Mechanical Properties of Short Polymer Fiber-Reinforced Geopolymer Composites
Abstract
:1. Introduction
2. Research Methodology
3. Composites Reinforced with Polymer Fibers
3.1. Aramid
3.2. Polyacrylonitrile (PAN)
3.3. Polyamide (PA)
3.4. Polyethylene (PE)
3.5. Polyethylene Terephthalate (PET)
3.6. Polypropylene (PP)
3.7. Polyvinyl Alcohol (PVA)
3.8. Polyvinyl Chloride (PVC)
3.9. Other Polymer Fibers
3.10. Use of Synthetic Fibers in Hybrid Reinforcement
4. Summarized Mechanical Properties of Composites Reinforced with Polymer Fibers
5. Comparison of the Properties of Composites with Traditional Building Materials
6. Contemporary Research Challenges for Geopolymer Materials Reinforced with Fibers
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Silva, G.; Kim, S.; Aguilar, R.; Nakamatsu, J. Natural fibers as reinforcement additives for geopolymers—A review of potential eco-friendly applications to the construction industry. Sustain. Mat. Technol. 2020, 23, e00132. [Google Scholar] [CrossRef]
- Korniejenko, K.; Łach, M.; Dogan-Saglamtimur, N.; Furtos, G.; Mikuła, J. The overview of mechanical properties of short natural fiber reinforced geopolymer composites. Environ. Res. Technol. 2020, 3, 28–39. [Google Scholar] [CrossRef]
- Chen, R.; Ahmari, S.; Zhang, L. Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer. J. Mater. Sci. 2014, 49, 2548–2558. [Google Scholar] [CrossRef]
- Ma, C.K.; Awang, A.Z.; Omar, W. Structural and material performance of geopolymer concrete: A review. Constr. Build. Mater. 2018, 186, 90–102. [Google Scholar] [CrossRef]
- Sitarz, M.; Hager, I.; Choińska, M. Evolution of mechanical properties with time of fly-ash-based geopolymer mortars under the effect of granulated ground blast furnace slag addition. Energies 2020, 13, 1135. [Google Scholar] [CrossRef] [Green Version]
- Sitarz, M.; Hager, I.; Kochanek, J. Effect of high temperature on mechanical properties of geopolymer mortar. MATEC Web Conf. 2018, 163, 06004. [Google Scholar] [CrossRef]
- Mierzwiński, D.; Łach, M.; Hebda, M.; Walter, J.; Szechyńska-Hebda, M.; Mikuła, J. Thermal phenomena of alkali-activated metakaolin studied with a negative temperature coefficient system. J. Therm. Anal. Calorim. 2019, 138, 4167–4175. [Google Scholar] [CrossRef] [Green Version]
- Ranjbar, N.; Zhang, M. Fiber-Reinforced geopolymer composites: A review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Rickard, W.D.A.; Vickers, L.; van Riessen, A. Performance of fibre reinforced, low density metakaolin geopolymers under simulated fire conditions. Appl. Clay Sci. 2013, 73, 71–77. [Google Scholar] [CrossRef]
- Silva, G.; Kim, S.; Bertolotti, B.; Nakamatsu, J.; Aguilar, R. Optimization of a reinforced geopolymer composite using natural fibers and construction wastes. Constr. Build. Mater. 2020, 258, 119697. [Google Scholar] [CrossRef]
- Lin, T.; Jia, D.; Wang, M.; He, P.; Liang, D. Effects of fibre content on mechanical properties and fracture behaviour of short carbon fibre reinforced geopolymer matrix composites. Bull. Mater. Sci. 2009, 32, 77–81. [Google Scholar] [CrossRef]
- Sakulich, A.R. Reinforced geopolymer composites for enhanced material greenness and durability. Sustain. Cities Soc. 2011, 1, 195–210. [Google Scholar] [CrossRef]
- Korniejenko, K.; Łach, M.; Doğan-Sağlamtimur, N.; Furtos, G.; Mikuła, J. Fibre reinforced geopolymer composites—A review. In Proceedings of the 1st International Conference on Environment, Technology and Management (ICETEM), Niğde, Turkey, 27–29 June 2019; Kacar, İ., Ed.; Niğde Ömer Halisdemir University: Niğde, Turkey, 2019; pp. 3–13. [Google Scholar]
