The Working Principles of a Multifunctional Bondline with Disbond Stopping and Health Monitoring Features for Composite Structures
Abstract
:1. Introduction and State-of-the-Art of Multifunctional Bondlines
2. Materials and Methods
2.1. Specimen and Material Selection
2.2. Finite Element Model of cls Specimens with Different Crack Lengths
2.3. Shear Stress Measurements of cls Specimens with Different Crack Lengths in Static Tensile Tests
3. Results
3.1. Shear Stress Distribution within the Hybrid Bondline at Different Crack Lengths
3.2. Tensile Strains within the Hybrid Bondline at Different Crack Lengths
4. Discussion
4.1. The Working Principles of the Multifunctional Bondline
4.2. The Multifunctional Disbond Arrest Feature
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CFRP | carbon fiber reinforced plastic |
CLS | cracked lap shear |
DCB | double cantilever beam |
DIC | digital image correlation |
DSF | disbond-stopping feature |
ETFE | ethylene tetrafluoroethylene |
FBG | fiber Bragg grating |
FE | finite element |
MDAF | multifunctional disbond arrest feature |
NDI | non-destructive inspection |
PVDF | polyvinyliden fluorid |
SHM | structural health monitoring |
SLS | single lap shear |
ST | surface toughening |
References
- Campbell, F.C. Manufacturing Technology for Aerospace Structural Materials, 1st ed.; Aerospace Engineering Materials Science; Elsevier; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar] [CrossRef]
- Löbel, T.; Holzhüter, D.; Sinapius, M.; Hühne, C. A hybrid bondline concept for bonded composite joints. Int. J. Adhes. Adhes. 2016, 229–238. [Google Scholar] [CrossRef]
- European Union Aviation Safety Agency. Annex II to ED Decision 2010/003/R of 19/07/2010: EASA. 2010. Available online: https://www.easa.europa.eu/sites/default/files/dfu/Annex%20II%20-%20AMC%2020-29.pdf (accessed on 25 May 2020).
- Federal Aviation Administration. Advisory Circular 20-107B Subject: Composite Aircraft Structure: FAA. 2009. Available online: https://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/99693 (accessed on 25 May 2020).
- Löbel, T. The Hybrid Bondline: A Novel Disbond-Stopping Design for Adhesively Bonded Composite Joints. Ph.D. Thesis, Technische Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig, Germany, 2016. [Google Scholar]
- Löbel, T.; Holzhüter, D.; Hühne, C. Disbond-Stopping Concepts for Bonded Composite Joints. SAMPE J. 2017, 53, 22–31. [Google Scholar]
- Schollerer, M.J.; Kosmann, J.; Holzhüter, D.; Bello-Larroche, C.; Hühne, C. Surface toughening—An industrial approach to increase the robustness of pure adhesive joints with film adhesives. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2020, 234, 1980–1987. [Google Scholar] [CrossRef]
- Schollerer, M.J.; Kosmann, J.; Völkerink, O.; Holzhüter, D.; Hühne, C. Surface toughening—A concept to decrease stress peaks in bonded joints. J. Adhes. 2019, 95, 495–514. [Google Scholar] [CrossRef]
- Baker, A.A.; Scott, M.L. (Eds.) Composite Materials for Aircraft Structures, 3rd ed.; AIAA Education Series; American Institute of Aeronautics and Astronautics Inc.: Reston, VA, USA, 2016. [Google Scholar]
- Ehrhart, B.; Valeske, B.; Muller, C.-E.; Bockenheimer, C. Methods for the Quality Assessment of Adhesive Bonded CFRP Structures—A Resumé. In Proceedings of the 2nd International Symposium on NDT in Aerospace, Hamburg, Germany, 22–24 November 2010. [Google Scholar]
- Malinowski, P.; Wandowski, T.; Ostachowicz, W. The use of electromechanical impedance conductance signatures for detection of weak adhesive bonds of carbon fiber–reinforced polymer. Struct. Health Monit. 2015, 14, 332–344. [Google Scholar] [CrossRef]
- Yılmaz, B.; Jasiūnienė, E. Advanced ultrasonic NDT for weak bond detection in composite-adhesive bonded structures. Int. J. Adhes. Adhes. 2020, 102, 102675. [Google Scholar] [CrossRef]
- Zhuang, Y.; Li, Y.H.; Kopsaftopoulos, F.; Chang, F.K. A self-diagnostic adhesive for monitoring bonded joints in aerospace structures. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems; SPIE Proceedings, Lynch, J.P., Eds.; SPIE: Bellingham, WA, USA, 2016; p. 98030I. [Google Scholar] [CrossRef]
- Malinowski, P.; Wandowski, T.; Ostachowicz, W. Characterization of CFRP Using Laser Vibrometry. Key Eng. Mater. 2013, 569–570, 710–717. [Google Scholar] [CrossRef]
