The Effect of Multiple-Time Applications of Metal Primers Containing 10-MDP on the Repair Strength of Base Metal Alloys to Resin Composite
Abstract
1. Introduction
2. Materials and Methods
2.1. Base Metal Alloys’ Preparation
2.2. Chemical Surface Treatment of Base Metal Alloys
2.3. Bonding with Resin Composite
2.4. Shear Bond Strength and Debonded-Surface Analysis
- (a)
- Breakage originates at the interface between the resin composite and base metal alloys in the adhesive pattern;
- (b)
- Brake beneath the resin composite material; cohesive pattern mode;
- (c)
- Adhesive and cohesive pattern modes were combined to create mixed pattern modes.
2.5. Analytical Statistics
3. Results
3.1. SBS Data
3.2. Failure-Type Patterns
4. Discussion
5. Conclusions
- (1)
- The performance of the adhesive agent alone (6.14 ± 1.12 MPa) was not as good as that of the metal primers with 10-MDP applied once (13.36 ± 2.58 MPa) or twice (14.95 ± 1.87 MPa) before the adhesive agent.
- (2)
- The repair shear bonding ability was three times higher when three to five applications of metal primers containing 10-MDP (21.49 ± 1.33, 20.21 ± 2.08, 20.98 ± 2.69 MPa, respectively) were combined with an adhesive agent, but there was no significant difference between three-time and five-time applications.
- (3)
- To achieve superior repair shear bonding ability at the base metal alloys and resin composite interface, the sandblasted surface of base metal alloys should be coated with three applications (21.49 ± 1.33 MPa) of a metal primer containing 10-MDP before applying the adhesive agent.
- (4)
- The novel protocol for treating the surface of a base metal alloy repaired with resin composites involved using a metal primer with 10-MDP three times before using the adhesive agent.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ozcan, M. Evaluation of alternative intra-oral techniques for fractured ceramic-fused-to-metal restorations. J. Oral Rehabil. 2003, 30, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Blum, I.R.; Jagger, D.C.; Wilson, N.H. Defective dental restorations: To repair or not to repair? Part 2: All–ceramics and porcelain fused to metal systems. Dent. Update 2011, 3, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Q.; Meng, X.; Ye, Y.; Feng, D.; Xue, J.; Wang, H.; Huang, H.; Wang, M.; Wang, J. Rheological and mechanical properties of resin-based materials applied in dental restorations. Polymers 2021, 13, 2975. [Google Scholar] [CrossRef]
- Klaisiri, A.; Krajangta, N.; Peampring, C.; Sriamporn, T.; Thamrongananskul, N.; Neff, A.; Pitak-Arnnop, P. Shear bond strength of different functional monomer in universal adhesives at the resin composite/base metal alloys interface. J. Int. Dent. Med. Res. 2021, 14, 187–191. [Google Scholar]
- Yoo, J.Y.; Yoon, H.I.; Park, J.M.; Park, E.J. Porcelain repair—Influence of different systems and surface treatments on resin bond strength. J. Adv. Prosthodont. 2015, 7, 343–348. [Google Scholar] [CrossRef]
- Chang, J.C. Amalgam repair with a 4-META resin. J. Prosthet. Dent. 2004, 92, 506–507. [Google Scholar] [CrossRef]
- Yoshida, Y.; Nagakane, K.; Fukuda, R.; Nakayama, Y.; Okazaki, M.; Shintani, H.; Inoue, S.; Tagawa, Y.; Suzuki, K.; De Munck, J.; et al. Comparative study on adhesive performance of functional monomers. J. Dent. Res. 2004, 83, 454–458. [Google Scholar] [CrossRef]
- Peumans, M.; Kanumilli, P.; De Munck, J.; Van Landuyt, K.; Lambrechts, P.; Van Meerbeek, B. Clinical effectiveness of contemporary adhesives: A systematic review of current clinical trials. Dent. Mater. 2005, 21, 864–881. [Google Scholar] [CrossRef]
- Ikemura, K.; Fujii, T.; Negoro, N.; Endo, T.; Kadoma, Y. Design of a metal primer containing a dithiooctanoate monomer and a phosphonic acid monomer for bonding of prosthetic light-curing resin composite to gold, dental precious and non-precious metal alloys. Dent. Mater. J. 2011, 30, 300–307. [Google Scholar] [CrossRef]