- Silva, F.J.; Thaumaturgo, C. Fibre reinforcement and fracture response in geopolymeric mortars. Fatigue Fract. Eng. Mater. Struct. 2003, 26, 167–172. [Google Scholar] [CrossRef]
- Gailitis, R.; Sliseris, J.; Korniejenko, K.; Mikuła, J.; Łach, M.; Pakrastins, L.; Sprince, A. Long-Term deformation properties of a carbon fiber-reinforced alkali-activated cement composite. Mech. Compos. Mat. 2020, 56, 85–92. [Google Scholar] [CrossRef]
- Kuciel, S.; Jakubowska, P.; Kuźniar, P. A study on the mechanical properties and the influence of water uptake and temperature on biocomposites based on polyethylene from renewable sources. Compos. Part B Eng. 2014, 64, 72–77. [Google Scholar] [CrossRef]
- Łach, M.; Hebdowska-Krupa, M.; Mierzwiński, D.; Korniejenko, K. Mechanical properties of geopolymers reinforced with carbon and aramid long fibers. IOP Conf. Ser. Mater. Sci. Eng. 2019, 706, 012011. [Google Scholar] [CrossRef]
- Korniejenko, K.; Łach, M.; Chou, S.-Y.; Lin, W.-T.; Mikuła, J.; Mierzwiński, D.; Cheng, A.; Hebda, M. A comparative study of mechanical properties of fly ash-based geopolymer made by casted and 3D Printing methods. IOP Conf. Ser. Mater. Sci. Eng. 2019, 660, 012005. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Wang, A.C. Effects of short pan fiber contents on mechanical properties of metakaolin-blast furnace slag based geopolymers. Key Eng. Mat. 2015, 697, 608–611. [Google Scholar] [CrossRef]
- Celik, A.; Yilmaz, K.; Canpolat, O.; Al-Mashhadani, M.M.; Aygörmez, Y.; Uysal, M. High-Temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers. Constr. Build. Mater. 2018, 187, 1190–1203. [Google Scholar] [CrossRef]
- Nematollahi, B.; Sanjayan, J.; Qiu, J.; Yang, E.H. High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite: A micromechanics-based investigation. Arch. Civ. Mech. Eng. 2017, 17, 555–563. [Google Scholar] [CrossRef]
- Ahmed, S.F.U.; Ronnie, Z. Ductile behavior of polyethylene fibre reinforced geopolymer composite. MATEC Web Conf. 2017, 97, 01047. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, F.U.A.; Fairchild, A. Strain hardening behaviour of polyethylene fibre reinforced ambient air cured geopolymer composite. In Strain-Hardening Cement-Based Composites; Mechtcherine, V., Slowik, V., Kabele, P., Eds.; SHCC 2017, RILEM Bookseries; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany, 2017; Volume 15, pp. 162–170. [Google Scholar]
- Choi, J.I.; Lee, B.Y.; Ranade, R.; Li, V.C.; Lee, Y. Ultra-High-Ductile behavior of a polyethylene fiber-reinforced alkali activated slag-based composite. Cem. Concr. Compos. 2016, 70, 153–158. [Google Scholar] [CrossRef]
- Shaikh, F.U.A. Tensile and flexural behaviour of recycled polyethylene terephthalate (PET) fibre reinforced geopolymer composites. Constr. Build. Mater. 2020, 245, 118438. [Google Scholar] [CrossRef]
- Puertas, F.; Amat, T.; Fernandez-Jimenez, A.; Vazquez, T. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem. Concr. Res. 2003, 33, 2031–2036. [Google Scholar] [CrossRef]
- Puertas, F.; Amat, T.; Vázquez, T. Behaviour of alkaline cement mortars reinforced with acrylic and polypropylene fibres. Mater. Constr. 2000, 259, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yao, X.; Zhu, H.; Hua, S.; Chen, Y. Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer. J. Cent. South Univ. Technol. 2009, 16, 49–52. [Google Scholar] [CrossRef]
- Reed, M.; Lokuge, W.; Karunasena, W. Fibre-Reinforced geopolymer concrete with ambient curing for in situ applications. J. Mat. Sci. 2014, 49, 4297–4304. [Google Scholar] [CrossRef] [Green Version]
- Korniejenko, K.; Mikuła, J.; Łach, M. Fly ash based fiber-reinforced geopolymer composites as the environmental friendly alternative to cementitious materials. In Proceedings of the 2015 International Conference on Bio-Medical Engineering and Environmental Technology (BMEET-15), London, UK, 21–22 March 2015; pp. 208–214. [Google Scholar]
- Ranjbar, N.; Mehrali, M.; Behnia, A.; Pordsari, A.J.; Mehrali, M.; Alengaram, U.J.; Jumaat, M.Z. A comprehensive study of the polypropylene fiber reinforced fly ash based geopolymer. PLoS ONE 2016, 11, 0147546–0147566. [Google Scholar] [CrossRef] [Green Version]
- Ranjbar, N.; Talebian, S.; Mehrali, M.; Kuenzel, C.; Metselaar, H.S.C.; Jumaat, M.Z. Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Compos. Sci. Technol. 2016, 122, 73–81. [Google Scholar] [CrossRef]
- Al-Mashhadani, M.M.; Canpolat, O.; Aygörmez, Y.; Uysal, M.; Erdem, S. Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites. Constr. Build. Mater. 2018, 167, 505–513. [Google Scholar] [CrossRef]
- Guo, X.; Pant, X. Mechanical properties and mechanisms of fiber reinforced fly ash–steel slag based geopolymer mortar. Constr. Build. Mater. 2018, 179, 633–641. [Google Scholar] [CrossRef]
- Nguyen, H.; Carvelli, V.; Adesanya, E.; Kinnunen, P.; Illikainen, M. High performance cementitious composite from alkali-activated ladle slag reinforced with polypropylene fibers. Cem. Concr. Compos. 2018, 90, 150–160. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Rattanasak, U. Synthesis of polypropylene fiber/high-calcium fly ash geopolymer with outdoor heat exposure. Clean Technol. Environ. 2017, 19, 1985–1992. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Pongsopha, P.; Chindaprasirt, P.; Songpiriyakij, S. Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer. Constr. Build. Mater. 2018, 161, 37–44. [Google Scholar] [CrossRef]
- Zhu, J.; Zheng, W.Z.; Qin, C.Z.; Xu, Z.Z.; Wu, Y.Q. Effect of different fibers on mechanical properties and ductility of alkali-activated slag cementitious material. IOP Conf. Ser. Mater. Sci. Eng. 2018, 292, 012060. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, T.; Zheng, X.; Liu, Y.; Darkwa, J.; Zhou, G. Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibers. Constr. Build. Mater. 2020, 251, 118960. [Google Scholar] [CrossRef]
- Nematollahi, B.; Vijay, P.; Sanjayan, J.; Nazari, A.; Xia, M.; Nerella, V.N.; Mechtcherine, V. Effect of polypropylene fibre addition on properties of geopolymers made by 3D printing for digital construction. Materials 2018, 11, 2352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korniejenko, K.; Łach, M. Geopolymers reinforced by short and long fibres—Innovative materials for additive manufacturing. Curr. Opin. Chem. Eng. 2020, 28, 167–172. [Google Scholar] [CrossRef]
- Bagheri, A.; Nazari, A.; Sanjayan, J.G. Fibre-Reinforced boroaluminosilicate geopolymers: A comparative study. Ceram. Int. 2018, 44, 16599–16605. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, Z.; Shen, W.; Zhu, G.; Ge, X. Mechanical properties and microstructure of metakaolin-based geopolymer compound-modified by polyacrylic emulsion and polypropylene fibers. Constr. Build. Mater. 2018, 190, 680–690. [Google Scholar] [CrossRef]
- Noushini, A.; Castel, A.; Gilbert, R.I. Creep and shrinkage of synthetic fibre-reinforced geopolymer concrete. Mag. Concr. Res. 2019, 71, 1070–1082. [Google Scholar] [CrossRef]
- Baykara, H.; Cornejo, M.H.; Espinoza, A.; García, E.; Ulloa, N. Preparation, characterization, and evaluation of compressive strength of polypropylene fiber reinforced geopolymer mortars. Heliyon 2020, 6, e03755. [Google Scholar] [CrossRef] [PubMed]
- Pham, K.V.A.; Nguyen, T.K.; Le, T.A.; Han, S.W.; Lee, G.; Lee, K. Assessment of performance of fiber reinforced geopolymer composites by experiment and simulation analysis. Appl. Sci. 2019, 9, 3424. [Google Scholar] [CrossRef] [Green Version]
- Behforouz, B.; Balkanlou, V.S.; Naseri, F.; Kasehchi, E.; Mohseni, E.; Ozbakkaloglu, T. Investigation of eco-friendly fiber-reinforced geopolymer composites incorporating recycled coarse aggregates. Int. J. Environ. Sci. Technol. 2020, 17, 3251–3260. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, R.; Li, R.; Wang, Y.; Cheng, Z.; Li, F.; Ma, Z.J. Frost resistance of fiber-reinforced blended slag and Class F fly ash-based geopolymer concrete under the coupling effect of freeze-thaw cycling and axial compressive loading. Constr. Build. Mater. 2020, 250, 118831. [Google Scholar] [CrossRef]
- Su, Z.; Guo, L.; Zhang, Z.; Duan, P. Influence of different fibers on properties of thermal insulation composites based on geopolymer blended with glazed hollow bead. Constr. Build. Mater. 2019, 203, 525–540. [Google Scholar] [CrossRef]
- Utami, F.A.R.; Triwiyono, A.; Agustini, N.K.A.; Perdana, I. Thermal conductivity of geopolymer with polypropylene fiber. IOP Conf. Ser. Mater. Sci. Eng. 2020, 742, 012031. [Google Scholar] [CrossRef]
- Mohseni, E.; Kazemi, M.J.; Koushkbaghi, M.; Zehtab, B.; Behforouz, B. Evaluation of mechanical and durability properties of fiber-reinforced lightweight geopolymer composites based on rice husk ash and nanoalumina. Constr. Build. Mater. 2019, 209, 532–540. [Google Scholar] [CrossRef]
- Aygörmez, Y.; Canpolat, O.; Al-Mashhadani, M.M.; Uysal, M. Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites. Constr. Build. Mater. 2020, 235, 117502. [Google Scholar] [CrossRef]
- Masi, G.; Rickard, W.D.A.; Bignozzi, M.C.; van Riessen, A. The effect of organic and inorganic fibres on the mechanical and thermal properties of aluminate activated geopolymers. Compos. Part B 2015, 76, 218–228. [Google Scholar] [CrossRef]
- Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.B. Tensile properties of a novel fibre reinforced geopolymer composite with enhanced strain hardening characteristics. Compos. Struct. 2017, 168, 402–427. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, W.; Li, Z. Impact behavior and microstructural characteristics of PVA fiber reinforced fly ash-geopolymer boards prepared by extrusion technique. J. Mater. Sci. 2006, 41, 2787–2794. [Google Scholar]
- Peijiang, S.; Hwai-Chung, W. Transition from brittle to ductile behavior of fly ash using PVA fibers. Cem. Concr. Compos. 2008, 30, 29–36. [Google Scholar]
- Natali, A.; Manzi, S.; Bignozzi, M.C. Novel fiber-reinforced composite materials based on sustainable geopolymer matrix. Procedia Eng. 2011, 21, 1124–1131. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, F.U.A. Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites. Mater. Des. 2013, 50, 674–682. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, F.U.A. Review of mechanical properties of short fibre reinforced geopolymer composities. Constr. Build. Mater. 2013, 43, 37–49. [Google Scholar] [CrossRef]
- Nematollahi, B.; Sanjayan, J.; Shaikh, F.U.A. Comparative deflection hardening behavior of short fiber reinforced geopolymer composites. Constr. Build. Mater. 2014, 70, 54–64. [Google Scholar] [CrossRef]
- Nematollahi, B.; Sanjayan, J.; Shaikh, F.U.A. Tensile strain hardening behavior of PVA fiber-reinforced engineered geopolymer composite. J. Mater. Civ. Eng. 2014, 27, 04015001. [Google Scholar] [CrossRef]
