Structural Engineering of Photocatalytic ZnO-SnO2-Fe2O3 Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. DTA/TG
3.2. XRD Analysis
3.3. SEM Analysis
3.4. Photoluminescence Properties and Singlet Oxygen Photogeneration
3.5. Photocatalytic Properties
3.6. Adsorption Kinetics
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Mediouni, N.; Guillard, C.; Dappozze, F.; Khrous, L.; Parola, S.; Colbeau-Juatin, C.; Ben Haj Amara, A.; Ben Rhaiem, H.; Jaffresic-Renault, N.; Namour, P. Impact of structural defects on the photocatalytic properties of ZnO. J. Hazard. Mater. Adv. 2022, 6, 100081. [Google Scholar] [CrossRef]
- Das, A.; Wary, R.R.; Nair, R.G. Mn-doped ZnO: Role of morphological evolution on enhanced photocatalytic performance. Energy Rep. 2020, 6, 737–741. [Google Scholar] [CrossRef]
- Das, A.; Malakar, P.; Nair, R.G. Engineering of ZnO nanostructures for efficient solar photocatalysis. Mater. Lett. 2018, 219, 76–80. [Google Scholar] [CrossRef]
- Louis, J.; Padmanabhan, N.T.; Jayraj, M.K.; John, H. Crystal lattice engineering in a screw-dislocated ZnO nanocone photocatalyst by carbon doping. Mater. Adv. 2022, 3, 4322–4333. [Google Scholar] [CrossRef]
- Pivert, M.L.; Poupart, R.; Capochichi-Gnambodoe, M.; Martin, N.; Leprince-Wang, Y. Direct growth of ZnO nanowires on civil engineering materials: Smart materials for supported photodegradation. Microsyst. Nanoeng. 2019, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Laurent, K.; Brouri, A.; Capo-Chichi, M.; Yu, D.; Leprince-Wang, Y. Study on the structural and physical properties of ZnO nanowire arrays grown via electrochemical and hydrothermal depositions. J. Appl. Phys. 2011, 110, 094310. [Google Scholar] [CrossRef]
- Kumar, P.; Khatri, T.; Bawa, H.; Kaur, J. ZnO-Fe2O3 heterojunction for photocatalytic degradation of Victoria blue dye. AIP Proc. 2017, 1860, 020065. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, L.; Li, R.; Zhang, J. Liquid phase deposition of α-Fe2O3-ZnO heterojunction film with enhanced visible-light photoelectrocatalytic activity for pollutant removal. J. Electrochem. Soc. 2017, 164, H726. [Google Scholar] [CrossRef]
- Hamrouni, A.; Moussa, N.; Parrino, F.; Di Paola, A.; Houas, A.; Palmisano, L. Sol-gel synthesis and photocatalytic activity of ZnO-SnO2 nanocomposites. J. Mol. Catal. A Chem. 2014, 390, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Lamba, R.; Umar, A.; Mehta, S.K.; Kansal, S.K. Well-crystalline porous ZnO-SnO2 nanosheets: An effective visible-light driven photocatalyst and highly sensitive smart sensor material. Talanta 2015, 131, 490–498. [Google Scholar] [CrossRef]
- Evstropiev, S.K.; Karavaeva, A.V.; Petrova, M.A.; Nikonorov, N.V.; Vasilyev, V.N.; Lesnykh, L.L.; Dukelskii, K.V. Antibacterial effect of nanostructured ZnO-SnO2 coatings: The role of microstructure. Mater. Today Commun. 2019, 21, 100628. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Xu, B.-Q.; Zhao, J.; Mai, B.; Peng, P.; Sheng, G.; Fu, J. Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation. J. Photochem. Photobiol. A Chem. 2004, 168, 47–52. [Google Scholar] [CrossRef]