- Ehrhart, B.; Ecault, R.; Touchard, F.; Boustie, M.; Berthe, L.; Bockenheimer, C.; Valeske, B. Development of a laser shock adhesion test for the assessment of weak adhesive bonded CFRP structures. Int. J. Adhes. Adhes. 2014, 52, 57–65. [Google Scholar] [CrossRef]
- Ehrhart, B. Quality Assessment of Bonded Primary CFRP Structures by Means of Laser Proof Testing. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 2016. [Google Scholar]
- Lammering, R.; Gabbert, U.; Sinapius, M.; Schuster, T.; Wierach, P. Lamb-Wave Based Structural Health Monitoring in Polymer Composites, 1st ed.; Research Topics in Aerospace; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Schmidt, D.; Sinapius, M.; Wierach, P. Design of mode selective actuators for Lamb wave excitation in composite plates. CEAS Aeronaut. J. 2013, 4, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Liu, Y.; Gong, K.; Li, Z. Damage localization in composite laminates based on a quantitative expression of anisotropic wavefront. Smart Mater. Struct. 2013, 22, 065005. [Google Scholar] [CrossRef]
- Li, B.; Ye, L.; Li, Z.; Ma, Z.; Kalhori, H. Quantitative identification of delamination at different interfaces using guided wave signals in composite laminates. J. Reinf. Plast. Compos. 2015, 34, 1506–1525. [Google Scholar] [CrossRef]
- Ong, W.H.; Rajic, N.; Chiu, W.K.; Rosalie, C. Lamb wave–based detection of a controlled disbond in a lap joint. Struct. Health Monit. 2018, 17, 668–683. [Google Scholar] [CrossRef]
- Weiland, J.; Hesser, D.F.; Xiong, W.; Schiebahn, A.; Markert, B.; Reisgen, U. Structural health monitoring of an adhesively bonded CFRP aircraft fuselage by ultrasonic Lamb Waves. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2020, 234, 2000–2010. [Google Scholar] [CrossRef]
- Dugnani, R.; Chang, F.K. Analytical model of lap-joint adhesive with embedded piezoelectric transducer for weak bond detection. J. Intell. Mater. Syst. Struct. 2017, 28, 124–140. [Google Scholar] [CrossRef]
- Adams, C.; Harput, S.; Cowell, D.; Freear, S.; Charutz, D.M. Specimen-agnostic guided wave inspection using recursive feedback. In Proceedings of the 2016 IEEE International Ultrasonics Symposium (IUS), Tours, France, 18–21 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Charutz, D.M.; Mor, E.; Harput, S.; Cowell, D.M.J.; Smith, P.R.; Freear, S. Guided wave enhancement phased array beamforming scheme using recursive feedback. In Proceedings of the 2013 Joint UFFC, EFTF and PFM Symposium, Prague, Czech Republic, 21–25 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 166–169. [Google Scholar] [CrossRef]
- da Silva, L.F.; Moreira, P.; Loureiro, A. Determination of the strain distribution in adhesive joints using Fiber Bragg Grating (FBG). J. Adhes. Sci. Technol. 2014, 28, 1480–1499. [Google Scholar] [CrossRef] [Green Version]
- Webb, S.; Shin, P.; Peters, K.; Zikry, M.A.; Stan, N.; Chadderdon, S.; Selfridge, R.; Schultz, S. Characterization of fatigue damage in adhesively bonded lap joints through dynamic, full-spectral interrogation of fiber Bragg grating sensors: 1. Experiments. Smart Mater. Struct. 2014, 23, 025016. [Google Scholar] [CrossRef]
- Canal, L.P.; Sarfaraz, R.; Violakis, G.; Botsis, J.; Michaud, V.; Limberger, H.G. Monitoring strain gradients in adhesive composite joints by embedded fiber Bragg grating sensors. Compos. Struct. 2014, 112, 241–247. [Google Scholar] [CrossRef]
- Preisler, A.; Sadeghi, Z.; Adomeit, A.; Schröder, K.U. Damage Assessment in Adhesively Bonded Structures by Using SmartSHM. In Structural Health Monitoring 2015; Chang, F.K., Kopsaftopoulos, F., Eds.; DEStech Publisher: Lancaster, PA, USA, 2015. [Google Scholar] [CrossRef]
- Sinapius, J.M. Adaptronics—Smart Structures and Materials; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Hühne, C.; Zerbst, A.K.; Kuhlmann, G.; Steenbock, C.; Rolfes, R. Progressive damage analysis of composite bolted joints with liquid shim layers using constant and continuous degradation models. Compos. Struct. 2010, 92, 189–200. [Google Scholar] [CrossRef]
- Völkerink, O.; Kosmann, J.; Schollerer, M.J.; Holzhüter, D.; Hühne, C. Strength prediction of adhesively bonded single lap joints with the eXtended Finite Element Method. J. Adhes. 2019, 95, 474–494. [Google Scholar] [CrossRef]
- Tomblin, J.; Seneviratne, W.; Escobar, P.; Yoon-Khian, Y. Shear Stress-Strain Data for Structural Adhesives: Technical Report. Available online: http://www.tc.faa.gov/its/worldpac/techrpt/ar02-97.pdf (accessed on 25 October 2020).
