ. Earth Sci. 2024, 83, 247. [Google Scholar] [CrossRef]
- Mirzaee, S.; Pajouhesh, M.; Imaizumi, F.; Abdollahi, K.; Gomez, C. Gully Erosion Development during an Extreme Flood Event Using UAV Photogrammetry in an Arid Area, Iran. CATENA 2024, 246, 108347. [Google Scholar] [CrossRef]
- Mirzaee, S.; Gomez, C.; Pajouhesh, M.; Abdollahi, K. Chapter 16—Soil Erosion and Sediment Change Detection Using UAV Technology. In Remote Sensing of Soil and Land Surface Processes; Melesse, A.M., Rahmati, O., Khosravi, K., Petropoulos, G.P., Eds.; Earth Observation; Elsevier: Amsterdam, The Netherlands, 2024; pp. 271–279. ISBN 978-0-443-15341-9. [Google Scholar]
- Zhang, J.; Guo, W.; Zhou, B.; Okin, G.S. Drone-Based Remote Sensing for Research on Wind Erosion in Drylands: Possible Applications. Remote Sens. 2021, 13, 283. [Google Scholar] [CrossRef]
- Riddle, L.; Hill, T.; Gijsbertsen, B. Geomorphology from ‘on High’: The Use of Drones/ UAV Technology in Teaching Soil Erosion. J. Geogr. Educ. Afr. 2021, 4, 58–74. [Google Scholar] [CrossRef]
- Takata, Y.; Yamada, H.; Kanuma, N.; Ise, Y.; Kanda, T. Digital Soil Mapping Using Drone Images and Machine Learning at the Sloping Vegetable Fields in Cool Highland in the Northern Kanto Region, Japan. Soil Sci. Plant Nutr. 2023, 69, 221–230. [Google Scholar] [CrossRef]
- Xie, X.; Duan, W.; Yin, Z.; Duan, W.; Bu, J.; Lu, Y. Identification Method of Regional Soil Erosion Characteristics Based on Drone Low Altitude Remote Sensing Technology. In Proceedings of the Fifth International Conference on Geology, Mapping, and Remote Sensing (ICGMRS 2024), Wuhan, China, 12–14 April 2024; SPIE: Bellingham, WA, USA, 2024; Volume 13223, pp. 97–102. [Google Scholar]
- Cândido, B.M.; James, M.; Quinton, J.; Lima, W.d.; Silva, M.L.N. Sediment Source and Volume of Soil Erosion in a Gully System Using UAV Photogrammetry. Rev. Bras. Ciênc. Solo 2020, 44, e0200076. [Google Scholar] [CrossRef]
- Carabassa, V.; Montero, P.; Alcañiz, J.M.; Padró, J.-C. Soil Erosion Monitoring in Quarry Restoration Using Drones. Minerals 2021, 11, 949. [Google Scholar] [CrossRef]
- Mei, A.; Ragazzo, A.V.; Rantica, E.; Fontinovo, G. Statistics and 3D Modelling on Soil Analysis by Using Unmanned Aircraft Systems and Laboratory Data for a Low-Cost Precision Agriculture Approach. AgriEngineering 2023, 5, 1448–1468. [Google Scholar] [CrossRef]
- Xiao, W.; Ren, H.; Sui, T.; Zhang, H.; Zhao, Y.; Hu, Z. A Drone- and Field-Based Investigation of the Land Degradation and Soil Erosion at an Opencast Coal Mine Dump after 5 Years’ Evolution of Natural Processes. Int. J. Coal Sci. Technol. 2022, 9, 42. [Google Scholar] [CrossRef]
- Ruwaimana, M.; Satyanarayana, B.; Otero, V.; Muslim, A.M.; Syafiq A, M.; Ibrahim, S.; Raymaekers, D.; Koedam, N.; Dahdouh-Guebas, F. The Advantages of Using Drones over Space-Borne Imagery in the Mapping of Mangrove Forests. PLoS ONE 2018, 13, e0200288. [Google Scholar] [CrossRef]
- Mohd Noor, N.; Abdullah, A.; Hashim, M. Remote Sensing UAV/Drones and Its Applications for Urban Areas: A Review. IOP Conf. Ser. Earth Environ. Sci. 2018, 169, 012003. [Google Scholar] [CrossRef]
- Bansod, B.; Singh, R.; Thakur, R.; Singhal, G. A Comparision between Satellite Based and Drone Based Remote Sensing Technology to Achieve Sustainable Development: A Review. J. Agric. Environ. Int. Dev. 2017, 111, 383–407. [Google Scholar] [CrossRef]