- Evstropiev, S.K.; Lesnykh, L.L.; Karavaeva, A.V.; Nikonorov, N.V.; Oreshkina, K.V.; Mironov, L.Y.; Maslennikov, S.Y.; Kolobkova, E.V.; Vasilyev, V.N.; Bagrov, I.V. Intensification of photodecomposition of organic contaminations by nanostructured ZnO-SnO2 coatings prepared by polymer-salt method. Chem. Eng. Process. Process Intensif. 2019, 142, 107587. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, H.; Yuan, S.; Jiao, Z.; Zhu, X. Preparation of flower-like ZnO architectures assembled with nanosheets for enhanced photocatalytic activity. J. Colloid Interface Sci. 2016, 462, 9–10. [Google Scholar] [CrossRef]
- Choudhary, S.; Sahu, K.; Bisht, A.; Satpati, B.; Mohapatra, S. Rapid synthesis of ZnO nanowires and nanoplates with highly enhanced photocatalytic performance. Appl. Surf. Sci. 2021, 541, 148484. [Google Scholar] [CrossRef]
- Zhao, X.; Lou, F.; Li, M.; Lou, X.; Li, Z.; Zhou, J. Sol-gel-based hydrothermal method for the synthesis of 3D flower-like ZnO sheets for photocatalytic applications. Ceram. Int. 2014, 40, 5507–5511. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, L.; Bao, Y.; Zhang, Y.; Wang, J.; Fu, M.; Wu, J.; Ye, D. The applications of morphology controlled ZnO in catalysis. Catalysts 2016, 6, 188. [Google Scholar] [CrossRef] [Green Version]
- Bora, T.; Sathe, P.; Laxman, K.; Dobretsov, S.; Dutta, J. Defect engineered visible light active ZnO nanorods for photocatalytic treatment of water. Catal. Today 2017, 284, 11–18. [Google Scholar] [CrossRef]
- Shelemanov, A.A.; Evstropiev, S.K.; Karavaeva, A.V.; Nikonorov, N.V.; Vasilyev, V.N.; Podruhin, Y.F.; Kiselev, V.M. Enhanced singlet oxygen generation by bactericidal ZnO-MgO-Ag nanocomposites. Mater. Chem. Phys. 2022, 276, 125204. [Google Scholar] [CrossRef]
- Vu, N.-N.; Kaliaguine, S.; Do, T.-O. Critical aspects and recent advances in structural engineering of photocatalysts for sunlight-driven photocatalytic reduction of CO2 into fuels. Adv. Funct. Mater. 2019, 29, 1901825. [Google Scholar] [CrossRef]
- He, Q.; Viengkeo, B.; Zhao, X.; Qin, Z.; Zhang, J.; Yu, X.; Hu, Y.; Huang, W.; Li, Y. Multiscale structural engineering of carbon nitride for enhanced photocatalytic H2O2 production. Nano Res. 2021. [Google Scholar] [CrossRef]
- He, Y.; Lei, Q.; Li, C.; Han, Y.; Shi, Z.; Feng, S. Defect engineering of photocatalysts for solar-driven conversion of CO2 into valuable fuels. Mater. Today 2021, 50, 358–384. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Cai, W.; Zhou, J.; Li, Z. Enhanced photocatalytic performance and degradation pathway of Rhodamine B over hierarchical double-shelled zinc nickel oxide hollow sphere heterojunction. Appl. Surf. Sci. 2018, 430, 549–560. [Google Scholar] [CrossRef]
- Song, X.; Jiang, W.; Cai, Z.; Yue, X.; Chen, X.; Dai, W.; Fu, X. Visible light-driven deep oxidation of NO and its durability over Fe doped BaSnO3: The NO+ intermediates mechanism and the storage capacity of Ba ions. Chem. Eng. J. 2022, 444, 136709. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, D.; Ji, Y.; Ma, X.; Xu, J.; Que, D. Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process. J. Phys. Chem. B 2004, 108, 3955–3958. [Google Scholar] [CrossRef]
- Kang, J.; Kuang, Q.; Xie, Z.-X.; Zheng, L.-S. Fabrication of SnO2/α-Fe2O3 hierarchical heterostructure and its enhanced photocatalytic property. J. Phys. Chem. C 2011, 115, 7874–7879. [Google Scholar] [CrossRef]
- Heo, Y.W.; Norton, D.P.; Tien, L.C.; Kwon, Y.; Kang, B.S.; Ren, F.; Pearton, S.J.; La Roche, J.R. ZnO nanowire growth and devices. Mater. Sci. Eng. R Rep. 2004, 47, 1–47. [Google Scholar] [CrossRef]
