The Effect of Multiple-Time Applications of Metal Primers Containing 10-MDP on the Repair Strength of Base Metal Alloys to Resin Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Base Metal Alloys’ Preparation
2.2. Chemical Surface Treatment of Base Metal Alloys
2.3. Bonding with Resin Composite
2.4. Shear Bond Strength and Debonded-Surface Analysis
- (a)
- Breakage originates at the interface between the resin composite and base metal alloys in the adhesive pattern;
- (b)
- Brake beneath the resin composite material; cohesive pattern mode;
- (c)
- Adhesive and cohesive pattern modes were combined to create mixed pattern modes.
2.5. Analytical Statistics
3. Results
3.1. SBS Data
3.2. Failure-Type Patterns
4. Discussion
5. Conclusions
- (1)
- The performance of the adhesive agent alone (6.14 ± 1.12 MPa) was not as good as that of the metal primers with 10-MDP applied once (13.36 ± 2.58 MPa) or twice (14.95 ± 1.87 MPa) before the adhesive agent.
- (2)
- The repair shear bonding ability was three times higher when three to five applications of metal primers containing 10-MDP (21.49 ± 1.33, 20.21 ± 2.08, 20.98 ± 2.69 MPa, respectively) were combined with an adhesive agent, but there was no significant difference between three-time and five-time applications.
- (3)
- To achieve superior repair shear bonding ability at the base metal alloys and resin composite interface, the sandblasted surface of base metal alloys should be coated with three applications (21.49 ± 1.33 MPa) of a metal primer containing 10-MDP before applying the adhesive agent.
- (4)
- The novel protocol for treating the surface of a base metal alloy repaired with resin composites involved using a metal primer with 10-MDP three times before using the adhesive agent.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ozcan, M. Evaluation of alternative intra-oral techniques for fractured ceramic-fused-to-metal restorations. J. Oral Rehabil. 2003, 30, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Blum, I.R.; Jagger, D.C.; Wilson, N.H. Defective dental restorations: To repair or not to repair? Part 2: All–ceramics and porcelain fused to metal systems. Dent. Update 2011, 3, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Q.; Meng, X.; Ye, Y.; Feng, D.; Xue, J.; Wang, H.; Huang, H.; Wang, M.; Wang, J. Rheological and mechanical properties of resin-based materials applied in dental restorations. Polymers 2021, 13, 2975. [Google Scholar] [CrossRef]
- Klaisiri, A.; Krajangta, N.; Peampring, C.; Sriamporn, T.; Thamrongananskul, N.; Neff, A.; Pitak-Arnnop, P. Shear bond strength of different functional monomer in universal adhesives at the resin composite/base metal alloys interface. J. Int. Dent. Med. Res. 2021, 14, 187–191. [Google Scholar]
- Yoo, J.Y.; Yoon, H.I.; Park, J.M.; Park, E.J. Porcelain repair—Influence of different systems and surface treatments on resin bond strength. J. Adv. Prosthodont. 2015, 7, 343–348. [Google Scholar] [CrossRef]
- Chang, J.C. Amalgam repair with a 4-META resin. J. Prosthet. Dent. 2004, 92, 506–507. [Google Scholar] [CrossRef]
- Yoshida, Y.; Nagakane, K.; Fukuda, R.; Nakayama, Y.; Okazaki, M.; Shintani, H.; Inoue, S.; Tagawa, Y.; Suzuki, K.; De Munck, J.; et al. Comparative study on adhesive performance of functional monomers. J. Dent. Res. 2004, 83, 454–458. [Google Scholar] [CrossRef]
- Peumans, M.; Kanumilli, P.; De Munck, J.; Van Landuyt, K.; Lambrechts, P.; Van Meerbeek, B. Clinical effectiveness of contemporary adhesives: A systematic review of current clinical trials. Dent. Mater. 2005, 21, 864–881. [Google Scholar] [CrossRef]
- Ikemura, K.; Fujii, T.; Negoro, N.; Endo, T.; Kadoma, Y. Design of a metal primer containing a dithiooctanoate monomer and a phosphonic acid monomer for bonding of prosthetic light-curing resin composite to gold, dental precious and non-precious metal alloys. Dent. Mater. J. 2011, 30, 300–307. [Google Scholar] [CrossRef]