- Inoue, Y. Satellite- and Drone-Based Remote Sensing of Crops and Soils for Smart Farming—A Review. Soil Sci. Plant Nutr. 2020, 66, 798–810. [Google Scholar] [CrossRef]
- Gray, P.C.; Ridge, J.T.; Poulin, S.K.; Seymour, A.C.; Schwantes, A.M.; Swenson, J.J.; Johnston, D.W. Integrating Drone Imagery into High Resolution Satellite Remote Sensing Assessments of Estuarine Environments. Remote Sens. 2018, 10, 1257. [Google Scholar] [CrossRef]
- Alsamarraie, M.; Ghazali, F.; Hatem, Z.M.; Flaih, A.Y. A Review on the Benefits, Barriers of the Drone Employment in the Construction Site. J. Teknol. Sci. Eng. 2022, 84, 121–131. [Google Scholar] [CrossRef]
- Pensado, E.A.; Carrera, G.F.; López, F.V.; Jorge, H.G.; Ortega, E.M. Turbulence-Aware UAV Path Planning in Urban Environments. In Proceedings of the 2024 International Conference on Unmanned Aircraft Systems (ICUAS), Chania, Greece, 4–7 June 2024; pp. 280–285. [Google Scholar]
- Gao, M.; Hugenholtz, C.H.; Fox, T.A.; Kucharczyk, M.; Barchyn, T.E.; Nesbit, P.R. Weather Constraints on Global Drone Flyability. Sci. Rep. 2021, 11, 12092. [Google Scholar] [CrossRef] [PubMed]
- Thibbotuwawa, A.; Bocewicz, G.; Radzki, G.; Nielsen, P.; Banaszak, Z. UAV Mission Planning Resistant to Weather Uncertainty. Sensors 2020, 20, 515. [Google Scholar] [CrossRef]
- Jeong, N.; Hwang, H.; Matson, E.T. Evaluation of Low-Cost LiDAR Sensor for Application in Indoor UAV Navigation. In Proceedings of the 2018 IEEE Sensors Applications Symposium (SAS), Seoul, Republic of Korea, 12–14 March 2018; pp. 1–5. [Google Scholar]
- Risbøl, O.; Gustavsen, L. LiDAR from Drones Employed for Mapping Archaeology—Potential, Benefits and Challenges. Archaeol. Prospect. 2018, 25, 329–338. [Google Scholar] [CrossRef]
- Kellner, J.R.; Armston, J.; Birrer, M.; Cushman, K.C.; Duncanson, L.; Eck, C.; Falleger, C.; Imbach, B.; Král, K.; Krůček, M.; et al. New Opportunities for Forest Remote Sensing Through Ultra-High-Density Drone Lidar. Surv. Geophys. 2019, 40, 959–977. [Google Scholar] [CrossRef] [PubMed]
- Hout, R.; Maleval, V.; Mahe, G.; Rouvellac, E.; Crouzevialle, R.; Cerbelaud, F. UAV and LiDAR Data in the Service of Bank Gully Erosion Measurement in Rambla de Algeciras Lakeshore. Water 2020, 12, 2748. [Google Scholar] [CrossRef]
- Niculiță, M.; Mărgărint, M.C.; Tarolli, P. Chapter 10—Using UAV and LiDAR Data for Gully Geomorphic Changes Monitoring. In Developments in Earth Surface Processes; Tarolli, P., Mudd, S.M., Eds.; Remote Sensing of Geomorphology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 23, pp. 271–315. [Google Scholar]
- Tak, W.J.; Jun, K.W.; Kim, S.D.; Lee, H.J. Using Drone and LiDAR to Assess Coastal Erosion and Shoreline Change due to the Construction of Coastal Structures. J. Coast. Res. 2020, 95, 674–678. [Google Scholar] [CrossRef]
- Skarlatos, D.; Vlachos, M. Vegetation removal from uav derived dsms, using combination of rgb and nir imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, IV-2, 255–262. [Google Scholar] [CrossRef]
- Anders, N.; Valente, J.; Masselink, R.; Keesstra, S. Comparing Filtering Techniques for Removing Vegetation from UAV-Based Photogrammetric Point Clouds. Drones 2019, 3, 61. [Google Scholar] [CrossRef]
- Pirotti, F.; Guarnieri, A.; Vettore, A. State of the Art of Ground and Aerial Laser Scanning Technologies for High-Resolution Topography of the Earth Surface. Eur. J. Remote Sens. 2013, 46, 66–78. [Google Scholar] [CrossRef]
