In Vitro Weight Loss of Dental Composite Resins and Glass-Ionomer Cements Exposed to a Challenge Simulating the Oral Intake of Acidic Drinks and Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Tested
2.2. Sample Size Calculation
2.3. Samples’ Preparation
2.3.1. Composite Resins
2.3.2. Glass-Ionomer Cements
2.4. Statistical Analysis
3. Results
3.1. Composite Resins
3.2. Glass-Ionomer Cements
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frencken, J.E.; Sharma, P.; Stenhouse, L.; Green, D.; Laverty, D.; Dietrich, T. Global epidemiology of dental caries and severe periodontitis—A comprehensive review. J. Clin. Periodontol. 2017, 44, S94–S105. [Google Scholar] [CrossRef] [PubMed]
- Pepla, E.; Besharat, L.K.; Palaia, G.; Tenore, G.; Migliau, G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: A review of literature. Ann. Stomatol. 2014, 5, 108–114. [Google Scholar] [CrossRef]
- Coelho, A.; Paula, A.; Amaro, I.; Marto, C.M.; Costa, N.; Saraiva, J.; Ferreira, M.M.; Antunes, P.; Carrilho, E. Mechanical Characterization of Two Dental Restorative Materials after Acidic Challenge. J. Compos. Sci. 2021, 5, 31. [Google Scholar] [CrossRef]
- Yilmaz, E.; Sadeler, R. Effect of artificial aging environment and time on mechanical properties of composite materials. J. Dent. Res. Rev. 2018, 5, 111. [Google Scholar] [CrossRef]
- Da Silva, M.A.B.; Vitti, R.P.; Sinhoreti, M.A.; Consani, R.L.; Silva-Junior, J.G.; Tonholo, J. Effect of alcoholic beverages on surface roughness and microhardness of dental composites. Dent. Mater. J. 2016, 35, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Toledano, M.; Osorio, R.; Osorio, E.; Fuentes, V.; Prati, C.; Garcia-Godoy, F. Sorption and solubility of resin-based restorative dental materials. J. Dent. 2003, 31, 43–50. [Google Scholar] [CrossRef]
- Festuccia, M.S.; Garcia Lda, F.; Cruvinel, D.R.; Pires-De-Souza Fde, C. Color stability, surface roughness and microhardness of composites submitted to mouthrinsing action. J. Appl. Oral Sci. 2012, 20, 200–205. [Google Scholar] [CrossRef]
- Briso, A.L.; Caruzo, L.P.; Guedes, A.P.; Catelan, A.; dos Santos, P.H. In vitro evaluation of surface roughness and microhardness of restorative materials submitted to erosive challenges. Oper. Dent. 2011, 36, 397–402. [Google Scholar] [CrossRef]
- Kazak, M.; Tiryaki, M.; Turkes Basaran, E.; Gokce, B.Y. Evaluating the effects of different beverages with daily consumption habits on the wear of restorative materials. Odontology 2020, 108, 636–645. [Google Scholar] [CrossRef]
- de Luca Cunha, C.M.B.; Wambier, L.M.; Dias, G.F.; Reis, A.; Alves, F.B.T.; Chibinsk, A.C.; Wambier, D.S. In Vitro Evaluation of the Impact of Erosive/Abrasive Challenge in Glass Ionomer Cements. Biomed. J. Sci. Tech. Res. 2017, 1, 1263–1266. [Google Scholar]
- Perera, D.; Yu, S.C.H.; Zeng, H.; Meyers, I.A.; Walsh, L.J. Acid Resistance of Glass Ionomer Cement Restorative Materials. Bioengineering 2020, 7, 150. [Google Scholar] [CrossRef]
- Colombo, M.; Gallo, S.; Poggio, C.; Ricaldone, V.; Arciola, C.R.; Scribante, A. New Resin-Based Bulk-Fill Composites: In vitro Evaluation of Micro-Hardness and Depth of Cure as Infection Risk Indexes. Materials 2020, 13, 1308. [Google Scholar] [CrossRef] [Green Version]
- Zorzin, J.; Maier, E.; Harre, S.; Fey, T.; Belli, R.; Lohbauer, U.; Petschelt, A.; Taschner, M. Bulk-fill resin composites: Polymerization properties and extended light curing. Dent. Mater. 2015, 31, 293–301. [Google Scholar] [CrossRef]
- Beltrami, R.; Chiesa, M.; Scribante, A.; Allegretti, J.; Poggio, C. Comparison of shear bond strength of universal adhesives on etched and nonetched enamel. J. Appl. Biomater. Funct. Mater. 2016, 14, e78–e83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, M.A.; Vitti, R.P.; Sinhoreti, M.A.; Consani, R.L.; Júnior, J.G.; Tonholo, J. Evaluation of the Surface Roughness and Microleakage of Dental Composites Exposed to Different Beverages. J. Contemp. Dent. Pract. 2015, 16, 800–804. [Google Scholar] [PubMed]
