UAV Autonomous Navigation System Based on Air–Ground Collaboration in GPS-Denied Environments
Abstract
:1. Introduction
- An autonomous navigation system based on air–ground collaboration is proposed. The system leverages the perspective advantage of an aerial surveillance UAV swarm and utilizes its wide-area bird’s-eye view (BEV), perceiving and efficiently constructing global 3D data models of unknown environments. Based on the constructed model, the system performs rapid path planning and trajectory tracking control for the near-ground navigation UAV from the start position to the target. Concurrently, the aerial surveillance UAV swarm provides the real-time position information of the near-ground navigation UAV during flight. The proposed system achieves the collision-free autonomous navigation of UAVs from the start position to the target in GPS-denied scenarios with no prior global environmental data model.
- A global 3D environmental data modeling and cooperative positioning method based on multi-UAV swarm perception is proposed. This method utilizes the powerful environmental perception capabilities of aerial surveillance UAV swarms. Through UAV BEV image stitching and object detection, the distribution of obstacles and semantic information about the unknown environment are obtained, and a map of the unknown environment is constructed in real time and efficiently. Meanwhile, the position of the near-ground navigation UAV in the environment can be computed using the UWB range perception between the aerial surveillance swarm and the near-ground navigation UAV.
- An outdoor UAV autonomous navigation live flight experiment is conducted. The results demonstrate the feasibility and effectiveness of the proposed system, as well as the cooperative positioning and global 3D environmental data modeling method.
2. Related Work
2.1. Mutual Assistance Systems
2.2. Complementary Systems
3. Methods
3.1. Overall System Architecture
3.2. Multi-UAV Swarm Perception-Based Environmental Modeling and Cooperative Positioning Method
4. Results
4.1. UAV Cooperative Positioning Experiment
4.2. UAV Autonomous Navigation Experiment Based on Air–Ground Collaboration
Reference | Map Construction Strategy | Localization Method | System Type | Trajectory Planning Strategy | Planning Timeliness |
---|---|---|---|---|---|
[10] | Local map update; data sharing | GPS-based | Mutual assistance | Distributed local planning | Real-time |
[34] | Local map update; data sharing | GPS-denied; LiDAR SLAM | Mutual assistance | Global planning + local obstacle avoidance | Real-time |
[38] | Global map update | GPS-denied; heterogeneous sensor feature matching | Complementary | Preplanned global path | Non-real-time |
[24] | Local + global map update | GPS-denied; heterogeneous sensor feature matching | Complementary | Preplanned global path | Non-real-time |
[39] | No explicit map construction | GPS-based; projected-imaging heterogeneous sensor matching | Complementary | Preplanned global path + local obstacle avoidance | Real-time |
This work | Global map update | GPS-denied; aerial UWB mobile anchor trilateration | Complementary | Global planning | Real-time |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- AlMahamid, F.; Grolinger, K. Autonomous Unmanned Aerial Vehicle Navigation Using Reinforcement Learning: A Systematic Review. Eng. Appl. Artif. Intell. 2022, 115, 105321. [Google Scholar] [CrossRef]