- Shirani, F.; Kianipour, A.; Rahbar, M. The effect of mechanical and chemical surface preparation methods on the bond strength in repairing the surface of metal-ceramic crowns with composite resin: A systematic review and meta-analysis. Maedica 2020, 15, 206–223. [Google Scholar] [CrossRef]
- Almilhatti, H.J.; Giampaolo, E.T.; Vergani, C.E.; Machado, A.L.; Pavarina, A.C.; Betiol, E.A. Adhesive bonding of resin composite to various Ni-Cr alloy surfaces using different metal conditioners and a surface modification system. J. Prosthodont. 2009, 18, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Nima, G.; Ferreira, P.V.C.; Paula, A.B.; Consani, S.; Giannini, M. Effect of metal primers on bond strength of a composite resin to Nickel-Chrome metal alloy. Braz. Dent. J. 2017, 28, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Ikemura, K.; Endo, T.; Kadoma, Y. A review of the developments of multi-purpose primers and adhesives comprising novel dithiooctanoate monomers and phosphonic acid monomers. Dent. Mater. J. 2012, 31, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Klaisiri, A.; Maneenacarith, A.; Jirathawornkul, N.; Suthamprajak, P.; Sriamporn, T.; Thamrongananskul, N. The Effect of multiple applications of phosphate-containing primer on shear bond strength between zirconia and resin composite. Polymers 2022, 14, 4174. [Google Scholar] [CrossRef] [PubMed]
- Sarafianou, A.; Seimenis, I.; Papadopoulos, T. Effectiveness of different adhesive primers on the bond strength between an indirect composite resin and a base metal alloy. J. Prosthet. Dent. 2008, 99, 377–387. [Google Scholar] [CrossRef]
- Sriamporn, T.; Thamrongananskul, N.; Klaisiri, A. The effectiveness of various functional monomers in self-adhesive resin cements on prosthetic materials. J. Int. Soc. Prev. Community Dent. 2022, 12, 332–335. [Google Scholar] [CrossRef]
- Klaisiri, A.; Phumpatrakom, P.; Thamrongananskul, N. Chemical surface modification methods of resin composite repaired with resin-modified glass-ionomer cement. Eur. J. Dent. 2023, 17, 804–808. [Google Scholar] [CrossRef]
- Cheetham, J.J.; Palamara, J.E.A.; Tyas, M.J.; Burrow, M.F.; Maneenut, C.; Sakoolnamarka, R. Evaluation of a new test method to determine the failure mode and macro-shear bond strength of dental materials to metals. J. Adhes. Sci. Technol. 2014, 28, 881–892. [Google Scholar] [CrossRef]
- Kawashima, S.; Nagai, Y.; Shinkai, K. Effect of silane coupling treatment and airborne-particle abrasion on shear bond strength between photo-cured bulk-fill flowable composite resin and silverpalladium-copper-gold alloy using self-adhesive resin cement. Dent. Mater. J. 2019, 38, 418–423. [Google Scholar] [CrossRef]
- Abdullah Alsadon, O. Adhesion concepts and techniques for laboratory-processed indirect dental restorations. Saudi Dent. J. 2022, 34, 661–668. [Google Scholar] [CrossRef]
- Ajay, R.; JafarAbdulla, M.U.; Sivakumar, J.S.; Baburajan, K.; Rakshagan, V.; Eyeswarya, J. Dental alloy adhesive primers and bond strength at alloy-resin interface: A systematic review and meta-analyses. J. Contemp. Dent. Pract. 2023, 24, 521–544. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Yamamoto, M.; Fujishima, A.; Miyazaki, T.; Hisamitsu, H.; Kojima, K.; Kadoma, Y. Raman and IR studies on adsorption behavior of adhesive monomers in a metal primer for Au, Ag, Cu, and Cr surfaces. J. Biomed. Mater. Res. 2002, 62, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Milagres, F.D.S.A.; Oliveira, D.D.; Silveira, G.S.; Oliveira, E.F.F.; Antunes, A.N.D.G. Bond strength and failure pattern of orthodontic tubes adhered to a zirconia surface submitted to different modes of application of a ceramic primer. Materials 2019, 12, 3922. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Okihara, T.; Kuroboshi, M.; Hayakawa, S.; Maruo, Y.; Nishigawa, G.; De Munck, J.; Yoshida, Y.; Van Meerbeek, B. Functional monomer impurity affects adhesive performance. Dent. Mater. 2015, 31, 1493–1501. [Google Scholar] [CrossRef]
- ISO 10477:2020; Dentistry-Polymer-Based Crown and Bridge Materials. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: http://www.iso.org/iso/store.htm (accessed on 1 May 2024).
