A Real-Time Anomaly Detection Model of Nomex Honeycomb Composites Disc Tool
Abstract
1. Introduction
2. Methodology
2.1. Overview of the Method
2.2. Improved CNN Model
2.3. GRU Model
2.4. Attention Mechanism Model
2.5. Exponentially Weighted Moving Average Control Chart
3. Experiment
3.1. Data Source
3.2. Model Evaluation Index
3.3. Model Parameter Setting
3.4. Prediction Result Analysis
- (1)
- CNN: Extract the characteristic relationship in the dataset for prediction.
- (2)
- LSTM: Analyze the time series characteristics in the dataset.
- (3)
- GRU: a variant of LSTM.
- (4)
- CNN-GRU: Based on the model proposed in this paper, the attention model is removed, the CNN is used to extract the characteristic relationship of data, and the GRU is used to extract time series characteristics.
- (5)
- Normal CNN–GRU–Attention: Based on the model proposed in this paper, the parallel dilated convolutional layer is replaced by the ordinary convolution layer.
3.5. Anomaly Detection Result Analysis
4. Conclusions
- (1)
- Accurate time series prediction: The CNN–GRU–Attention model leverages a parallel dilated convolution to capture multidimensional local features, a GRU network to extract temporal dependencies, and an attention mechanism to highlight critical information, enabling highly accurate predictions of cutting force variations during the tool machining process.
- (2)
- Robust anomaly detection: The EWMA control chart analyzes the trend of residual errors between predicted and actual cutting force data, quickly detecting subtle and gradual abnormalities caused by tool wear, which traditional point-based detection methods might miss.
- (3)
- Practical applicability: The model is trained only with normal data, addressing the challenge of imbalanced datasets common in machining processes, and achieves real-time detection performance suitable for manufacturing environments.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NHCs | Nomex honeycomb composites |
SPC | Statistical process control |
SVM | Support vector machine |
LSTM | Long short-term memory |
CNN | Convolutional neural network |
RNN | Recurrent neural network |
SCADA | Supervisory control and data acquisition |
EWMA | Exponentially weighted moving average |
GRU | Gated recurrent unit |
ReLU | Rectifier linear unit |
UCL | Upper confidence limit |
LCL | Lower confidence limit |
RMSE | Root mean square error |
MAE | Mean absolute error |
R2 | R-Square |
TCN | Temporal convolutional network |
References
- Jaafar, M.; Makich, H.; Nouari, M. A new criterion to evaluate the machined surface quality of the Nomex® honeycomb materials. J. Manuf. Process. 2021, 69, 567–582. [Google Scholar] [CrossRef]
- Nasri, M.R.; Salari, E.; Salari, A.; Vanini, S.A.S. Nonlinear bending and buckling analysis of 3D-printed meta-sandwich curved beam with auxetic honeycomb core. Aerosp. Sci. Technol. 2024, 152, 109339. [Google Scholar] [CrossRef]
- Ghasemi, F.; Salari, E.; Rastgoo, A.; Li, D.; Deng, J. Nonlinear vibration analysis of pre/post-buckled 3D-printed tubular metastructures. Eng. Anal. Bound. Elem. 2024, 165, 105777. [Google Scholar] [CrossRef]
- Mughal, K.H.; Qureshi, M.A.M.; Jamil, M.F.; Ahmad, S.; Ahmad Khalid, F.; Qaiser, A.A.; Maqbool, A.; Raza, S.F.; Zhang, J. Investigation of hybrid ultrasonic machining process of Nomex honeycomb composite using a toothed disc cutter. Ultrasonics 2024, 141, 107343. [Google Scholar] [CrossRef]
- Xu, J.; Feng, P.; Gong, Y.; Wang, J.; Yang, H.; Feng, F. Exploiting damage for inhibiting damage: A counterintuitive reasoning out of in-situ orthogonal cutting for brittle fiber composite. J. Mater. Process. Technol. 2025, 343, 118961. [Google Scholar] [CrossRef]
- Ahmad, S.; Zhang, J.; Feng, P.; Yu, D.; Wu, Z.; Ke, M. Processing technologies for Nomex honeycomb composites (NHCs): A critical review. Compos. Struct. 2020, 250, 112545. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, J.; Wu, Z.; Feng, P.; Yu, D. Study on the design of cutting disc in ultrasonic-assisted machining of honeycomb composites. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kazimierz Dolny, Poland, 21–23 November 2019; Volume 611, p. 012032. [Google Scholar] [CrossRef]
- Ortega, N.; Martynenko, V.; Perez, D.; Martinez Krahmer, D.; López de Lacalle, L.N.; Ukar, E. Abrasive Disc Performance in Dry-Cutting of Medium-Carbon Steel. Metals 2020, 10, 538. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, K.; Zha, H.; Liu, J.; Yuan, X.; Cai, X.; Xu, C.; Ma, Y.; Feng, P.; Feng, F. Surface integrity of Nomex honeycomb composites after ultrasonic vibration machining by using disc cutters. J. Manuf. Process. 2023, 102, 1010–1022. [Google Scholar] [CrossRef]
- Ryalat, M.; ElMoaqet, H.; AlFaouri, M. Design of a smart factory based on cyber-physical systems and Internet of Things towards Industry 4.0. Appl. Sci. 2023, 13, 2156. [Google Scholar] [CrossRef]
- Blázquez-García, A.; Conde, A.; Mori, U.; Lozano, J.A. A review on outlier/anomaly detection in time series data. ACM Comput. Surv. (CSUR) 2021, 54, 1–33. [Google Scholar] [CrossRef]
- Shi, W.; Chen, F.; Qu, F.; Zhang, R.; Lu, C. Abnormality diagnosis method for manufacturing process based on Bayesian network. J. Xi’an Jiaotong Univ. 2018, 52, 9–14. [Google Scholar] [CrossRef]
- Niu, L.; Wang, Q.; Chen, B.; Zhao, Y.; Zhang, Y. Eco-driving decision making based on V2X communication and spatio-temporal prediction of pedestrians. IEEE Trans. Intell. Transp. Syst. 2025, 11, 11905–11915. [Google Scholar] [CrossRef]
- Erfani, S.M.; Rajasegarar, S.; Karunasekera, S.; Leckie, C. High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recognit. 2016, 58, 121–134. [Google Scholar] [CrossRef]
- Wang, H.; Li, Q.; Liu, Y.; Yang, S. Anomaly data detection of rolling element bearings vibration signal based on parameter optimization isolation forest. Machines 2022, 10, 459. [Google Scholar] [CrossRef]
- Xu, H.; Pang, G.; Wang, Y.; Wang, Y. Deep isolation forest for anomaly detection. IEEE Trans. Knowl. Data Eng. 2023, 35, 12591–12604. [Google Scholar] [CrossRef]
- Liu, B.; Tan, P.N.; Zhou, J. Unsupervised anomaly detection by robust density estimation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 22 February–1 March 2022; Volume 36, pp. 4101–4108. [Google Scholar] [CrossRef]
- Soleimani-Babakamali, M.H.; Soleimani-Babakamali, R.; Sarlo, R.; Farghally, M.F.; Lourentzou, I. On the effectiveness of dimensionality reduction for unsupervised structural health monitoring anomaly detection. Mech. Syst. Signal Process. 2023, 187, 109910. [Google Scholar] [CrossRef]
- Aldekoa, I.; del Olmo, A.; Sastoque-Pinilla, L.; Sendino-Mouliet, S.; López-Novoa, U.; de Lacalle, L.N. Early detection of tool wear in electromechanical broaching machines by monitoring main stroke servomotors. Mech. Syst. Signal Process. 2023, 204, 110773. [Google Scholar] [CrossRef]
- Pang, G.; Shen, C.; Cao, L.; van den Hengel, A. Deep learning for anomaly detection: A review. ACM Comput. Surv. (CSUR) 2021, 54, 1–38. [Google Scholar] [CrossRef]
- Oshida, T.; Murakoshi, T.; Zhou, L.; Ojima, H.; Kaneko, K.; Onuki, T.; Shimizu, J. Development and implementation of real-time anomaly detection on tool wear based on stacked LSTM encoder-decoder model. Int. J. Adv. Manuf. Technol. 2023, 127, 263–278. [Google Scholar] [CrossRef]
- Munir, M.; Siddiqui, S.A.; Dengel, A.; Ahmed, S. DeepAnT: A deep learning approach for unsupervised anomaly detection in time series. IEEE Access 2018, 7, 1991–2005. [Google Scholar] [CrossRef]