- Soria, E.; Schiano, F.; Floreano, D. Predictive Control of Aerial Swarms in Cluttered Environments. Nat. Mach. Intell. 2021, 3, 545–554. [Google Scholar] [CrossRef]
- Jarraya, I.; Al-Batati, A.; Kadri, M.B.; Abdelkader, M.; Ammar, A.; Boulila, W.; Koubaa, A. GNSS-Denied Unmanned Aerial Vehicle Navigation: Analyzing Computational Complexity, Sensor Fusion, and Localization Methodologies. Satell. Navig. 2025, 6, 9. [Google Scholar] [CrossRef]
- Liu, X.; Nardari, G.V.; Cladera Ojeda, F.; Tao, Y.; Zhou, A.; Donnelly, T.; Qu, C.; Chen, S.W.; Romero, R.A.F.; Taylor, C.J.; et al. Large-Scale Autonomous Flight with Real-Time Semantic SLAM Under Dense Forest Canopy. IEEE Robot. Autom. Lett. 2022, 7, 5512–5519. [Google Scholar] [CrossRef]
- Al-Kaff, A.; Martin, D.; Garcia, F.; de la Escalera, A.; Armingol, J.M. Survey of Computer Vision Algorithms and Applications for Unmanned Aerial Vehicles. Expert Syst. Appl. 2018, 92, 447–463. [Google Scholar] [CrossRef]
- Rasheed, A.A.A.; Abdullah, M.N.; Al-Araji, A.S. A Review of Multi-Agent Mobile Robot Systems Applications. Int. J. Electr. Comput. Eng. 2022, 12, 3517–3529. [Google Scholar] [CrossRef]
- Kaufmann, E.; Bauersfeld, L.; Loquercio, A.; Müller, M.; Koltun, V.; Scaramuzza, D. Champion-Level Drone Racing Using Deep Reinforcement Learning. Nature 2023, 620, 982–987. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Zong, Q.; Tian, B.; Lu, H. Voxel-Based Localization and Mapping for Multirobot System in GPS-Denied Environments. IEEE Trans. Ind. Electron. 2022, 69, 10333–10342. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, W. A UAV Navigation Approach Based on Deep Reinforcement Learning in Large Cluttered 3D Environments. IEEE Trans. Veh. Technol. 2023, 72, 3001–3014. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, K.; Chen, Y.; Jiang, X.; Song, G. Multi-UAV Navigation for Partially Observable Communication Coverage by Graph Reinforcement Learning. IEEE Trans. Mob. Comput. 2023, 22, 4056–4069. [Google Scholar] [CrossRef]
- Wu, K.; Wang, H.; Esfahani, M.A.; Yuan, S. Learn to Navigate Autonomously Through Deep Reinforcement Learning. IEEE Trans. Ind. Electron. 2022, 69, 5342–5352. [Google Scholar] [CrossRef]
- Chen, Q.; Xue, B.; Zhang, M. Genetic Programming for Instance Transfer Learning in Symbolic Regression. IEEE Trans. Cybern. 2022, 52, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, M.M.; Saeed, Z.; Akhtar, A.; Munawar, H.; Yousaf, M.H.; Baloach, N.K.; Hussain, F. A Review of Swarm Robotics in a NutShell. Drones 2023, 7, 269. [Google Scholar] [CrossRef]
- Jin, Y.; Wei, S.; Yuan, J.; Zhang, X. Hierarchical and Stable Multiagent Reinforcement Learning for Cooperative Navigation Control. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 90–103. [Google Scholar] [CrossRef]
- Zhou, X.; Wen, X.; Wang, Z.; Gao, Y.; Li, H.; Wang, Q.; Yang, T.; Lu, H.; Cao, Y.; Xu, C.; et al. Swarm of Micro Flying Robots in the Wild. Sci. Robot. 2022, 7, eabm5954. [Google Scholar] [CrossRef]
- Berlinger, F.; Gauci, M.; Nagpal, R. Implicit Coordination for 3D Underwater Collective Behaviors in a Fish-Inspired Robot Swarm. Sci. Robot. 2021, 6, eabd8668. [Google Scholar] [CrossRef]
- Fu, J.; Wen, G.; Yu, X.; Wu, Z.-G. Distributed Formation Navigation of Constrained Second-Order Multiagent Systems with Collision Avoidance and Connectivity Maintenance. IEEE Trans. Cybern. 2022, 52, 2149–2162. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, W. Multi-Agent Deep Reinforcement Learning for UAVs Navigation in Unknown Complex Environment. IEEE Trans. Intell. Veh. 2024, 9, 2290–2303. [Google Scholar] [CrossRef]
- Fan, T.; Long, P.; Liu, W.; Pan, J. Distributed Multi-Robot Collision Avoidance via Deep Reinforcement Learning for Navigation in Complex Scenarios. Int. J. Robot. Res. 2020, 39, 856–892. [Google Scholar] [CrossRef]
- Miller, I.D.; Cladera, F.; Smith, T.; Taylor, C.J.; Kumar, V. Stronger Together: Air-Ground Robotic Collaboration Using Semantics. IEEE Robot. Autom. Lett. 2022, 7, 9643–9650. [Google Scholar] [CrossRef]
- Miller, I.D.; Cladera, F.; Smith, T.; Taylor, C.J.; Kumar, V. Air-Ground Collaboration with SPOMP: Semantic Panoramic online Mapping and Planning. IEEE Trans. Field Robot. 2024, 1, 93–112. [Google Scholar] [CrossRef]
- Mayya, S.; D’Antonio, D.S.; Saldaña, D.; Kumar, V. Resilient Task Allocation in Heterogeneous Multi-Robot Systems. IEEE Robot. Autom. Lett. 2021, 6, 1327–1334. [Google Scholar] [CrossRef]
- Chandran, I.; Vipin, K. Network Analysis of Decentralized Fault-Tolerant UAV Swarm Coordination in Critical Missions. Drone Syst. Appl. 2024, 12, 1–15. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, R.; Yin, K.; Wang, Z.; Gui, M.; Chen, S. Intelligent Collaborative Localization Among Air-Ground Robots for Industrial Environment Perception. IEEE Trans. Ind. Electron. 2019, 66, 9673–9681. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Miao, Z.; Mo, Y.; Feng, M.; Zhou, Z.; Wang, H. Transformer-Based Imitative Reinforcement Learning for Multirobot Path Planning. IEEE Trans. Ind. Inform. 2023, 19, 10233–10243. [Google Scholar] [CrossRef]
- Jiang, H.; Esfahani, M.A.; Wu, K.; Wan, K.-W.; Heng, K.-K.; Wang, H.; Jiang, X. iTD3-CLN: Learn to Navigate in Dynamic Scene Through Deep Reinforcement Learning. Neurocomputing 2022, 503, 118–128. [Google Scholar] [CrossRef]
- Jin, Z.; Wu, J.; Liu, A.; Zhang, W.A.; Yu, L. Policy-Based Deep Reinforcement Learning for Visual Servoing Control of Mobile Robots with Visibility Constraints. IEEE Trans. Ind. Electron. 2022, 69, 1898–1908. [Google Scholar] [CrossRef]
- Wang, D.; Deng, H. Multirobot Coordination with Deep Reinforcement Learning in Complex Environments. Expert Syst. Appl. 2021, 180, 115128. [Google Scholar] [CrossRef]
- Dong, L.; He, Z.C.; Song, C.W.; Sun, C.Y. A Review of Mobile Robot Motion Planning Methods: From Classical Motion Planning Workflows to Reinforcement Learning-Based Architectures. J. Syst. Eng. Electron. 2023, 34, 439–459. [Google Scholar] [CrossRef]
- Puente-Castro, A.; Rivero, D.; Pedrosa, E.; Pereira, A.; Lau, N.; Fernandez-Blanco, E. Q-Learning Based System for Path Planning with Unmanned Aerial Vehicles Swarms in Obstacle Environments. Expert Syst. Appl. 2024, 235, 121240. [Google Scholar] [CrossRef]
- Li, Y.; Aghvami, A.H.; Dong, D. Intelligent Trajectory Planning in UAV-Mounted Wireless Networks: A Quantum-Inspired Reinforcement Learning Perspective. IEEE Wireless Commun. Lett. 2021, 10, 1994–1998. [Google Scholar] [CrossRef]