- Shirani, F.; Kianipour, A.; Rahbar, M. The effect of mechanical and chemical surface preparation methods on the bond strength in repairing the surface of metal-ceramic crowns with composite resin: A systematic review and meta-analysis. Maedica 2020, 15, 206–223. [Google Scholar] [CrossRef]
- Almilhatti, H.J.; Giampaolo, E.T.; Vergani, C.E.; Machado, A.L.; Pavarina, A.C.; Betiol, E.A. Adhesive bonding of resin composite to various Ni-Cr alloy surfaces using different metal conditioners and a surface modification system. J. Prosthodont. 2009, 18, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Nima, G.; Ferreira, P.V.C.; Paula, A.B.; Consani, S.; Giannini, M. Effect of metal primers on bond strength of a composite resin to Nickel-Chrome metal alloy. Braz. Dent. J. 2017, 28, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Ikemura, K.; Endo, T.; Kadoma, Y. A review of the developments of multi-purpose primers and adhesives comprising novel dithiooctanoate monomers and phosphonic acid monomers. Dent. Mater. J. 2012, 31, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Klaisiri, A.; Maneenacarith, A.; Jirathawornkul, N.; Suthamprajak, P.; Sriamporn, T.; Thamrongananskul, N. The Effect of multiple applications of phosphate-containing primer on shear bond strength between zirconia and resin composite. Polymers 2022, 14, 4174. [Google Scholar] [CrossRef] [PubMed]
- Sarafianou, A.; Seimenis, I.; Papadopoulos, T. Effectiveness of different adhesive primers on the bond strength between an indirect composite resin and a base metal alloy. J. Prosthet. Dent. 2008, 99, 377–387. [Google Scholar] [CrossRef]
- Sriamporn, T.; Thamrongananskul, N.; Klaisiri, A. The effectiveness of various functional monomers in self-adhesive resin cements on prosthetic materials. J. Int. Soc. Prev. Community Dent. 2022, 12, 332–335. [Google Scholar] [CrossRef]
- Klaisiri, A.; Phumpatrakom, P.; Thamrongananskul, N. Chemical surface modification methods of resin composite repaired with resin-modified glass-ionomer cement. Eur. J. Dent. 2023, 17, 804–808. [Google Scholar] [CrossRef]
- Cheetham, J.J.; Palamara, J.E.A.; Tyas, M.J.; Burrow, M.F.; Maneenut, C.; Sakoolnamarka, R. Evaluation of a new test method to determine the failure mode and macro-shear bond strength of dental materials to metals. J. Adhes. Sci. Technol. 2014, 28, 881–892. [Google Scholar] [CrossRef]
- Kawashima, S.; Nagai, Y.; Shinkai, K. Effect of silane coupling treatment and airborne-particle abrasion on shear bond strength between photo-cured bulk-fill flowable composite resin and silverpalladium-copper-gold alloy using self-adhesive resin cement. Dent. Mater. J. 2019, 38, 418–423. [Google Scholar] [CrossRef]
- Abdullah Alsadon, O. Adhesion concepts and techniques for laboratory-processed indirect dental restorations. Saudi Dent. J. 2022, 34, 661–668. [Google Scholar] [CrossRef]
- Ajay, R.; JafarAbdulla, M.U.; Sivakumar, J.S.; Baburajan, K.; Rakshagan, V.; Eyeswarya, J. Dental alloy adhesive primers and bond strength at alloy-resin interface: A systematic review and meta-analyses. J. Contemp. Dent. Pract. 2023, 24, 521–544. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Yamamoto, M.; Fujishima, A.; Miyazaki, T.; Hisamitsu, H.; Kojima, K.; Kadoma, Y. Raman and IR studies on adsorption behavior of adhesive monomers in a metal primer for Au, Ag, Cu, and Cr surfaces. J. Biomed. Mater. Res. 2002, 62, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Milagres, F.D.S.A.; Oliveira, D.D.; Silveira, G.S.; Oliveira, E.F.F.; Antunes, A.N.D.G. Bond strength and failure pattern of orthodontic tubes adhered to a zirconia surface submitted to different modes of application of a ceramic primer. Materials 2019, 12, 3922. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Okihara, T.; Kuroboshi, M.; Hayakawa, S.; Maruo, Y.; Nishigawa, G.; De Munck, J.; Yoshida, Y.; Van Meerbeek, B. Functional monomer impurity affects adhesive performance. Dent. Mater. 2015, 31, 1493–1501. [Google Scholar] [CrossRef]
- ISO 10477:2020; Dentistry-Polymer-Based Crown and Bridge Materials. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: http://www.iso.org/iso/store.htm (accessed on 1 May 2024).