- Liang, Y.; Guo, N.; Li, L.; Li, R.; Ji, G.; Gan, S. Fabrication of porous 3D flower-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance. Appl. Surf. Sci. 2015, 332, 32–39. [Google Scholar] [CrossRef]
- Chakraborty, A.; Samriti; Ruzimuradov, O.; Gupta, R.K.; Cho, J.; Prakash, J. TiO2 nanoflower photocatalysts: Synthesis, modifications and applications in wastewater treatment for removal of emerging organic pollutants. Environ. Res. 2022, 212, 113550. [Google Scholar] [CrossRef]
- Uribe-López, M.C.; Hidalgo-López, M.C.; López-Gonsález, R.; Frías-Márquez, D.M.; Núnez-Noguera, G.; Hernández-Castillo, D.; Alvarez-Lemus, M.A. Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties. J. Photochem. Photobiol. A Chem. 2020, 404, 112866. [Google Scholar] [CrossRef]
- Zhang, L.; Jaroniec, M. Fundamentals of adsorption for photocatalysis. Chapter 2. Interface Sci. Technol. 2020, 31, 39–62. [Google Scholar]
- Li, D.; Haneda, H.; Labhsetwar, N.K.; Hishita, S.; Ohashi, N. Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem. Phys. Lett. 2005, 401, 579–584. [Google Scholar] [CrossRef]
- Bai, X.; Wang, L.; Zong, R.; Lv, Y.; Sun, Y.; Zhu, Y. Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and grapheme hybridization. Langmuir 2013, 29, 3097–3105. [Google Scholar] [CrossRef]
- Song, C.; Sun, Y.; Xu, Y.; Wang, D. Synthesis and optical property of ZnO nano-/micro-rods. Front. Optoelectron. China 2011, 4, 156–160. [Google Scholar] [CrossRef]
- Choi, H.; Antoniou, M.G.; Pelaez, M.; de la Cruz, A.A.; Shoemaker, J.A.; Dionysiou, D.D. Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the a cyanobacterial toxin Microcyctin-LR under visible light irradiation. Environ. Sci. Technol. 2007, 41, 7530–7535. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, L.; Wang, P. Rational design of nanomaterials for water treatment. Nanoscale 2015, 7, 17167–17194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poongodi, G.; Anandan, P.; Mohan Kumar, R.; Jaya, R. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method. Spectrochim. Acta Part A Molec. Biomolec. Spectr. 2015, 148, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.; Subramanian, G.; Pillai, S.C. Recent advances in photocatalysis for environmental applications. J. Environ. Chem. Eng. 2018, 6, 3531–3555. [Google Scholar] [CrossRef]
- Islam, M.R.; Rahman, M.; Farhad, S.F.U.; Podder, J. Structural, optical and photocatalysis properties of sol-gel deposited Al-doped ZnO thin films. Surf. Interfaces 2019, 16, 120–126. [Google Scholar] [CrossRef]
- Davis, K.; Yarbrough, R.; Froeschle, M.; White, J.; Rathnayke, H. Band gap engineering zinc oxide nanostructures via a sol-gel synthesis of solvent driven shape-controlled crystal growth. RCS Adv. 2019, 9, 14638. [Google Scholar]
- Zhu, L.-Y.; Yuan, K.-P.; Yang, J.-H.; Hang, C.-Z.; Ma, H.-P.; Ji, X.-M.; Devi, A.; Lu, H.-L.; Zhang, D.W. Hierarchical highly ordered SnO2 nanobowl branched ZnO nanowires for ultrasensitive and selective hydrogen sulfide gas sensing. Microsyst. Nanoeng. 2020, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Debanath, M.K.; Karmakar, S. Study of blue shift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Mater. Lett. 2013, 111, 116–119. [Google Scholar] [CrossRef]
- Alibe, I.M.; Matori, K.A.; Sidek, H.A.A.; Yaakob, Y.; Rashid, U.; Alibe, A.M.; Zaid, M.H.M.; Nasir, S.; Nasir, M.M. Effect of polyvinylpyrrolidone on structural and optical properties of willemite semiconductor nanoparticles by polymer thermal treatment method. J. Therm. Anal. Calorim. 2019, 136, 2249–2268. [Google Scholar] [CrossRef] [Green Version]