- Xu, F.; Deng, X.; Peng, C.; Zhu, J.; Chen, J. Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer composites. Constr. Build. Mater. 2017, 150, 179–189. [Google Scholar] [CrossRef]
- Borges, P.H.R.; Bhutta, A.; Bavuzo, L.T.; Banthia, N. Effect of SiO2/Al2O3 molar ratio on mechanical behavior and capillary sorption of MK-based alkali-activated composites reinforced with PVA fibers. Mater. Struct. 2017, 50, 148–160. [Google Scholar] [CrossRef]
- Ekaputri, J.J.; Junaedi, S. Effect of curing temperature and fiber on metakaolin-based geopolymers. Procedia Eng. 2017, 171, 572–583. [Google Scholar] [CrossRef]
- Xu, S.; Malik, M.A.; Qi, Z.; Huang, B.T.; Li, Q.; Sarkar, M. Influence of the PVA fibers and SiO2 NPs on the structural properties of fly ash based sustainable geopolymer. Constr. Build. Mater. 2018, 164, 238–245. [Google Scholar] [CrossRef]
- Wan, X.; Shen, C.; Wang, P.; Zhao, T.; Lua, Y. A study on fracture toughness of ultra-high toughness geopolymer composites based on Double-K Criterion. Constr. Build. Mater. 2020, 251, 118851. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, K.; Wang, J.; Guo, J.; Hua, S.; Ling, Y. Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2. Ceram. Int. 2020, 46, 20027–20037. [Google Scholar] [CrossRef]
- Kan, L.L.; Wang, W.S.; Liu, W.D.; Wu, M. Development and characterization of fly ash based PVA fiber reinforced Engineered Geopolymer Composites incorporating metakaolin. Cem. Concr. Compos. 2020, 108, 103521. [Google Scholar] [CrossRef]
- Kan, L.; Zhang, L.; Zhao, Y.; Wu, M. Properties of polyvinyl alcohol fiber reinforced fly ash based Engineered Geopolymer Composites with zeolite replacement. Constr. Build. Mater. 2020, 231, 117161. [Google Scholar] [CrossRef]
- Malik, M.A.; Sarkar, M.; Xu, S.; Li, Q. Effect of PVA/SiO2 NPs additive on the structural, durability, and fire resistance properties of geopolymers. Appl. Sci. 2019, 9, 1953. [Google Scholar] [CrossRef] [Green Version]
- Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.B.; Tsioulou, O.T.; Al-Rekabi, S. A novel corrosion resistant repair technique for existing reinforced concrete (RC) elements using polyvinyl alcohol fibre reinforced geopolymer concrete (PVAFRGC). Constr. Build. Mater. 2018, 164, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Okada, K.; Imase, A.; Isobe, T.; Nakajima, A. Capillary rise properties of porous geopolymers prepared by an extrusion method using polylactic acid (PLA) fibers as the pore formers. J. Eur. Ceram. Soc. 2011, 31, 461–467. [Google Scholar] [CrossRef]
- Rasouli, H.R.; Golestani-Fard, F.; Mirhabibi, A.R.; Nasab, G.M.; MacKenzie, K.J.D.; Shahraki, M.H. Fabrication and properties of microporous metakaolin-based geopolymer bodies with polylacticacid (PLA) fibers as pore generators. Ceram. Int. 2015, 41, 7872–7880. [Google Scholar] [CrossRef]
- Asrani, N.P.; Murali, G.; Parthiban, K.; Surya, K.; Prakash, A.; Rathika, K.; Chandru, U. A feasibility of enhancing the impact resistance of hybrid fibrous geopolymer composites: Experiments and modelling. Constr. Build. Mater. 2019, 203, 56–68. [Google Scholar] [CrossRef]
- Wang, Y.; Aslani, F.; Valizadeh, A. An investigation into the mechanical behaviour of fibre-reinforced geopolymer concrete incorporating NiTi shape memory alloy, steel and polypropylene fibres. Constr. Build. Mater. 2020, 259, 119765. [Google Scholar] [CrossRef]
- Asrani, N.P.; Murali, G.; Abdelgader, H.S.; Parthiban, K.; Haridharan, M.K.; Karthikeyan, K. Investigation on mode I fracture behavior of hybrid fiber-reinforced geopolymer composites. Arab. J. Sci. Eng. 2019, 44, 8545–8555. [Google Scholar] [CrossRef]
