Study of the Preparation and Properties of TPS/PBSA/PLA Biodegradable Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of TPS
2.3. Preparation of TPS/PBSA
2.4. Preparation of TPS/PLA
2.5. Preparation of TPS/PBSA/PLA
2.6. Characterization and Testing
3. Results and Discussion
3.1. Characterization of the TPS/PBSA Blend
3.1.1. Infrared Analysis of TPS/PBSA Blend
3.1.2. Properties of the TPS/PBSA blend
3.1.3. SEM Results of TPS/PBSA Blends
3.2. Characterization of TPS/PLA Blend
3.2.1. Infrared Analysis of TPS/PLA Blend
3.2.2. Properties of TPS/PLA Blend
3.2.3. SEM Results of TPS/PLA Blend
3.3. Characterization of the TPS/PBSA/PLA Composites
3.3.1. Infrared Analysis of the TPS/PBSA/PLA Composites
3.3.2. Properties of the TPS/PBSA/PLA Composites
3.3.3. SEM Results of the TPS/PBSA/PLA Composites
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Su, Y.; Yang, B.; Liu, J.; Sun, B.; Cao, C.; Zou, X.; Lutes, R.; He, Z. Prospects for Replacement of Some Plastics in Packaging with Lignocellulose Materials: A Brief Review. Bioresources 2018, 13, 4550–4576. [Google Scholar] [CrossRef] [Green Version]
- Pillai, C. Recent advances in biodegradable polymeric materials. Mater. Sci. Technol. 2014, 30, 558–566. [Google Scholar] [CrossRef]
- Pathak, V.; Ambrose, R.P.K. Starch-based biodegradable hydrogel as seed coating for corn to improve early growth under water shortage. J. Appl. Polym. Sci. 2019, 137, 48523–48534. [Google Scholar] [CrossRef]
- Rogovina, S.Z.; Aleksanyan, K.V. Biodegradable Composites Based on Polylactide and Starch. Fibre Chem. 2019, 51, 170–174. [Google Scholar] [CrossRef]
- Gu, Y.; Cheng, L.; Gu, Z.; Hong, Y.; Li, Z.; Li, C. Preparation, characterization and properties of starch-based adhesive for wood-based panels. Int. J. Biol. Macromol. 2019, 134, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.; Bilal, M. Research progress of biodegradable materials in reducing environmental pollution. In Abatement of Environmental Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 313–330. [Google Scholar]
- Ye, S. Effect of Particle Size of Starch on the Property of Biodegradable Polyethylene Film. China Plast. 2000, 5, 82–86. [Google Scholar]
- Briassoulis, D.; Dejean, C.; Picuno, P. Critical Review of Norms and Standards for Biodegradable Agricultural Plastics Part II: Composting. J. Polym. Environ. 2010, 18, 364–383. [Google Scholar] [CrossRef]
- Gómez-Aldapa, C.A.; Velazquez, G.; Gutierrez, M.C.; Castro-Rosas, J.; Jiménez-Regalado, E.J.; Aguirre-Loredo, R.Y. Characterization of Functional Properties of Biodegradable Films Based on Starches from Different Botanical Sources. Starch-Stärke 2020, 72, 1900282–1900314. [Google Scholar] [CrossRef]
- Al, G.; Aydemir, D.; Kaygin, B.; Ayrilmis, N.; Gunduz, G. Preparation and characterization of biopolymer nanocomposites from cellulose nanofibrils and nanoclays. J. Compos. Mater. 2018, 52, 689–700. [Google Scholar] [CrossRef]
- Tao, S.; Geng, L.; Ning, T.Y.; Zhang, Z.M.; Mi, Q.H.; Rattan, L. Suitability of mulching with biodegradable film to moderate soil temperature and moisture and to increase photosynthesis and yield in peanut. Agric. Water Manag. 2018, 208, 214–223. [Google Scholar]
- Guarás, M.P.; Luduea, L.N.; Alvarez, V.A. Development of Biodegradable Products from Modified Starches. In Starch Based Materials in Food Packaging; Academic Press: Cambridge, MA, USA, 2017; pp. 77–124. [Google Scholar]