- Wang, Y.; Perry, M.; Whitlock, D.; Sutherland, J.W. Detecting anomalies in time series data from a manufacturing system using recurrent neural networks. J. Manuf. Syst. 2022, 62, 823–834. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, B.; Yuan, X.; Liang, P. Remaining useful life prediction via improved CNN, GRU and residual attention mechanism with soft thresholding. IEEE Sens. J. 2022, 22, 15178–15190. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S. Air quality index forecast in Beijing based on CNN-LSTM multi-model. Chemosphere 2022, 308, 136180. [Google Scholar] [CrossRef]
- Kong, Z.; Tang, B.; Deng, L.; Liu, W.; Han, Y. Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units. Renew. Energy 2020, 146, 760–768. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323. [Google Scholar]
- Xu, B. Empirical evaluation of rectified activations in convolutional network. arXiv 2015, arXiv:1505.00853. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar] [CrossRef]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Roberts, S. Control chart tests based on geometric moving averages. Technometrics 2000, 42, 97–101. [Google Scholar] [CrossRef]
- Sukparungsee, S.; Areepong, Y.; Taboran, R. Exponentially weighted moving average—Moving average charts for monitoring the process mean. PLoS ONE 2020, 15, e0228208. [Google Scholar] [CrossRef]
- Saleh, N.A.; Aly, A.A.; Mahmoud, M.A. Effect of contaminated phase I data on the phase II–EWMA control chart performance under non-normality. Commun. Stat. Simul. Comput. 2024, 53, 4430–4448. [Google Scholar] [CrossRef]
- Xu, J.; Yue, Q.; Zha, H.; Yuan, X.; Cai, X.; Xu, C.; Ma, Y.; Feng, P.; Feng, F. Wear reduction by toughness enhancement of disc tool in Nomex honeycomb composites machining. Tribol. Int. 2023, 185, 108475. [Google Scholar] [CrossRef]
GRU Layers | RMSE↓ | MAE↓ | R2 |
---|---|---|---|
1 | 0.501205 | 0.394193 | 0.912846 |
2 | 0.516358 | 0.403856 | 0.907496 |
3 | 0.555385 | 0.442965 | 0.892985 |
Time Step | Batch Size | RMSE↓ | MAE↓ | R2 |
---|---|---|---|---|
10 | 64 | 1.711630 | 1.322358 | −0.001070 |
10 | 128 | 1.640167 | 1.280547 | 0.080778 |
20 | 64 | 0.501205 | 0.394193 | 0.912846 |
20 | 128 | 0.567782 | 0.443489 | 0.888154 |
30 | 64 | 0.549895 | 0.422061 | 0.892133 |
30 | 128 | 0.534528 | 0.416167 | 0.898077 |
Kernel Size | RMSE↓ | MAE↓ | R2 |
---|---|---|---|
3 | 0.602966 | 0.485827 | 0.873863 |
5 | 0.501205 | 0.394193 | 0.912846 |
7 | 0.565571 | 0.455293 | 0.889023 |
Model | RMSE↓ | MAE↓ | R2 | Items per Second↑ |
---|---|---|---|---|
CNN [27] | 0.667312 | 0.504933 | 0.845505 | 337.80 it/s |
LSTM [31] | 2.192965 | 1.689043 | −0.643266 | 233.09 it/s |
GRU [32] | 2.426704 | 1.900223 | −1.043104 | 258.89 it/s |
CNN-GRU | 0.579525 | 0.434325 | 0.883480 | 220.10 it/s |
normal CNN–GRU–Attention | 0.584356 | 0.450506 | 0.881529 | 201.17 it/s |
our CNN–GRU–Attention | 0.501205 | 0.394193 | 0.912846 | 197.40 it/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Tang, P.; Xu, J.; Liu, X.; Mou, P. A Real-Time Anomaly Detection Model of Nomex Honeycomb Composites Disc Tool. J. Manuf. Mater. Process. 2025, 9, 281. https://doi.org/10.3390/jmmp9080281
Wang X, Tang P, Xu J, Liu X, Mou P. A Real-Time Anomaly Detection Model of Nomex Honeycomb Composites Disc Tool. Journal of Manufacturing and Materials Processing. 2025; 9(8):281. https://doi.org/10.3390/jmmp9080281
Chicago/Turabian StyleWang, Xuanlin, Peihao Tang, Jie Xu, Xueping Liu, and Peng Mou. 2025. "A Real-Time Anomaly Detection Model of Nomex Honeycomb Composites Disc Tool" Journal of Manufacturing and Materials Processing 9, no. 8: 281. https://doi.org/10.3390/jmmp9080281
APA StyleWang, X., Tang, P., Xu, J., Liu, X., & Mou, P. (2025). A Real-Time Anomaly Detection Model of Nomex Honeycomb Composites Disc Tool. Journal of Manufacturing and Materials Processing, 9(8), 281. https://doi.org/10.3390/jmmp9080281