- Senciales González, J.M.; Rodrigo Comino, J. Geomorfología de Los Montes de Málaga: Pasado, Presente y ¿futuro? BAÉTICA Estud. Arte Geogr. Historia 2011, 33, 81–109. [Google Scholar] [CrossRef]
- Martínez Murillo, J.F.; Ruiz Sinoga, J.D. Incidencia de Algunas Propiedades Físicas de Suelos En Su Respuesta Hidrológica Ante Diferentes Usos Bajo Condiciones Mediterráneas (Montes de Málaga). Edafología 2003, 10, 57–62. [Google Scholar]
- Martínez Murillo, J.F.; Senciales González, J.M. Morfogénesis y Procesos Edáficos: El Caso de Los Montes de Málaga. BAÉTICA Estud. Arte Geogr. Historia 2003, 25, 219–258. [Google Scholar]
- Rodrigo-Comino, J. Los Suelos de la Provincia de Málaga: Revisión y Actualización de las Fuentes Edafológicas Según la Clasificación de FAO-WRB; Servicio de Publicaciones y Divulgación Científica, Universidad de Málaga: Málaga, Spain, 2014; ISBN 978-84-9747-880-9. [Google Scholar]
- IUSS-WRB Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Medina, J.A.S.; Sinoga, J.D.R.; Medina, J.A.S.; Sinoga, J.D.R. La Cuenca del Río Guadalmedina: Peligrosidad Frente a la Erosión Hídrica; UMA Editorial: Málaga, Spain, 2023; ISBN 978-84-13-35251-0. [Google Scholar]
- Valsero, J.J.D. Atlas Hidrogeológico de la Provincia de Málaga; IGME: Madrid, Spain, 2007; ISBN 978-84-7840-675-3. [Google Scholar]
- Rodrigo-Comino, J.; Senciales, J.M.; Sillero-Medina, J.A.; Gyasi-Agyei, Y.; Ruiz-Sinoga, J.D.; Ries, J.B. Analysis of Weather-Type-Induced Soil Erosion in Cultivated and Poorly Managed Abandoned Sloping Vineyards in the Axarquía Region (Málaga, Spain). Air Soil Water Res. 2019, 12, 1178622119839403. [Google Scholar] [CrossRef]
- Passy, P.; Théry, S. The Use of SAGA GIS Modules in QGIS. In QGIS and Generic Tools; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 107–149. ISBN 978-1-119-45709-1. [Google Scholar]
- Yeom, J.; Lee, W.; Kim, T.; Han, Y. Normalized Digital Surface Model Extraction and Slope Parameter Determination through Region Growing of UAV Data. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2019, 37, 499–506. [Google Scholar] [CrossRef]
- Zimmermann, S.; Hoffmann, K. Accuracy Assessment of Normalized Digital Surface Models from Aerial Images Regarding Tree Height Determination in Saxony, Germany. PFG 2017, 85, 257–263. [Google Scholar] [CrossRef]
- Polidori, L.; El Hage, M. Digital Elevation Model Quality Assessment Methods: A Critical Review. Remote Sens. 2020, 12, 3522. [Google Scholar] [CrossRef]
- Mitra, S.; Pundir, S.; Devrani, R.; Arora, A.; Pandey, M.; Costache, R.; Janizadeh, S. An Overview of Morphometry Software Packages, Tools, and Add-Ons. In Advances in Remote Sensing Technology and the Three Poles; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2022; pp. 49–57. ISBN 978-1-119-78775-4. [Google Scholar]
- Katzil, Y.; Doytsher, Y. Height Estimation Methods for Filling Gaps in Gridded DTM. J. Surv. Eng. 2000, 126, 145–162. [Google Scholar] [CrossRef]
- Gavriil, K.; Muntingh, G.; Barrowclough, O.J.D. Void Filling of Digital Elevation Models with Deep Generative Models. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1645–1649. [Google Scholar] [CrossRef]
- Yurish, S. Drones and Unmanned Systems. In Proceedings of the 1st International Conference on Drones and Unmanned Systems (DAUS’ 2025), Granada, Spain, 19–21 February 2025. [Google Scholar]
- Erdogan, S. A Comparision of Interpolation Methods for Producing Digital Elevation Models at the Field Scale. Earth Surf. Process. Landf. 2009, 34, 366–376. [Google Scholar] [CrossRef]
