Editorial for the Special Issue on Advanced Fiber-Reinforced Polymer Composites
Conflicts of Interest
References
- Malakooti, M.H.; Patterson, B.A.; Hwang, H.-S.; Sodano, H.A. ZnO Nanowire Interfaces for High Strength Multifunctional Composites with Embedded Energy Harvesting. Energy Environ. Sci. 2016, 9, 634–643. [Google Scholar] [CrossRef]
- Bowland, C.C.; Malakooti, M.H.; Sodano, H.A. Barium Titanate Film Interfaces for Hybrid Composite Energy Harvesters. ACS Appl. Mater. Interf. 2017, 9, 4057–4065. [Google Scholar] [CrossRef]
- Bowland, C.; Zhou, Z.; Sodano, H.A. Multifunctional Barium Titanate Coated Carbon Fibers. Adv. Funct. Mater. 2014, 24, 6303–6308. [Google Scholar] [CrossRef]
- Hofmann, P.; Walch, A.; Dinkelmann, A.; Selvarayan, S.K.; Gresser, G.T. Woven Piezoelectric Sensors as Part of the Textile Reinforcement of Fiber Reinforced Plastics. Compos. Part A Appl. Sci. Manuf. 2019, 116, 79–86. [Google Scholar] [CrossRef]
- Tallman, T.N.; Gungor, S.; Wang, K.W.; Bakis, C.E. Damage Detection and Conductivity Evolution in Carbon Nanofiber Epoxy via Electrical Impedance Tomography. Smart Mater. Struct. 2014, 23, 045034. [Google Scholar] [CrossRef]
- Groo, L.; Inman, D.J.; Sodano, H.A. In Situ Damage Detection for Fiber-Reinforced Composites Using Integrated Zinc Oxide Nanowires. Adv. Funct. Mater. 2018, 28, 1802846. [Google Scholar] [CrossRef]
- Malakooti, M.H.; Hwang, H.-S.; Goulbourne, N.C.; Sodano, H.A. Role of ZnO Nanowire Arrays on the Impact Response of Aramid Fabrics. Compos. Part B Eng. 2017, 127, 222–231. [Google Scholar] [CrossRef]
- Nasser, J.; Steinke, K.; Groo, L.; Sodano, H.A. Improved Interyarn Friction, Impact Response, and Stab Resistance of Surface Fibrilized Aramid Fabric. Adv. Mater. Interf. 2019, 6, 1900881. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Sun, R.; Liu, Y.; Liu, Z.; Zhou, A.; Yu, Z. Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding. Adv. Mater. 2017, 29, 1702367. [Google Scholar] [CrossRef] [PubMed]
- Yun, T.; Kim, H.; Iqbal, A.; Cho, Y.S.; Lee, G.S.; Kim, M.; Kim, S.J.; Kim, D.; Gogotsi, Y.; Kim, S.O.; et al. Electromagnetic Shielding of Monolayer MXene Assemblies. Adv. Mater. 2020, 32, 1906769. [Google Scholar] [CrossRef]
- Patterson, B.A.; Sodano, H.A. Enhanced Interfacial Strength and UV Shielding of Aramid Fiber Composites through ZnO Nanoparticle Sizing. ACS Appl. Mater. Interf. 2016, 8, 33963–33971. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Liu, G.-L.; Li, Y.-D.; Weng, Y.; Zeng, J.-B. Biobased High-Performance Epoxy Vitrimer with UV Shielding for Recyclable Carbon Fiber Reinforced Composites. ACS Sust. Chem. Eng. 2021, 9, 4638–4647. [Google Scholar] [CrossRef]
- Saleem, A.; Medina, L.; Skrifvars, M. Influence of Fiber Coating and Polymer Modification on Mechanical and Thermal Properties of Bast/Basalt Reinforced Polypropylene Hybrid Composites. J. Compos. Sci. 2020, 4, 119. [Google Scholar] [CrossRef]
- Fehri, M.; Vivet, A.; Dammak, F.; Haddar, M.; Keller, C. A Characterization of the Damage Process under Buckling Load in Composite Reinforced by Flax Fibres. J. Compos. Sci. 2020, 4, 85. [Google Scholar] [CrossRef]
- Al-Obaidi, A.; Kimme, J.; Kräusel, V. Hybrid Joining by Induction Heating of Basalt Fiber Reinforced Thermoplastic Laminates. J. Compos. Sci. 2021, 5, 10. [Google Scholar] [CrossRef]