- Goncalves, J.R.A.; Boluk, Y.; Bindiganavile, V. Crack growth resistance in fibre reinforced alkali-activated fly ash concrete exposed to extreme temperatures. Mater. Struct. 2018, 51, 42. [Google Scholar] [CrossRef]
- Bindiganavile, V.; Goncalves, J.R.A.; Boluk, Y. Crack growth resistance in fibre reinforced geopolymer concrete exposed to sustained extreme temperatures. Key Eng. Mat. 2016, 711, 511–518. [Google Scholar] [CrossRef]
- Ganesh, C.; Muthukannan, M. Experimental study on the behaviour of hybrid fiber reinforced geopolymer concrete under ambient curing condition. IOP Conf. Ser. Mater. Sci. Eng. 2019, 561, 012014. [Google Scholar] [CrossRef] [Green Version]
- Moradikhou, A.B.; Esparham, A.; Avanaki, M.J. Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concrete. Constr. Build. Mater. 2020, 251, 118965. [Google Scholar]
- Khan, M.Z.N.; Hao, Y.; Hao, H.; Shaikh, F.U.A. Mechanical properties of ambient cured high strength hybrid steel and synthetic fibers reinforced geopolymer composites. Cem. Concr. Compos. 2018, 85, 133–152. [Google Scholar] [CrossRef]
- Khan, M.Z.N.; Hao, Y.; Hao, H.; Shaikha, F.U.A. Mechanical properties and behaviour of high-strength plain and hybrid-fiber reinforced geopolymer composites under dynamic splitting tension. Cem. Concr. Compos. 2019, 104, 103343. [Google Scholar] [CrossRef]
- Khan, M.Z.N.; Hao, Y.; Hao, H.; Shaikh, F.U.A.; Liu, K. Mechanical properties of ambient cured high-strength plain and hybrid fiber reinforced geopolymer composites from triaxial compressive tests. Constr. Build. Mater. 2018, 185, 338–353. [Google Scholar] [CrossRef]
- Khan, M.Z.N.; Hao, Y.; Hao, H.; Shaikh, F.U.A. Experimental evaluation of quasi-static and dynamic compressive properties of ambient-cured high-strength plain and fiber reinforced geopolymer composites. Constr. Build. Mater. 2018, 166, 482–499. [Google Scholar] [CrossRef]
- Alrefaei, Y.; Dai, J.G. Tensile behavior and microstructure of hybrid fiber ambient cured one-part engineered geopolymer composites. Constr. Build. Mater. 2018, 184, 419–431. [Google Scholar] [CrossRef]
- Cui, Y.; Hao, H.; Li, J.; Chen, W. Effect of adding methylcellulose on mechanical and vibration properties of geopolymer paste and hybrid fiber-reinforced geopolymer composite. J. Mater. Civ. Eng. 2020, 32, 04020166. [Google Scholar] [CrossRef]
- Yang, T.; Han, E.; Wang, X.; Wu, D. Surface decoration of polyimide fiber with carbon nanotubes and its application for mechanical enhancement of phosphoric acid-based geopolymers. Appl. Surf. Sci. 2017, 416, 200–212. [Google Scholar] [CrossRef]
- Derombise, G.; Van Schoors, L.V.; Davies, P. Degradation of Technora aramid fibres in alkaline and neutral environments. Polym. Degrad. Stab. 2009, 94, 1615–1620. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Bastiaansen, C.W.M.; Peijs, T. High strength and high modulus electrospun nanofibers. Fibers 2014, 2, 158–187. [Google Scholar] [CrossRef]
- Kuciel, S.; Kuźniar, P.; Jakubowska, P. Properties of composites based on polyamide 10.10 reinforced with carbon fibers. Polimery 2016, 61, 106–112. [Google Scholar] [CrossRef]
- Rashad, A.M. The effect of polypropylene, polyvinyl-alcohol, carbon and glass fibres on geopolymers properties. Mater. Sci. Technol. 2019, 35, 127–146. [Google Scholar] [CrossRef]
- Bhutta, A.; Farooq, M.; Zanotti, C.; Banthia, N. Pull-out behavior of different fibers in geopolymer mortars: Effects of alkaline solution concentration and curing. Mater. Struct. 2017, 50, 80. [Google Scholar] [CrossRef]
- Mierzwiński, D.; Korniejenko, K.; Łach, M.; Mikuła, J.; Krzywda, J. Effect of coffee grounds addition on efflorescence in fly ash-based geopolymer. IOP Conf. Ser. Mater. Sci. Eng. 2018, 416, 012035. [Google Scholar] [CrossRef]
- Maras, M.M.; Kose, M.M. Mechanical and microstructural properties of polypropylene fiber-reinforced geopolymer composites. J. Fiber Sci. Technol. 2019, 75, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Bumanis, G.; Vitola, L.; Pundiene, I.; Sinka, M.; Bajare, D. Gypsum, Geopolymers, and starch—Alternative binders for bio-based building materials: A review and life-cycle assessment. Sustainability 2020, 12, 5666. [Google Scholar] [CrossRef]
- Kinnunen, P.; Ismailov, A.; Solismaa, S.; Sreenivasan, H.; Raisanen, M.L.; Levanen, E.; Illikainen, M. Recycling mine tailings in chemically bonded ceramics—A review. J. Clean. Prod. 2018, 174, 634–649. [Google Scholar] [CrossRef] [Green Version]
- Korniejenko, K.; Mucsi, G.; Halyag, N.P.; Szabó, R.; Mierzwiński, D.; Louda, P. Mechanical properties of basalt fiber reinforced fly ash-based geopolymer composites. KnE Eng. 2020, 2020, 86–100. [Google Scholar] [CrossRef] [Green Version]
- Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. A review on alkaline activation: New analytical perspectives. Mater. Constr. 2014, 64, 315. [Google Scholar] [CrossRef] [Green Version]
- Korniejenko, K.; Łach, M.; Chou, S.-Y.; Lin, W.-T.; Cheng, A.; Hebdowska-Krupa, M.; Gądek, S.; Mikuła, J. Mechanical properties of short fiber-reinforced geopolymers made by casted and 3D printing methods: A comparative study. Materials 2020, 13, 579. [Google Scholar] [CrossRef] [Green Version]
- Kidalova, L.; Stevulova, N.; Terpakova, E.; Sicakova, A. Utilization of alternative materials in lightweight composites. J. Clean. Prod. 2012, 34, 116–119. [Google Scholar] [CrossRef]
Fiber | Density [g/cm3] | Tensile Strength [MPa] | Tensile Modulus [GPa] | Reference |
---|---|---|---|---|
Aramid | 1.39–1.44 | 3280–4120 | 79–83 | [17,88] |
PAN | 1.1–1.2 | 1000–2200 | 35–55 | [19,89] |
PA | 1.09–1.37 | 50–90 | 0.35–20 | [20,89,90] |
PE | 0.96–0.98 | 3500–4200 | 135–235 | [33,89] |
PP | 0.89–0.92 | 50–600 | 0.5–3.0 | [26,27,28,89] |
PVA | 1.19–1.31 | 1600 | 250 | [33,89] |
Fiber | Length | Diameter | wt.% | Reference |
---|---|---|---|---|
Aramid | 30 mm | 0.5 mm | 1.0 vol.% | [17] |
PAN | 6 mm | 12 μm | 0.4%, 0.8%, 1.2% | [19] |
PA | 10 mm | 55 μm | 0.4%, 0.8%, 1.2 vol.% | [20] |
PA | 8 mm | 40 μm | 2.0 vol.% | [21] |
PE | 12 mm | 12 μm | 2.0 vol.% | [21] |
PE | 12 mm | 12 μm | 0.5%, 1.0%, 1.5%, 2.0% | [22] |
PP | 3 mm | 10 μm | 0.25%, 0.5%, 0.75% | [28] |
PP | 12 mm | 7.5 μm | 0.4%, 0.8%, 1.2 vol.% | [33] |
PP | 12 mm | 18–30 µm | 0.1%, 0.2%, 0.3%, 0.4 vol.% | [34] |
PP | 20 mm | 38 µm | 2.0 vol.% | [35] |
PP | 30 mm | 1 mm | 1.5 vol.% | [38] |
PP | 3–19 mm | 17 µm | 0.5%, 1.0%, 1.5%, 2.0% | [39] |
PP | 6 mm | 11.2 μm | 0.25%, 0.5%, 0.75%, 1.0 vol.% | [40] |
PP | 19 mm | 40 μm | 0.5%, 1.0% | [42] |
PP | 8 mm | 40 μm | 0.1%, 0.2%, 0.3%, 0.4 vol.% | [43] |
PP | 18, 19 and 51 mm | 22 μm | 0.5 vol.% | [44] |
PP | 10 and 15 mm | 50 μm | 0.5%, 1%, 1.5 vol.% | [46] |
PP | 6 mm | 20 μm | 0.3%, 0.5%, 1.0% | [47] |
PP | 12 mm | 40 μm | 0.15%, 0.30%, 0.45% | [48] |
PVA | 8 mm | 39 μm | 0.4%, 0.8%, 1.2 vol.% | [20] |
PVA | 8 mm | 40 μm | 0.4%, 0.8%, 1.2% | [33] |
PVA | 15/18 mm | 20/30 μm | 2.0 vol.% | [38] |
PVA | 7 mm | 18 μm | 1.0% | [57] |
PVA | 10 mm | 12 μm | 2.0 vol.% | [60,61] |
PVA | 8/12 mm | 40/100 μm | 2.0 vol.% | [62] |
PVA | 8 mm | 39 μm | 2.0%, 5.0%, 7.0% | [65] |
PVA | 8 mm | 40 μm | 2.0% | [21] |
PVA | 12 mm | 20 μm | 0.15%, 0.30%, 0.45% | [48] |
PVA | 12 mm | 40 μm | 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, 1.2 vol.% | [67] |
PVC | 7 mm | 0.4 μm | 1.0% | [57] |
PO | 48 and 55 mm | N/A | 0.5 vol.% | [44] |
Fiber | Geopolymer Matrix | Compressive Strength (Matrix) [MPa] | Flexural Strength (Matrix) [MPa] | Compressive Strength (Composite) [MPa] | Flexural Strength (Composite) [MPa] | Reference |
---|---|---|---|---|---|---|
Aramid | Fly ash | 70.0 | 7.1 | 88.0 (+25.7%) | 10.4 (+46.5%) | [17] |
PAN (0.8%) | Metakaolin + slag | 80.0 | 4.0 | 99.8 (+24.8%) | 13.8 (+244%) | [19] |
PA 1 | Metakaolin + slag + sand + collemanite | 61.6 | 8.8 | 62.0 (+0.6%) | 11.4 (+22.8%) | [20] |
PA (2.0 vol.%) | Fly ash + slag | 48.6 | N/A | 48.7 (+0.2%) | N/A | [21] |
PE (2.0 vol.%) | Fly ash + slag | 48.6 | N/A | 44.3 (−8.8%) | N/A | [21] |
PE (0.5%) | Fly ash + slag | 80.0 | N/A | 70.7 (−11.6%) | N/A | [22] |
PP (0.75%) | Metakaolin | 32.6 | 5.0 | 54.7 (+59.6%) | 10.0 (+50%) | [28] |
PP 2 | Fly ash + slag + sand | 60.5 | 8.4 | 61.0 (+0.8%) | 9.7 (+14.7%) | [33] |
PP (0.2 vol.%) | Fly ash + slag + sand | 35.0 | 6.5 | 39.0 (+10.3%) | 7.0 (+7.4%) | [34] |
PP (2.0 vol.%) | Slag + sand | 80.0 | 8.0 | 100.0 (+20%) | 32.0 (+400%) | [35] |
PP (1.5 vol.%) | Fly ash | 70.0 | 7.1 | 91.7 (+31%) | 8.4 (+18.6%) | [38] |
PP (0.5%) | Fly ash (foamed GP) | 0.88 | N/A | 1.5 (+70.5%) | N/A | [39] |
PP (0.25 vol.%) | Fly ash + micron-scale silica | 22.3 | 7.6 | 35.8 (+60.5%) | 7.8 (+2.6%) | [40] |
PP (1.0%) | Fly ash/slag | N/A | 8.8 | N/A | 6.0 (−46.7%) | [42] |
PP (0.2%) | Metakaolin | 48.0 | 5.6 | 49 (+2.1%) | 6.9 (+23.2%) | [43] |
PP (0.5 vol.%) | Fly ash + slag | 50.4 | N/A | 47.3 (−6.1%) | N/A | [44] |
PP 3 | Fly ash + aggregates | 32.0 | 5.9 | 43.3 (+35.3%) | 8.0 (+35.5%) | [46] |
PP (1.0%) | Metakaolin + aggregates | 52.6 | 3.6 | 52.7 (+1.0%) | 4.9 (+36.1%) | [47] |
PP (0.15 vol.%) | Fly ash + slag | 80.0 | N/A | 74.8 (−6.5%) | N/A | [48] |
PVA 4 | Metakaolin + slag + sand + collemanite | 61.6 | 8.8 | 66.2 (+7.5%) | 12.2 (+38.6%) | [20] |
PVA (1.2 vol.%) | Fly ash + slag + sand | 60.5 | 8.4 | 63.0 (+4.3%) | 11.8 (+39.8%) | [33] |
PVA (2.0 vol.%) | Fly ash | 70.0 | 7.1 | 101.9 (+45.6%) | 10.5 (+47.9%) | [38] |
PVA (1.0%) | Metakaolin + slag | N/A | 6.9 | N/A | 11.2 (+62.3%) | [57] |
PVA (2.0 vol.%) | Fly ash | 54.6 | N/A | 63.7 (+16.7) | N/A | [60,61] |
PVA (2.0 vol.%) | Fly ash | 49.2 | 4.8 | 84.9 (+72.7) | 18.2 (+278.2%) | [62] |
PVA (5.0%) | Fly ash + sand | 40.2 | 3.6 | 43.6 (+8.5%) | 6.9 (+94.1%) | [65] |
PVA (2.0%) | Fly ash + slag | 48.6 | N/A | 48.7 (+0.2%) | N/A | [21] |
PVA (0.30 vol.%) | Fly ash + slag | 82.0 | N/A | 94.1 (+12.8%) | N/A | [48] |
PVA 5 | Metakaolin + fly ash | 50.0 | 6.5 | 65.0 (+30.0%) | 10.0 (+53.8%) | [67] |
PVC (1.0%) | Metakaolin + slag | N/A | 6.9 | N/A | 10.0 (+44.9%) | [57] |
PO (0.5 vol.%) | Fly ash + slag | 50.4 | N/A | 43.8 (−13.1%) | N/A | [44] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korniejenko, K.; Lin, W.-T.; Šimonová, H. Mechanical Properties of Short Polymer Fiber-Reinforced Geopolymer Composites. J. Compos. Sci. 2020, 4, 128. https://doi.org/10.3390/jcs4030128
Korniejenko K, Lin W-T, Šimonová H. Mechanical Properties of Short Polymer Fiber-Reinforced Geopolymer Composites. Journal of Composites Science. 2020; 4(3):128. https://doi.org/10.3390/jcs4030128
Chicago/Turabian StyleKorniejenko, Kinga, Wei-Ting Lin, and Hana Šimonová. 2020. "Mechanical Properties of Short Polymer Fiber-Reinforced Geopolymer Composites" Journal of Composites Science 4, no. 3: 128. https://doi.org/10.3390/jcs4030128
APA StyleKorniejenko, K., Lin, W. -T., & Šimonová, H. (2020). Mechanical Properties of Short Polymer Fiber-Reinforced Geopolymer Composites. Journal of Composites Science, 4(3), 128. https://doi.org/10.3390/jcs4030128