- Matsumura, H.; Yanagida, H.; Tanoue, N.; Atsuta, M.; Shimoe, S. Shear bond strength of resin composite veneering material to gold alloy with varying metal surface preparations. J. Prosthet. Dent. 2001, 86, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Behr, M.; Rosentritt, M.; Gröger, G.; Handel, G. Adhesive bond of veneering composites on various metal surfaces using silicoating, titanium-coating or functional monomers. J. Dent. 2003, 31, 33–42. [Google Scholar] [CrossRef]
- Raszewski, Z.; Brząkalski, D.; Derpeński, Ł.; Jałbrzykowski, M.; Przekop, R.E. Aspects and principles of material connections in restorative dentistry-a comprehensive review. Materials 2022, 15, 7131. [Google Scholar] [CrossRef]
- Wiegand, A.; Stucki, L.; Hoffmann, R.; Attin, T.; Stawarczyk, B. Repairability of CAD/CAM high-density PMMA- and composite-based polymers. Clin. Oral Investig. 2015, 19, 2007–2013. [Google Scholar] [CrossRef]
- Güngör, M.B.; Nemli, S.K.; Bal, B.T.; Ünver, S.; Doğan, A. Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials. J. Adv. Prosthodont. 2016, 8, 259–266. [Google Scholar] [CrossRef]
Material | Composition |
---|---|
Clearfil Ceramic Primer Plus (Kuraray Noritake Dental, Japan) Lot: 310073 | 10-MDP, ethanol, 3-trimethoxysilylpropyl methacrylate |
Adper Single Bond 2 (3M ESPE, St. Paul, MN, USA) Lot: N378816 | Bis-GMA, HEMA, dimethacrylate, methacrylate functional copolymer, filler, photoinitiators, ethanol, water |
Clearfil AP-X Resin Composite (Kuraray Noritake Dental Inc., Okayama, Japan) Lot: 560138 | Bis-GMA, TEGDMA, silanated colloidal silica, silanated barium glass filler, silanated silica filler, dl-camphorquinone, catalysts, accelerators, pigment |
Group | Mean SBS (SD) | Failure Pattern | ||
---|---|---|---|---|
Adhesive | Mixed | Cohesive | ||
1. One primer application | 13.36 ± 2.58 a | 100 | 0 | 0 |
2. Two primer applications | 14.95 ± 1.87 a | 100 | 0 | 0 |
3. Three primer applications | 21.49 ± 1.33 b | 80 | 20 | 0 |
4. Four primer applications | 20.21 ± 2.08 b | 80 | 20 | 0 |
5. Five primer applications | 20.98 ± 2.69 b | 90 | 10 | 0 |
6. No primer application | 6.14 ± 1.12 c | 100 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klaisiri, A.; Paaopanchon, C.; Kukiattrakoon, B. The Effect of Multiple-Time Applications of Metal Primers Containing 10-MDP on the Repair Strength of Base Metal Alloys to Resin Composite. J. Manuf. Mater. Process. 2024, 8, 196. https://doi.org/10.3390/jmmp8050196
Klaisiri A, Paaopanchon C, Kukiattrakoon B. The Effect of Multiple-Time Applications of Metal Primers Containing 10-MDP on the Repair Strength of Base Metal Alloys to Resin Composite. Journal of Manufacturing and Materials Processing. 2024; 8(5):196. https://doi.org/10.3390/jmmp8050196
Chicago/Turabian StyleKlaisiri, Awiruth, Chanakan Paaopanchon, and Boonlert Kukiattrakoon. 2024. "The Effect of Multiple-Time Applications of Metal Primers Containing 10-MDP on the Repair Strength of Base Metal Alloys to Resin Composite" Journal of Manufacturing and Materials Processing 8, no. 5: 196. https://doi.org/10.3390/jmmp8050196