- Xu, Z.; Peng, S.; Zhou, G.; Xu, X. Highly Hydrophobic, Homogeneous Suspension and Resin by Graft Copolymerization Modification of Cellulose Nanocrystal (CNC). J. Compos. Sci. 2020, 4, 186. [Google Scholar] [CrossRef]
- Vacche, S.D.; Karunakaran, V.; Ronchetti, S.M.; Vitale, A.; Bongiovanni, R. Nanocellulose from Unbleached Hemp Fibers as a Filler for Biobased Photocured Composites with Epoxidized Cardanol. J. Compos. Sci. 2021, 5, 11. [Google Scholar] [CrossRef]
- Knopp, A.; Scharr, G. Tensile Properties of Z-Pin Reinforced Laminates with Circumferentially Notched Z-Pins. J. Compos. Sci. 2020, 4, 78. [Google Scholar] [CrossRef]
- Herzog, J.; Wendel, R.; Weidler, P.G.; Wilhelm, M.; Rosenberg, P.; Henning, F. Moisture Adsorption and Desorption Behavior of Raw Materials for the T-RTM Process. J. Compos. Sci. 2021, 5, 12. [Google Scholar] [CrossRef]
- Malakooti, M.H.; Sodano, H.A. Multi-Inclusion Modeling of Multiphase Piezoelectric Composites. Compos. Part B Eng. 2013, 47, 181–189. [Google Scholar] [CrossRef]
- Dhimole, V.K.; Chen, Y.; Cho, C. Modeling and Two-Step Homogenization of Aperiodic Heterogenous 3D Four-Directional Braided Composites. J. Compos. Sci. 2020, 4, 179. [Google Scholar] [CrossRef]
- Lüders, C. Nonlinear-Elastic Orthotropic Material Modeling of an Epoxy-Based Polymer for Predicting the Material Behavior of Transversely Loaded Fiber-Reinforced Composites. J. Compos. Sci. 2020, 4, 46. [Google Scholar] [CrossRef]
- Kanno, T.; Kurita, H.; Suzuki, M.; Tamura, H.; Narita, F. Numerical and Experimental Investigation of the Through-Thickness Strength Properties of Woven Glass Fiber Reinforced Polymer Composite Laminates under Combined Tensile and Shear Loading. J. Compos. Sci. 2020, 4, 112. [Google Scholar] [CrossRef]
- Mehl, K.; Schmeer, S.; Motsch-Eichmann, N.; Bauer, P.; Müller, I.; Hausmann, J. Structural Optimization of Locally Continuous Fiber-Reinforcements for Short Fiber-Reinforced Plastics. J. Compos. Sci. 2021, 5, 118. [Google Scholar] [CrossRef]
- Giannopoulos, I.K.; Yasaee, M.; Maropakis, N. Ballistic Impact and Virtual Testing of Woven FRP Laminates. J. Compos. Sci. 2021, 5, 115. [Google Scholar] [CrossRef]
- Krajangsawasdi, N.; Blok, L.G.; Hamerton, I.; Longana, M.L.; Woods, B.K.S.; Ivanov, D.S. Fused Deposition Modelling of Fibre Reinforced Polymer Composites: A Parametric Review. J. Compos. Sci. 2021, 5, 29. [Google Scholar] [CrossRef]
- Teramoto, Y. Recent Advances in Multi-Scale Experimental Analysis to Assess the Role of Compatibilizers in Cellulosic Filler-Reinforced Plastic Composites. J. Compos. Sci. 2021, 5, 138. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malakooti, M.H.; Bowland, C.C. Editorial for the Special Issue on Advanced Fiber-Reinforced Polymer Composites. J. Compos. Sci. 2021, 5, 241. https://doi.org/10.3390/jcs5090241
Malakooti MH, Bowland CC. Editorial for the Special Issue on Advanced Fiber-Reinforced Polymer Composites. Journal of Composites Science. 2021; 5(9):241. https://doi.org/10.3390/jcs5090241
Chicago/Turabian StyleMalakooti, Mohammad H., and Christopher C. Bowland. 2021. "Editorial for the Special Issue on Advanced Fiber-Reinforced Polymer Composites" Journal of Composites Science 5, no. 9: 241. https://doi.org/10.3390/jcs5090241
APA StyleMalakooti, M. H., & Bowland, C. C. (2021). Editorial for the Special Issue on Advanced Fiber-Reinforced Polymer Composites. Journal of Composites Science, 5(9), 241. https://doi.org/10.3390/jcs5090241