- Plakhova, T.V.; Shestakov, M.V.; Baranov, A.N. Effect of textured seeds on the morphology and optical properties of solution- and vapor-grown ZnO nanorod arrays. Inorg. Mater. 2012, 48, 469–475. [Google Scholar] [CrossRef]
- Pachauri, V.; Subramaniam, C.; Pradeep, T. Novel ZnO nanostructures over gold and silver nanoparticles assemblies. Chem. Phys. Lett. 2006, 423, 240–246. [Google Scholar] [CrossRef]
- Wang, X.; Ahmad, M.; Sun, H. Three-dimensional ZnO hierarchical nanostructures: Solution phase synthesis and applications. Materials 2017, 10, 1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.; Weng, B.; Zhao, L.; Chang, C.; Shi, Z.; Li, X.; Kim, H.-K.; Hwang, Y.-H. Synthesis and characterization of flower-like bundles of ZnO nanosheets by a surfactant-free hydrothermal process. J. Nanomater. 2014, 2014, 211. [Google Scholar] [CrossRef] [Green Version]
- Kitabayashi, S.; Koga, N. Thermal decomposition of tin (II) oxyhydroxide and subsequent oxidation in air: Kinetic deconvolution of overlapping heterogeneous processes. J. Phys. Chem. C 2015, 119, 16188–16199. [Google Scholar] [CrossRef] [Green Version]
- Toshiro, D.; Yoshio, N. Formation and behavior of singlet molecular oxygen in TiO2 photocatalysis studied by detection of near-infrared phosphorescence. J. Phys. Chem. C 2007, 111, 4420–4424. [Google Scholar]
- Kiselev, V.M.; Kislyakov, I.M.; Burchinov, A.N. Generation of singlet oxygen on the surface of metal oxides. Opt. Spectrosc. 2016, 120, 520–524. [Google Scholar] [CrossRef]
- Bain, A.J.; Chandra, P.; Butcher, G.; Bryant, J. Picosecond polarized fluorescence studies of anisotropic fluid media. II. Experimental studies of molecular order and motion in jet aligned rhodamine 5G and resorufin solutions. J. Chem. Phys. 2000, 112, 10435–10449. [Google Scholar] [CrossRef]
- Choi, W.K.; Sung, H.; Kim, K.H.; Cho, J.S.; Choi, S.C.; Jung, H.J.; Koh, S.K.; Lee, S.M.; Jeong, K. Oxidation process from SnO to SnO2. J. Mater. Sci. Lett. 1997, 16, 1551–1554. [Google Scholar] [CrossRef]
- Kanungo, S.B.; Mishra, S.K. Thermal dehydration and decomposition of FeCl3·xH2O. J. Therm. Anal. 1996, 46, 147–150. [Google Scholar] [CrossRef]
- Rao, V.; Latha, P.; Ashokan, P.V.; Shridhar, M.H. Thermal degradation of poly(N-vinylpyrrolidone)-poly(vinyl alcohol) blends. Polym. J. 1999, 31, 887–889. [Google Scholar] [CrossRef] [Green Version]
- Borodko, Y.; Lee, H.S.; Joo, S.H.; Zhang, Y.; Somorja, G. Spectroscopic study of the thermal degradation of PVP-capped Rh and Pt nanoparticles in H2 and O2 environments. J. Phys. Chem. C 2010, 114, 1117–1126. [Google Scholar] [CrossRef] [Green Version]
- Lou, X.; Jia, X.; Xu, J.; Lin, S.; Gao, Q. Hydrothermal synthesis, characterization and photocatalytic properties of Zn2SnO4 nanocrystal. Mater. Sci. Eng. A 2006, 432, 221–225. [Google Scholar] [CrossRef]
- Jeronsia, J.E.; Joseph, L.A.; Jaculine, M.M.; Vinosha, P.A.; Das, S.J. Hydrothermal synthesis of zinc stannate nanopartcicles for antibacterial applications. J. Taibah Univ. Sci. 2016, 10, 601–606. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.; Toman, E.; Li, Y.; Wu, Y. Zinc stannate (Zn2SnO4) dye-sensitized solar cells. J. Amer. Chem. Soc. 2007, 129, 4162–4163. [Google Scholar] [CrossRef]