- Chiellini, E.; Cinelli, P.; Chiellini, F.; Imam, S.H. Environmentally degradable bio-based polymeric blends and composites. Macromol. Biosci. 2004, 4, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Assis, R.Q.; Pagno, C.H.; Costa, T.M.H.; Flôres, S.H.; Rios, A.D.O. Synthesis of biodegradable films based on cassava starch containing free and nanoencapsulated β-carotene. Packag. Technol. Sci. 2018, 31, 157–166. [Google Scholar] [CrossRef]
- Nishat, N.; Bhat, S.A.; Kareem, A.; Dhyani, S.; Mohammad, A.; Mirza, A.U. Synthesis, characterization and biological analysis of transition metal complexes with macro cyclic ligands derived from adipic acid, ethylenediamine with diethyloxalate and diethylmalonate. J. Incl. Phenom. Macrocycl. Chem. 2018, 92, 395–409. [Google Scholar] [CrossRef]
- Eaysmine, S.; Haque, P.; Ferdous, T.; Gafur, M.; Rahman, M. Potato starch-reinforced poly(vinyl alcohol) and poly(lactic acid) composites for biomedical applications. J. Thermoplast. Compos. Mater. 2015, 29, 1536–1553. [Google Scholar] [CrossRef]
- Shogren, R.L.; Fanta, G.F.; Doane, W.M. Development of Starch Based Plastics—A Reexamination of Selected Polymer Systems in Historical Perspective. Starch-Stärke 2010, 45, 276–280. [Google Scholar] [CrossRef]
- Jun, C. Reactive Blending of Biodegradable Polymers: PLA and Starch. J. Polym. Environ. 2000, 8, 33–37. [Google Scholar] [CrossRef]
Sample | TPS | PLA |
---|---|---|
a | 0 | 100 |
b | 20 | 80 |
c | 40 | 60 |
d | 60 | 40 |
Sample | TPS | PBSA | PLA |
---|---|---|---|
a | 30 | 70 | 0 |
b | 30 | 65 | 5 |
c | 30 | 60 | 10 |
d | 30 | 55 | 15 |
e | 30 | 50 | 20 |
Sample | a | b | c | d |
---|---|---|---|---|
Tensile strength/MPa | 72.5 ± 2.6 | 56.1 ± 2.3 | 42.7 ± 3.1 | 24.8 ± 2.1 |
Elongation/% | 5 ± 0.3 | 26 ± 0.9 | 57 ± 2.4 | 7 ± 0.4 |
Notch impact strength/KJ·m2 | 3.2 ± 0.2 | 5.3 ± 0.1 | 7.8 ± 0.2 | 3.9 ± 0.1 |
Bending strength/MPa | 110.8 ± 9.6 | 92.5 ± 9.6 | 68.6 ± 7.2 | 27.9 ± 5.8 |
Bending modulus/MPa | 3805 ± 132 | 4010 ± 212 | 2516 ± 264 | 1222 ± 109 |
MI/g·10 min (190 °C, 2.16 kg) | 5.1 | 9.8 | 22.6 | 32.5 |
Density/g·cm3 | 1.227 | 1.266 | 1.304 | 1.329 |
Sample | a | b | c | d | e |
---|---|---|---|---|---|
Tensile strength/MPa | 13.2 ± 0.9 | 14.3 ± 1.0 | 16.1 ± 1.0 | 15.9 ± 0.4 | 12.9 ± 0.9 |
Elongation/% | 451 ± 12 | 340 ± 10 | 360 ± 9 | 317 ± 12 | 240 ± 13 |
Bending strength/MPa | 6.5 ± 0.2 | 8.0 ± 0.1 | 10.5 ± 0.8 | 13.9 ± 0.6 | 11.9 ± 0.6 |
Bending modulus/MPa | 141 ± 8 | 199 ± 10 | 261 ± 8 | 390 ± 10 | 370 ± 12 |
MI/g·10 min (190 °C, 2.16 kg) | 2.1 | 1.9 | 1.5 | 1.1 | 0.9 |
Density/g·cm3 | 1.227 | 1.266 | 1.224 | 1.228 | 1.226 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhong, Y.; Shi, Q.; Guo, S. Study of the Preparation and Properties of TPS/PBSA/PLA Biodegradable Composites. J. Compos. Sci. 2021, 5, 48. https://doi.org/10.3390/jcs5020048
Wang Y, Zhong Y, Shi Q, Guo S. Study of the Preparation and Properties of TPS/PBSA/PLA Biodegradable Composites. Journal of Composites Science. 2021; 5(2):48. https://doi.org/10.3390/jcs5020048
Chicago/Turabian StyleWang, Yuxuan, Yuke Zhong, Qifeng Shi, and Sen Guo. 2021. "Study of the Preparation and Properties of TPS/PBSA/PLA Biodegradable Composites" Journal of Composites Science 5, no. 2: 48. https://doi.org/10.3390/jcs5020048
APA StyleWang, Y., Zhong, Y., Shi, Q., & Guo, S. (2021). Study of the Preparation and Properties of TPS/PBSA/PLA Biodegradable Composites. Journal of Composites Science, 5(2), 48. https://doi.org/10.3390/jcs5020048