- Chaplot, V.; Darboux, F.; Bourennane, H.; Leguédois, S.; Silvera, N.; Phachomphon, K. Accuracy of Interpolation Techniques for the Derivation of Digital Elevation Models in Relation to Landform Types and Data Density. Geomorphology 2006, 77, 126–141. [Google Scholar] [CrossRef]
- Li, S.; Hu, G.; Cheng, X.; Xiong, L.; Tang, G.; Strobl, J. Integrating Topographic Knowledge into Deep Learning for the Void-Filling of Digital Elevation Models. Remote Sens. Environ. 2022, 269, 112818. [Google Scholar] [CrossRef]
- Li, S.; Xiong, L.; Tang, G.; Strobl, J. Deep Learning-Based Approach for Landform Classification from Integrated Data Sources of Digital Elevation Model and Imagery. Geomorphology 2020, 354, 107045. [Google Scholar] [CrossRef]
- Polidori, L.; El Hage, M.; Valeriano, M.D.M. Digital Elevation Model Validation with No Ground Control: Application to the Topodata Dem in Brazil. Bol. Ciênc. Geod. 2014, 20, 467–479. [Google Scholar] [CrossRef]
- Murphy, P.N.C.; Ogilvie, J.; Meng, F.-R.; Arp, P. Stream network modelling using lidar and photogrammetric digital elevation models: A comparison and field verification. Hydrol. Process. 2008, 22, 1747–1754. [Google Scholar] [CrossRef]
- Bae, J.H.; Han, J.; Lee, D.; Yang, J.E.; Kim, J.; Lim, K.J.; Neff, J.C.; Jang, W.S. Evaluation of Sediment Trapping Efficiency of Vegetative Filter Strips Using Machine Learning Models. Sustainability 2019, 11, 7212. [Google Scholar] [CrossRef]
- Pan, W.; Wang, X.; Sun, Y.; Wang, J.; Li, Y.; Li, S. Karst Vegetation Coverage Detection Using UAV Multispectral Vegetation Indices and Machine Learning Algorithm. Plant Methods 2023, 19, 7. [Google Scholar] [CrossRef] [PubMed]
Interpolation Method | RMSE | R2 |
---|---|---|
Empirical Bayesian Kriging | 0.037 | 0.999993 |
Radial Basis Functions: Multiquadric | 0.038 | 0.999992 |
Radial Basis Functions: Completely Regularized Spline | 0.043 | 0.999990 |
Radial Basis Functions: Spline With Tension | 0.045 | 0.999989 |
Inverse Distance Weighting | 0.052 | 0.999986 |
Radial Basis Functions: Inverse Multiquadric | 0.060 | 0.999981 |
Ordinary Kriging | 0.067 | 0.999977 |
Universal Kriging | 0.067 | 0.999977 |
Simple Kriging | 0.11 | 0.999940 |
Statistics | Original DSM | Final DEM |
---|---|---|
Minimum (m) | 410.15 | 410.15 |
Maximum (m) | 501.95 | 501.50 |
Mean (m) | 469.99 | 469.74 |
Range (m) | 91.81 | 91.36 |
Standard deviation (m) | 25.44 | 25.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Moreno, M.T.; Rodrigo-Comino, J. Geostatistical Vegetation Filtering for Rapid UAV-RGB Mapping of Sudden Geomorphological Events in the Mediterranean Areas. Drones 2025, 9, 441. https://doi.org/10.3390/drones9060441
González-Moreno MT, Rodrigo-Comino J. Geostatistical Vegetation Filtering for Rapid UAV-RGB Mapping of Sudden Geomorphological Events in the Mediterranean Areas. Drones. 2025; 9(6):441. https://doi.org/10.3390/drones9060441
Chicago/Turabian StyleGonzález-Moreno, María Teresa, and Jesús Rodrigo-Comino. 2025. "Geostatistical Vegetation Filtering for Rapid UAV-RGB Mapping of Sudden Geomorphological Events in the Mediterranean Areas" Drones 9, no. 6: 441. https://doi.org/10.3390/drones9060441
APA StyleGonzález-Moreno, M. T., & Rodrigo-Comino, J. (2025). Geostatistical Vegetation Filtering for Rapid UAV-RGB Mapping of Sudden Geomorphological Events in the Mediterranean Areas. Drones, 9(6), 441. https://doi.org/10.3390/drones9060441