- Marlett, K. Hexcel 8552 IM7 Unidirectional Prepreg 190 gsm & 35%RC Qualification Material Property Data Report: Report Number: CAM-RP-2009-015 RevA. Available online: https://www.niar.wichita.edu/coe/ncamp_documents/Hexcel%208552/CAM-RP-2009-015%20Rev%20A%20April%2022%202011%20Hexcel%208552%20IM7%20Uni%20Data%20Report.pdf (accessed on 25 October 2020).
- Petersen, E.; Cuntze, R.G.; Hühne, C. Experimental determination of material parameters in Cuntze’s Failure-Mode-Concept-based UD strength failure conditions. Compos. Sci. Technol. 2016, 134, 12–25. [Google Scholar] [CrossRef]
- Völkerink, O.; Petersen, E.; Koord, J.; Hühne, C. A pragmatic approach for a 3D material model considering elasto-plastic behavior, damage initiation by Puck or Cuntze and progressive failure of fiber-reinforced plastics. Comput. Struct. 2020, 236, 106280. [Google Scholar] [CrossRef]
- Kosmann, J.; Löbel, T.; Holzhüter, D.; Hühne, C.; Schollerer, M.J. High resolution digital image correlation strain measurements of adhesively bonded joints. In Proceedings of the 17th European Conference on Composite Materials, Munich, Germany, 26–30 June 2016; MAI Carbon Cluster Management GmbH: Augsburg, Germany, 2016. [Google Scholar]
- Kosmann, J.; Klapp, O.; Holzhüter, D.; Schollerer, M.J.; Fiedler, A.; Nagel, C.; Hühne, C. Measurement of epoxy film adhesive properties in torsion and tension using tubular butt joints. Int. J. Adhes. Adhes. 2018, 83, 50–58. [Google Scholar] [CrossRef]
- Bar-Cohen, Y. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, 2nd ed.; SPIE Press: Bellingham, WA, USA, 2004; Volume PM136. [Google Scholar]
- Martins, P.; Lopes, A.C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinmetz, J.; Löbel, T.; Völkerink, O.; Hühne, C.; Sinapius, M.; von der Heide, C.; Dietzel, A. The Working Principles of a Multifunctional Bondline with Disbond Stopping and Health Monitoring Features for Composite Structures. J. Compos. Sci. 2021, 5, 51. https://doi.org/10.3390/jcs5020051
Steinmetz J, Löbel T, Völkerink O, Hühne C, Sinapius M, von der Heide C, Dietzel A. The Working Principles of a Multifunctional Bondline with Disbond Stopping and Health Monitoring Features for Composite Structures. Journal of Composites Science. 2021; 5(2):51. https://doi.org/10.3390/jcs5020051
Chicago/Turabian StyleSteinmetz, Julian, Thomas Löbel, Oliver Völkerink, Christian Hühne, Michael Sinapius, Chresten von der Heide, and Andreas Dietzel. 2021. "The Working Principles of a Multifunctional Bondline with Disbond Stopping and Health Monitoring Features for Composite Structures" Journal of Composites Science 5, no. 2: 51. https://doi.org/10.3390/jcs5020051
APA StyleSteinmetz, J., Löbel, T., Völkerink, O., Hühne, C., Sinapius, M., von der Heide, C., & Dietzel, A. (2021). The Working Principles of a Multifunctional Bondline with Disbond Stopping and Health Monitoring Features for Composite Structures. Journal of Composites Science, 5(2), 51. https://doi.org/10.3390/jcs5020051