- Song, S.; Yang, X.; Zhang, Y.; Zhang, F.; Ding, J.; Bao, J.; Gao, C. Enhanced photocatalytic activity of sponge-like ZnFe2O4 synthesized by solution combustion method. Prog. Nat. Sci. Mater. Int. 2012, 22, 639–643. [Google Scholar] [CrossRef] [Green Version]
- Evstropiev, S.K.; Soshnikov, I.P.; Khrebtov, A.I. The formation of ZnO-based coatings from solutions containing high-molecular polyvinylpyrrolidone. Techn. Phys. Lett. 2016, 42, 468–470. [Google Scholar] [CrossRef]
- Djurištić, A.B.; Leung, Y.H.; Tam, K.H.; Hsu, Y.F.; Ding, L.; Ge, W.K.; Zhong, Y.C.; Wong, K.S.; Chan, W.K.; Tam, H.L.; et al. Defect emissions in ZnO nanostructures. Nanotechnology 2007, 18, 095702. [Google Scholar]
- Vempati, S.; Mitra, J.; Dawson, P. One-step synthesis of ZnO nanosheets: A blue-white fluorophore. Nanoscale Res. Lett. 2012, 7, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, D.; Mondal, P. Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by RF magnetron sputtering. RSC Adv. 2014, 4, 35735–35743. [Google Scholar] [CrossRef]
- Zhao, Y.; Cui, T.; Wu, T.; Jin, C.; Qiao, R.; Qian, Y.; Tong, G. Polymorphous ZnO nanostructures: Zn polar surface-guided size and shape evolution mechanism and enhanced photocatalytic activity. ChemCatChem 2017, 9, 3180–3190. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Z.; Ren, T.; Ding, H.; Yao, W.; Zong, R.; Zhu, Y. Influence od defects on the photocatalytic activity of ZnO. J. Phys. Chem. C 2014, 118, 15300–15307. [Google Scholar] [CrossRef]
- Zeng, H.; Duan, G.; Li, Y.; Yang, S.; Xu, X.; Cai, W. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls. Adv. Funct. Mater. 2010, 20, 561–572. [Google Scholar] [CrossRef]
- Kar, A.; Kundu, S.; Patra, A. Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles. J. Phys. Chem. C 2011, 115, 118–124. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, W.; Li, Y.; Cai, C. Defect-related optical bandgap narrowing and visible photoluminescence of hydrothermal-derived SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. 2017, 28, 18603–18609. [Google Scholar] [CrossRef]
- Kamble, V.B.; Umarji, A.M. Defect induced optical bandgap narrowing in undoped SnO2 nanocrystals. AIP Adv. 2013, 3, 082120. [Google Scholar] [CrossRef]
- Jańczyk, A.; Krakowska, E.; Stochel, G.; Macyk, W. Singlet oxygen photogeneration at surface modified titanium dioxide. J. Am. Chem. Soc. 2006, 128, 15574–15575. [Google Scholar] [CrossRef]
- Tamtaji, M.; Kazemeini, M. Enhanced singlet oxygen production under nanoconfinement using silica nanocomposites towards improving the photooxygenetion’s conversion. J. Nanoparticle Res. 2022, 24, 174. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Niu, J.; Chen, Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 2012, 6, 5164–5173. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wu, Z.; Liu, D.; Gao, Z. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 2017, 12, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.; Ge, C.; Jian, Z.; Wei, Y. Facile synthesis and high photocatalytic degradation performance of ZnO-SnO2 hollow spheres. Nanoscale Res. Lett. 2016, 11, 526. [Google Scholar] [CrossRef]
- Liao, G.; He, W.; He, Y. Investigation of microstructure and photocatalytic performance of a modified zeolite supported nanocrystal TiO2 composite. Catalysts 2019, 9, 502. [Google Scholar] [CrossRef] [Green Version]