- Matsumura, H.; Yanagida, H.; Tanoue, N.; Atsuta, M.; Shimoe, S. Shear bond strength of resin composite veneering material to gold alloy with varying metal surface preparations. J. Prosthet. Dent. 2001, 86, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Behr, M.; Rosentritt, M.; Gröger, G.; Handel, G. Adhesive bond of veneering composites on various metal surfaces using silicoating, titanium-coating or functional monomers. J. Dent. 2003, 31, 33–42. [Google Scholar] [CrossRef]
- Raszewski, Z.; Brząkalski, D.; Derpeński, Ł.; Jałbrzykowski, M.; Przekop, R.E. Aspects and principles of material connections in restorative dentistry-a comprehensive review. Materials 2022, 15, 7131. [Google Scholar] [CrossRef]
- Wiegand, A.; Stucki, L.; Hoffmann, R.; Attin, T.; Stawarczyk, B. Repairability of CAD/CAM high-density PMMA- and composite-based polymers. Clin. Oral Investig. 2015, 19, 2007–2013. [Google Scholar] [CrossRef]
- Güngör, M.B.; Nemli, S.K.; Bal, B.T.; Ünver, S.; Doğan, A. Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials. J. Adv. Prosthodont. 2016, 8, 259–266. [Google Scholar] [CrossRef]
Material | Composition |
---|---|
Clearfil Ceramic Primer Plus (Kuraray Noritake Dental, Japan) Lot: 310073 | 10-MDP, ethanol, 3-trimethoxysilylpropyl methacrylate |
Adper Single Bond 2 (3M ESPE, St. Paul, MN, USA) Lot: N378816 | Bis-GMA, HEMA, dimethacrylate, methacrylate functional copolymer, filler, photoinitiators, ethanol, water |
Clearfil AP-X Resin Composite (Kuraray Noritake Dental Inc., Okayama, Japan) Lot: 560138 | Bis-GMA, TEGDMA, silanated colloidal silica, silanated barium glass filler, silanated silica filler, dl-camphorquinone, catalysts, accelerators, pigment |
Group | Mean SBS (SD) | Failure Pattern | ||
---|---|---|---|---|
Adhesive | Mixed | Cohesive | ||
1. One primer application | 13.36 ± 2.58 a | 100 | 0 | 0 |
2. Two primer applications | 14.95 ± 1.87 a | 100 | 0 | 0 |
3. Three primer applications | 21.49 ± 1.33 b | 80 | 20 | 0 |
4. Four primer applications | 20.21 ± 2.08 b | 80 | 20 | 0 |
5. Five primer applications | 20.98 ± 2.69 b | 90 | 10 | 0 |
6. No primer application | 6.14 ± 1.12 c | 100 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klaisiri, A.; Paaopanchon, C.; Kukiattrakoon, B. The Effect of Multiple-Time Applications of Metal Primers Containing 10-MDP on the Repair Strength of Base Metal Alloys to Resin Composite. J. Manuf. Mater. Process. 2024, 8, 196. https://doi.org/10.3390/jmmp8050196
Klaisiri A, Paaopanchon C, Kukiattrakoon B. The Effect of Multiple-Time Applications of Metal Primers Containing 10-MDP on the Repair Strength of Base Metal Alloys to Resin Composite. Journal of Manufacturing and Materials Processing. 2024; 8(5):196. https://doi.org/10.3390/jmmp8050196
Chicago/Turabian StyleKlaisiri, Awiruth, Chanakan Paaopanchon, and Boonlert Kukiattrakoon. 2024. "The Effect of Multiple-Time Applications of Metal Primers Containing 10-MDP on the Repair Strength of Base Metal Alloys to Resin Composite" Journal of Manufacturing and Materials Processing 8, no. 5: 196. https://doi.org/10.3390/jmmp8050196
APA StyleKlaisiri, A., Paaopanchon, C., & Kukiattrakoon, B. (2024). The Effect of Multiple-Time Applications of Metal Primers Containing 10-MDP on the Repair Strength of Base Metal Alloys to Resin Composite. Journal of Manufacturing and Materials Processing, 8(5), 196. https://doi.org/10.3390/jmmp8050196