- Scribante, A.; Gallo, S.; Scarantino, S.; Dagna, A.; Poggio, C.; Colombo, M. Exposure of Biomimetic Composite Materials to Acidic Challenges: Influence on Flexural Resistance and Elastic Modulus. Biomimetics 2020, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Gömeç, Y.; Dorter, C.; Ersev, H.; Guray Efes, B.; Yildiz, E. Effects of dietary acids on surface microhardness of various tooth-colored restoratives. Dent. Mater. J. 2004, 23, 429–435. [Google Scholar] [CrossRef]
- Scribante, A.; Bollardi, M.; Chiesa, M.; Poggio, C.; Colombo, M. Flexural Properties and Elastic Modulus of Different Esthetic Restorative Materials: Evaluation after Exposure to Acidic Drink. Biomed Res. Int. 2019, 2019, 5109481. [Google Scholar] [CrossRef]
- Meurman, J.H.; Frank, R.M. Scanning electron microscopic study of the effect of salivary pellicle on enamel erosion. Caries Res. 1991, 25, 1–6. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, Q.; Gao, X.J. Influence of Coca-Cola on early erosion and surface microhardness of human enamel: An in situ study. Zhonghua Kou Qiang Yi Xue Za Zhi 2016, 51, 357–361. [Google Scholar]
- de Moraes, M.D.; de Melo, M.A.; Bezerra Dda, S.; Costa, L.S.; Saboía Vde, P.; Rodrigues, L.K. Clinical study of the caries-preventive effect of resin-modified glass ionomer restorations: Aging versus the influence of fluoride dentifrice. J. Investig. Clin. Dent. 2016, 7, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Buzalaf, M.A.; Hannas, A.R.; Kato, M.T. Saliva and dental erosion. J. Appl. Oral Sci. 2012, 20, 493–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xavier, A.M.; Sunny, S.M.; Rai, K.; Hegde, A.M. Repeated exposure of acidic beverages on esthetic restorative materials: An in-vitro surface microhardness study. J. Clin. Exp. Dent. 2016, 8, e312–e317. [Google Scholar] [CrossRef] [PubMed]
- Fatima, N.; Abidi, S.Y.; Qazi, F.U.; Jat, S.A. Effect of different tetra pack juices on microhardness of direct tooth colored-restorative materials. Saudi Dent. J. 2013, 25, 29–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szalewski, L.; Wójcik, D.; Bogucki, M.; Szkutnik, J.; Różyło-Kalinowska, I. The Influence of Popular Beverages on Mechanical Properties of Composite Resins. Materials 2021, 14, 3097. [Google Scholar] [CrossRef] [PubMed]
Group | Material | Type | Composition | Filler Content % (w/w) | Manufacturer | Lot # |
---|---|---|---|---|---|---|
1A | ENAMEL Plus HRi Bio Function | Microfilled hybrid composite | Matrix: urethane dimethacrylate (UDMA), tricyclodecane dimethanol dimethacrylate(TCDDA), no comonomers and no Bis-GMA Filler: glass filler, high dispersion silicon dioxide, fluorine | 74 (w/w) | Micerium S.p.A., Avegno, Italy | 2018006379 |
2A | Essentia | Microfilled hybrid composite | Matrix: urethane dimethacrylate (UDMA), Bis-MEPP, Bis-EMA, Bis-GMA, TEGDMA Filler: prepolymerised fillers, barium glass, fumed silica | 81 (w/w) | GC Corporation, Tokyo, Japan | 151109C |
3A | Filtek Supreme XTE | Nanofilled composite | Matrix: Bis-phenol A diglycidylmethacrylate (Bis-GMA), triehtylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), bis-phenol A polyethylene glycol diether dimethacylate Filler: silica nanofillers (5–75 nm), zirconia/silica nanoclusters (0.6–1.4 µm) | 78.5 (w/w) | 3M ESPE, St. Paul, MN, USA | N748173 |
4A | ENAMEL Plus HRi Flow | Microfilled hybrid composite | Matrix: urethane dimethacrylate (UDMA), Butanedioldimethacrylate Diurethandimethacrylate, Filler: glass filler, high dispersion silicon dioxide | 53 (w/w) | Micerium S.p.A., Avegno, Italy | 2017008768 |
5A | SDR Flow | Microfilled hybrid composite | Matrix: modified UDMA, EBPADMA, TEGDMA Filler: barium and strontium alumino-fluoro-borosilicate glasses | 47.3 (w/w) | Dentsply Sirona, Ballantyne Corporate Pl, Charlotte, USA | 2003000392 |
6A | Ceram.X Universal | Nanoceramic composite | Matrix: methacrylate modified ploysiloxane, dimethacylate resin, ethyl-4(dimethylamino) benzoate, iron oxide pigments, titanium oxide pigments, aluminum sulfo silicate pigments Filler: barium-aluminum-borosilicate glass (1.1–1.5 μm), methacrylate functionalized silicon dioxide nano filler (10 nm) | 76 (w/w) | Dentsply Sirona, Ballantyne Corporate Pl, Charlotte, USA | 1507000661 |
7A | Gradia direct Flow | Microfilled hybrid composite | Matrix: urethanedimethacrylate (UDMA), dimethacrylate camphorquinone Filler: fluoro-alumino-silicate glass silica powder | 67 (w/w) | GC Corporation, Tokyo, Japan | 140606A |
Group | Material | Composition | Manufacturer | Lot # |
---|---|---|---|---|
1B | Voco IonoStar Plus | Powder: fluoro-alumino-silicate glass, polyacrylic acid, tartaric acid Liquid: polyacrylic acid solution | Voco GmbH, Cuxhaven, Germany | 1620354 |
2B | Voco IonoStar Plus + Easy Glaze | Powder: fluoro-alumino-silicate glass, polyacrylic acid, tartaric acid Liquid: polyacrylic acid solution Light Curing Protective Coating | Voco GmbH, Cuxhaven, Germany | 1620354 Easy Glaze 1411097 |
3B | GC Equia Forte | Powder: fluoro-alumino-silicate glass, polyacrylic acid powder, pigment Liquid: polyacrylic acid, distilled water, polybasic carboxylic acid | GC Corporation, Tokyo, Japan | 161020A |
4B | GC Equia Forte + Coat | Powder: fluoro-alumino-silicate glass, polyacrylic acid powder, pigment Liquid: polyacrylic acid, distilled water, polybasic carboxylic acid Light Curing Protective Coating | GC Corporation, Tokyo, Japan | 161020A Coat 1605131 |
5B | 3M ESPE Ketac Universal Aplicap | Powder: Al-Ca-La fluorosilicate glass, copolymer acid (acrylic and maleic acid) Liquid: polyalkenoic acid, tartaric acid, water | 3M ESPE, St Paul, MN, USA | 634330 |
6B | GC Fuji TRIAGE CAPSULE | Powder: fluoro-alumino-silicate glass Liquid: polyacrylic acid, distilled water | GC Corporation, Tokyo, Japan | 1611011 |
7B | ChemFil Rock | Powder: zinc-modified fluoro alumino silicate glass Liquid: polyacrylic and itaconic acid | Dentsply Sirona, Ballantyne Corporate Pl, Charlotte, USA | 1607000503 |
GROUPS | WEIGHT LOSS (%) | ||
---|---|---|---|
1 Day | 3 Days | 7 Days | |
1A. ENAMEL Plus HRi Bio Function | 0.61 | 0.62 | 0.67 |
2A. Essentia | 0.76 | 0.78 | 0.81 |
3A. FILTEK Supreme XTE | 0.86 | 1.20 | 1.30 |
4A. ENAMEL Plus HRi Flow | 0.35 | 0.36 | 0.39 |
5A. SDR Flow | 0.02 | 0.02 | 0.5 |
6A. Ceram.X Universal | 1.08 | 1.12 | 1.17 |
7A. Gradia direct Flow | 0.02 | 0.04 | 0.07 |
GROUPS | WEIGHT LOSS (%) | ||
---|---|---|---|
1 Day | 3 Days | 7 Days | |
1B. Voco IonoStar Plus | 0.43 | 4.45 | 9.39 |
2B. Voco IonoStar Plus + Easy Glaze | 0.16 | 5.28 | 8.10 |
3B. GC Equia Forte | 0.37 | 5.03 | 9.60 |
4B. GC Equia Forte + Coat | 0.09 | 0.43 | 1.11 |
5B. 3M ESPE Ketac Universal Aplicap | 1.40 | 4.99 | 8.33 |
6B. GC Fuji TRIAGE CAPSULE | 2.71 | 5.33 | 7.71 |
7B. ChemFil Rock | 1.69 | 2.15 | 2.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colombo, M.; Gallo, S.; Chiesa, M.; Poggio, C.; Scribante, A.; Zampetti, P.; Pietrocola, G. In Vitro Weight Loss of Dental Composite Resins and Glass-Ionomer Cements Exposed to a Challenge Simulating the Oral Intake of Acidic Drinks and Foods. J. Compos. Sci. 2021, 5, 298. https://doi.org/10.3390/jcs5110298
Colombo M, Gallo S, Chiesa M, Poggio C, Scribante A, Zampetti P, Pietrocola G. In Vitro Weight Loss of Dental Composite Resins and Glass-Ionomer Cements Exposed to a Challenge Simulating the Oral Intake of Acidic Drinks and Foods. Journal of Composites Science. 2021; 5(11):298. https://doi.org/10.3390/jcs5110298
Chicago/Turabian StyleColombo, Marco, Simone Gallo, Marco Chiesa, Claudio Poggio, Andrea Scribante, Paolo Zampetti, and Giampiero Pietrocola. 2021. "In Vitro Weight Loss of Dental Composite Resins and Glass-Ionomer Cements Exposed to a Challenge Simulating the Oral Intake of Acidic Drinks and Foods" Journal of Composites Science 5, no. 11: 298. https://doi.org/10.3390/jcs5110298
APA StyleColombo, M., Gallo, S., Chiesa, M., Poggio, C., Scribante, A., Zampetti, P., & Pietrocola, G. (2021). In Vitro Weight Loss of Dental Composite Resins and Glass-Ionomer Cements Exposed to a Challenge Simulating the Oral Intake of Acidic Drinks and Foods. Journal of Composites Science, 5(11), 298. https://doi.org/10.3390/jcs5110298