- Li, Y.; Aghvami, A.H.; Dong, D. Path Planning for Cellular-Connected UAV: A DRL Solution with Quantum-Inspired Experience Replay. IEEE Trans. Wirel. Commun. 2022, 21, 7897–7912. [Google Scholar] [CrossRef]
- Munasinghe, I.; Perera, A.; Deo, R.C. A Comprehensive Review of UAV-UGV Collaboration: Advancements and Challenges. J. Sens. Actuator Netw. 2024, 13, 81. [Google Scholar] [CrossRef]
- Tang, Y.; Hu, Y.; Cui, J.; Liao, F.; Lao, M.; Lin, F.; Teo, R.S.H. Vision-Aided Multi-UAV Autonomous Flocking in GPS-Denied Environment. IEEE Trans. Ind. Electron. 2019, 66, 616–626. [Google Scholar] [CrossRef]
- Shi, C.; Xiong, Z.; Chen, M.; Wang, R.; Xiong, J. Cooperative Navigation for Heterogeneous Air-Ground Vehicles Based on Interoperation Strategy. Remote Sens. 2023, 15, 2006. [Google Scholar] [CrossRef]
- DeTone, D.; Malisiewicz, T.; Rabinovich, A. Superpoint: Self-Supervised Interest Point Detection and Description. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar] [CrossRef]
- Sarlin, P.E.; DeTone, D.; Malisiewicz, T.; Rabinovich, A. Superglue: Learning Feature Matching with Graph Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar] [CrossRef]
- He, J.; Zhou, Y.; Huang, L.; Kong, Y.; Cheng, H. Ground and Aerial Collaborative Mapping in Urban Environments. IEEE Robot. Autom. Lett. 2020, 6, 95–102. [Google Scholar] [CrossRef]
- Liu, D.; Bao, W.; Zhu, X.; Fei, B.; Xiao, Z.; Men, T. Vision-Aware Air-Ground Cooperative Target Localization for UAV and UGV. Aerospace Sci. Technol. 2022, 124, 107525. [Google Scholar] [CrossRef]
UAV Path Point | Ground Truth Position Data/cm | Cooperative Positioning Data/cm |
---|---|---|
1 | (68.3, 79.5, −155.4) | (76.2, 71.7, −146.8) |
2 | (63.0, 157.0, −124.1) | (72.3, 164.4, −116.6) |
3 | (137.5, 76.7, −147.8) | (144.2, 67.3, −155.4) |
4 | (163.4, 153.2, −131.7) | (173.4, 160.3, −139.8) |
5 | (216.5, 63.3, −140.2) | (221.7, 69.4, −132.2) |
6 | (236.8, 166.4, −140.2) | (246.4, 157.6, −131.7) |
7 | (329.4, 69.7, −131.7) | (319.3, 75.6, −141.8) |
8 | (341.5, 168.9, −147.8) | (335.8, 162.5, −137.6) |
9 | (389.3, 63.5, −124.1) | (398.3, 71.2, −117.3) |
10 | (382.1, 162.6, −155.4) | (389.3, 168.9, −147.6) |
Average Positioning Error Along X-Axis | Average Positioning Error Along Y-Axis | Average Positioning Error Along Z-Axis | |
---|---|---|---|
Average positioning error/cm | 8.07 | 7.29 | 8.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, P.; Xin, J.; Huang, Y.; Zhao, J.; Zhang, C.; Chen, W.; Shan, M. UAV Autonomous Navigation System Based on Air–Ground Collaboration in GPS-Denied Environments. Drones 2025, 9, 442. https://doi.org/10.3390/drones9060442
Yue P, Xin J, Huang Y, Zhao J, Zhang C, Chen W, Shan M. UAV Autonomous Navigation System Based on Air–Ground Collaboration in GPS-Denied Environments. Drones. 2025; 9(6):442. https://doi.org/10.3390/drones9060442
Chicago/Turabian StyleYue, Pengyu, Jing Xin, Yan Huang, Jiahang Zhao, Christopher Zhang, Wei Chen, and Mao Shan. 2025. "UAV Autonomous Navigation System Based on Air–Ground Collaboration in GPS-Denied Environments" Drones 9, no. 6: 442. https://doi.org/10.3390/drones9060442
APA StyleYue, P., Xin, J., Huang, Y., Zhao, J., Zhang, C., Chen, W., & Shan, M. (2025). UAV Autonomous Navigation System Based on Air–Ground Collaboration in GPS-Denied Environments. Drones, 9(6), 442. https://doi.org/10.3390/drones9060442