- Saratovskii, A.S.; Bulyga, D.V.; Evstrop’ev, S.K.; Antropova, T.V. Adsorption and photocatalytic activity of the porous glass-ZnO-Ag composite and ZnO-Ag nanopowder. Glass Phys. Chem. 2022, 48, 10–17. [Google Scholar] [CrossRef]
- Irani, M.; Mohammadi, T.; Mohebbi, S. Photocatalytic degradation of Methulene Blue with ZnO nanoparticles; a joint experimental and theoretical study. J. Mex. Chem. Soc. 2016, 60, 218–225. [Google Scholar]
- Lagergren, S.K. Zur theorie der sogenannten adsorption geloster stoffe. Sevenska Vetensk. Handl. 1898, 24, 39. [Google Scholar]
- Chen, J.; Xiong, Y.; Duan, M.; Li, X.; Li, J.; Fang, S.; Qin, S.; Zhang, R. Insight into the synergistic effect of adsorption-photocatalysis for the removal of organic dye pollutants by Cr-doped ZnO. Langmuir 2020, 36, 520–533. [Google Scholar] [CrossRef]
- Piccinin, S. The band structure and optical properties of hematite (α-Fe2O3): A first principles GW-BSE study. Phys. Chem. Chem. Phys. 2019, 21, 2957–2967. [Google Scholar] [CrossRef]
- Tahir, D.; Ilyas, S.; Rahmat, R.; Heryanto, H.; Fahri, A.N.; Rahmi, M.H.; Abdullah, B.; Hong, C.C.; Kang, H.J. Enhanced visible-light absorption of Fe2O3 covered by activated carbon for multifunctional purposes: Tuning the structural, electronic, optical, and magnetic properties. ACS Omega 2021, 6, 28334–28346. [Google Scholar] [CrossRef] [PubMed]
- Kamarulzaman, N.; Kasim, M.F.; Rusdi, R. Band gap narrowing and widening of ZnO nanostructures and doped materials. Nanoscale Res. Lett. 2005, 10, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liccardo, L.; Lushaj, E.; Compare, L.D.; Moretti, E.; Vomiero, A. Nanoscale ZnO/α-Fe2O3 heterostructure: Toward efficient and low cost photoanodes for water splitting. Small Sci. 2022, 2, 2100104. [Google Scholar] [CrossRef]
- Guo, J.; Yuan, S.; Jiang, W.; Yue, H.; Cui, Z.; Liang, B. Adsorption and photocatalytic degradation behaviors of rhodamine dyes on surface-fluorinated TiO2 under visible irradiation. RSC Adv. 2016, 6, 4090–4100. [Google Scholar] [CrossRef]
- Li, X.; Jin, B.; Huang, J.; Zhang, Q.; Peng, R.; Chu, S. Fe2O3/ZnO/ZnFe2O4 composites for the efficient photocatalytic degradation of organic dyes under visible light. Solid State Sci. 2018, 80, 6–14. [Google Scholar] [CrossRef]
Sample | Chemical Compositions, mol. % | ||||||||
---|---|---|---|---|---|---|---|---|---|
Solutions | Composites | ||||||||
H2O | Ethanol | Zn(NO3)2 | SnCl2 | FeCl3 | PVP | ZnO | SnO2 | Fe2O3 | |
1 | 47.62 | 47.62 | 2.26 | 0.12 | - | 2.38 | 95.0 | 5.0 | - |
2 | 47.62 | 47.62 | 2.30 | 0.07 | 0.01 | 2.38 | 96.5 | 3.0 | 0.5 |
3 | 47.62 | 47.62 | 2.26 | 0.07 | 0.05 | 2.38 | 95.0 | 3.0 | 2.0 |
4 | 47.62 | 47.62 | 2.07 | 0.07 | 0.24 | 2.38 | 87.0 | 3.0 | 10.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khomutinnikova, L.L.; Evstropiev, S.K.; Danilovich, D.P.; Meshkovskii, I.K.; Bulyga, D.V. Structural Engineering of Photocatalytic ZnO-SnO2-Fe2O3 Composites. J. Compos. Sci. 2022, 6, 331. https://doi.org/10.3390/jcs6110331
Khomutinnikova LL, Evstropiev SK, Danilovich DP, Meshkovskii IK, Bulyga DV. Structural Engineering of Photocatalytic ZnO-SnO2-Fe2O3 Composites. Journal of Composites Science. 2022; 6(11):331. https://doi.org/10.3390/jcs6110331
Chicago/Turabian StyleKhomutinnikova, Larissa L., Sergey K. Evstropiev, Dmitry P. Danilovich, Igor K. Meshkovskii, and Dmitry V. Bulyga. 2022. "Structural Engineering of Photocatalytic ZnO-SnO2-Fe2O3 Composites" