Development of an Additive Manufacturing System for the Deposition of Thermoplastics Impregnated with Carbon Fibers †
Abstract
:1. Introduction
1.1. Processing of Composite Reinforced with Fibers
1.2. Additive Manufacturing by Filamentary Fusion
- the first group is comprised of customized, technologically complex equipment, and developed by a small group of companies with capacity and technological knowledge of the process. This kind of equipment allows for the 3D deposition of fibers and is used in the production of medium/large-sized components with a high cost, for applications of high performance, such as aeronautics and aerospace areas [35,36];
- the second group consists of small filamentary fused additive manufacturing equipment with the capability to process 2D fibers in a plane; the number of manufacturers of this class of equipment is even smaller, with the current commercial offer being limited to a single manufacturer. This kind of equipment has the capacity to produce small components at a reduced cost for medium performance applications [37].
2. Materials and Methods
2.1. Fiber Deposition System
2.2. Materials
2.2.1. Uniaxial Tensile Tests
2.2.2. Three-Point Bending Tests
2.2.3. Morphological and Microstructural Analyses
3. Results and Discussion
3.1. Uniaxial Tensile Tests
3.2. Three-Point Bending Tests
3.3. Scanning Electron Microscopy (SEM) Results
4. Conclusions and Future Developments
Author Contributions
Funding
Conflicts of Interest
References
- Mohan, N.; Senthil, P.; Vinodh, S.; Jayanth, N. A Review on Composite Materials and Process Parameters Optimization for the Fused Deposition Modelling Process. Virtual Phys. Prototyp. 2017, 12, 47–59. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling. Compos. Part B Eng. 2015, 80, 369–378. [Google Scholar] [CrossRef]
- August, Z.; Ostrander, G.; Michasiow, J.; Dynamics, D.H.A. Recent Developments in Automated Fiber Placement of Thermoplastic Composites. SAMPE J. 2014, 50, 30–37. [Google Scholar]
- Mazumdar, S. Composites Manufacturing: Materials, Product, and Process Engineering; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Bernet, N.; Michaud, V.; Bourban, P.E.; Månson, J.A. Commingled Yarn Composites for Rapid Processing of Complex Shapes. Compos. Part A Appl. Sci. Manuf. 2001, 32, 1613–1626. [Google Scholar] [CrossRef]
- Wiedmer, S.; Manolesos, M. An Experimental Study of the Pultrusion of Carbon Fiber-Polyamide 12 Yarn. J. Thermoplast. Compos. Mater. 2006, 19, 97–112. [Google Scholar] [CrossRef] [Green Version]
- Bernet, N.; Michaud, V.; Bourban, P.E.; Manson, J.A. An Impregnation Model for the Consolidation of Thermoplastic Composites Made from Commingled Yarns. J. Compos. Mater. 1999, 33, 751–772. [Google Scholar] [CrossRef]
- Friedrich, K.; Fakirov, S.; Zhang, Z. Polymer Composites; Springer: Boston, MA, USA, 2005. [Google Scholar]
- Silva, J. Pré-Impregnados De Matriz Termoplástica: Fabrico e Transformação Por Compressão a Quente e Enrolamento Filamentar. Ph.D. Thesis, University of Porto, Porto, Portugal, 2005. [Google Scholar]
- Bernhardsson, J.; Shishoo, R. Effect of Processing Parameters on Consolidation Quality of GF/PP Commingled Yarn Based Composites. J. Thermoplast. Compos. Mater. 2000, 13, 292–313. [Google Scholar] [CrossRef]
- Guo, N.; Leu, M.C. Additive Manufacturing: Technology, Applications and Research Needs. Front. Mech. Eng. 2013, 8, 215–243. [Google Scholar] [CrossRef]
- Stansbury, J.W.; Idacavage, M.J. 3D Printing with Polymers: Challenges among Expanding Options and Opportunities. Dent. Mater. 2016, 32, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, O.; Masood, S.; Bhowmik, J. Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Adv. Manuf. 2015, 3, 42–53. [Google Scholar] [CrossRef]
- Gibson, R. Principles of Composite Material Mechanics; McGraw-Hill: New York, NY, USA; Singapore, 1994. [Google Scholar]
- Chung, D.D.L. Composite Materials: Science and Applications; Springer Science & Business Media: Heidelberg, Germany, 2010. [Google Scholar]
- Gay, D.; Hoa, S.V. Composite Materials: Design and Applications; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Silva, M.; Pereira, A.M.; Alves, N.; Mateus, A.; Malça, C. A Hybrid Processing Approach to the Manufacturing of Polyamide Reinforced Parts with Carbon Fibers. Procedia Manuf. 2017, 12, 195–202. [Google Scholar] [CrossRef]
- Goodship, V. (Ed.) Practical Guide to Injection Molding; iSmithers Rapra Publishing: Shropshire, UK, 2004. [Google Scholar]
- Mohanty, A.K.; Misra, M.; Hinrichsen, G. Biofibres, Biodegradable Polymers and Biocomposites: An overview. Macromol. Mater. Eng. 2000, 12, 1–24. [Google Scholar] [CrossRef]
- Li, N.; Li, Y.; Liu, S. Rapid Prototyping of Continuous Carbon Fiber Reinforced Polylactic Acid Composites by 3D Printing. J. Mater. Process. Technol. 2016, 238, 218–225. [Google Scholar] [CrossRef]
- Ochi, S. Flexural Properties of Long Bamboo Fiber/PLA Composites. Open J. Compos. Mater. 2015, 5, 70–78. [Google Scholar] [CrossRef]
- Endo, M.; Dresselhaus, M.S. Carbon Fibers and Carbon Nanotubes; MIT: Cambridge, MA, USA, 2016. [Google Scholar]
- Soutis, C. Carbon Fiber Reinforced Plastics in Aircraft Construction. Mater. Sci. Eng. A. 2005, 412, 171–176. [Google Scholar] [CrossRef]
- Zoltek. Available online: http://zoltek.com/carbonfiber/ (accessed on 2 August 2018).
- Moura, M.F.; Morais, A.B.; Magalhães, A.G. Materiais Compósitos—Materiais, Fabrico e Comportamento Mecânico; Publindustria-Produção de Comunicação, Lda: Praça da Corujeira, Portugal, 2011. [Google Scholar]
- Cirino, M.; Watson, T.P. Composite Structure Fabrication with In-Situ Consolidation of APC-2/AS4. In Proceedings of the 36th Internacional Sampe Symposium, San Diego, CA, USA, 15–18 April 1991. [Google Scholar]
- Shappe Techniques. Available online: http://www.schappe.com/ (accessed on 2 September 2018).
- Thomann, U.I. Direct Stamp Forming of Non-Consolidated Carbon/Thermoplastic Fiber Commingled Yarns. Ph.D. Thesis, Ècole Polytechnique Fédérale de Zurich, Zurich, Switzerland, 2003. [Google Scholar]
- Hull, D. An Introduction to Composite Materials; Cambridge University Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Swensson, S.; Shishoo, R. Manufacturing of Thermoplastics Composites from Commingled Yarns, A Review. J. Thermoplast. Compos. Mater. 1988, 11, 22–56. [Google Scholar] [CrossRef]
- Stratasys. Available online: http://www.stratasys.com/3d-printers/technologies/fdm-technology (accessed on 1 August 2018).
- Love, L.J.; Kunc, V.; Rios, O.; Duty, C.E.; Elliott, A.M.; Post, B.K.; Smith, R.J.; Blue, C.A. The Importance of Carbon Fiber to Polymer Additive Manufacturing. J. Mater. Res. 2014, 29, 1893–1898. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D Printing of Polymer Matrix Composites: A Review and Prospective. Compos. Part B Eng. 2017, 110, 442–458. [Google Scholar] [CrossRef]
- CompositesWorld, Out of Autoclave. Available online: http://www.compositesworld.com/articles/out-of-autoclave-processing (accessed on 5 February 2018).
- Melocchi, A.; Parietti, F.; Loreti, G.; Maroni, A.; Gazzaniga, A.; Zema, L. 3D Printing by Fused Deposition Modeling (FDM) of a Swellable/Erodible Capsular Device for Oral Pulsatile Release of Drugs. J. Drug Deliv. Sci. Technol. 2015, 30, 360–367. [Google Scholar] [CrossRef]
- Automateddynamics. Available online: http://www.automateddynamics.com/ (accessed on 9 June 2018).
- Markforged. Available online: https://markforged.com/mark-two/ (accessed on 1 August 2018).
- Anisoprint. Available online: http://anisoprint.com/ (accessed on 1 August 2018).
- Goh, G.D.; Dikshit, V.; Nagalingam, A.P.; Goh, G.L.; Agarwala, S.; Sing, S.L.; Wei, J.; Yeong, W.Y. Characterization of Mechanical Properties and Fracture Mode of Additively Manufactured Carbon Fiber and Glass Fiber Reinforced Thermoplastics. Mater. Des. 2018, 137, 79–89. [Google Scholar] [CrossRef]
- ED3-Online. Available online: http://e3d-online.com/E3D-v6 (accessed on 9 January 2018).
- Landry, T. Matterhackers. Available online: https://www.matterhackers.com/news/filament-and-water (accessed on 3 August 2018).
- ASTM D790. Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulation Materials; ASTM International (American Society for Testing and Materials): West Conshohocken, PA, USA, 2002. [Google Scholar]
Type of Fiber | Modulus of Elasticity [MPa] | Tensile Strength [MPa] | Deformation at Break [%] | Thermal Expansion Coefficient [10−6/°C] | Density [g/cm3] |
---|---|---|---|---|---|
PAN | 200–400 | 2480–5600 | 0.6–1.2 | −0.7 to −0.5 | 1.8 |
Processing Parameters | Units | Value |
---|---|---|
Construction platform temperature | °C | 110 |
Deposition temperature | °C | 270 |
Deposition speed | mm/s | 5 |
Nozzle inner diameter | mm | 1.5 |
Layer height | mm | 1 |
Layer width | mm | 1.5 |
Density [g/cm3] | Melting Viscosity [Pa·s] | Glass Transition Temperature [°C] | Melting Temperature [°C] | Elasticity Modulus [MPa] |
---|---|---|---|---|
1.01 | 250 | 42 | 178 | 1100 |
Properties | Units | 1 K Yarn | 3 K Yarn |
---|---|---|---|
Total volume fraction of carbon fibers, 𝑉𝑓𝑐 | % | 55 | 55 |
Length of carbon fibers, 𝐿𝑓𝑐 | mm | 50 | 200 |
Length of PA12 fibers, 𝐿𝑓𝑚 | mm | 75 | 85 |
Density of carbon fibers, 𝜌𝑐 | g/cm3 | 1.77 | 1.77 |
Density of matrix, 𝜌𝑚 | g/cm3 | 1.01 | 1.01 |
Diameter of carbon fibers, 𝐷𝑓𝑐 | μm | 5 | 7 |
Diameter fibers of PA12, 𝐷𝑓𝑚 | μm | 20 | 20 |
CF/PA12 Yarn | Units | 1 K Yarn | 3 K Yarn |
---|---|---|---|
Young modulus of the matrix, EM | GPa | 1.1 | 1.1 |
Young modulus of the carbon fiber, EF | GPa | 240 | 240 |
Carbon fiber volume fraction, Vfc | 1 | 0.0345 | 0.1173 |
Carbon fiber average length, LF | mm | 100 | 100 |
Carbon fiber diameter, DF | μm | 7 | 7 |
Young modulus of composites (Continuous CF), E1 | GPa | 9.34 | 29.12 |
Young modulus of composites (Long CF), E1disc | GPa | 9.28 | 28.93 |
ξ | 1 | 28,571.4 | 28,571.4 |
η | 1 | 0.007544 | 0.007544 |
Sample Reference | B [mm] | H [mm] | Maximum Force [N] | Ultimate Strength [MPa] | Mean Ultimate Strength [MPa] | Standard Deviation [MPa] |
---|---|---|---|---|---|---|
F_3K_2_1 | 13.6 | 2 | 84.6 | 74.6 | ||
F_3K_2_2 | 14.3 | 2 | 93.0 | 78.0 | 81.3 | 8.7 |
F_3K_2_3 | 14.3 | 1.6 | 69.6 | 91.2 | ||
F_3K_4_1 | 14.3 | 3.7 | 312.4 | 76.6 | ||
F_3K_4_2 | 13.9 | 4 | 314.3 | 67.8 | 71.2 | 4.9 |
F_3K_4_3 | 14.1 | 3.5 | 266.6 | 74.1 | ||
F_3K_4_4 | 14.2 | 4 | 313.7 | 66.3 | ||
F_1K_2_1 | 14.5 | 2.4 | 77.4 | 44.5 | ||
F_1K_2_2 | 14.4 | 2.3 | 62.0 | 39.1 | 42.8 | 3.2 |
F_1K_2_3 | 14.5 | 2.3 | 71.8 | 44.9 | ||
F_1K_4_1 | 14.2 | 3.8 | 217.5 | 50.9 | ||
F_1K_4_2 | 14.2 | 4 | 224.0 | 47.3 | 48.5 | 2.6 |
F_1K_4_3 | 14.2 | 4.2 | 246.2 | 47.2 | ||
F_PA_4_1 | 15 | 4.4 | 582.2 | 96.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis Silva, M.; Pereira, A.M.; Alves, N.; Mateus, G.; Mateus, A.; Malça, C. Development of an Additive Manufacturing System for the Deposition of Thermoplastics Impregnated with Carbon Fibers. J. Manuf. Mater. Process. 2019, 3, 35. https://doi.org/10.3390/jmmp3020035
Reis Silva M, Pereira AM, Alves N, Mateus G, Mateus A, Malça C. Development of an Additive Manufacturing System for the Deposition of Thermoplastics Impregnated with Carbon Fibers. Journal of Manufacturing and Materials Processing. 2019; 3(2):35. https://doi.org/10.3390/jmmp3020035
Chicago/Turabian StyleReis Silva, Miguel, António M. Pereira, Nuno Alves, Gonçalo Mateus, Artur Mateus, and Cândida Malça. 2019. "Development of an Additive Manufacturing System for the Deposition of Thermoplastics Impregnated with Carbon Fibers" Journal of Manufacturing and Materials Processing 3, no. 2: 35. https://doi.org/10.3390/jmmp3020035
APA StyleReis Silva, M., Pereira, A. M., Alves, N., Mateus, G., Mateus, A., & Malça, C. (2019). Development of an Additive Manufacturing System for the Deposition of Thermoplastics Impregnated with Carbon Fibers. Journal of Manufacturing and Materials Processing, 3(2), 35. https://doi.org/10.3390/jmmp3020035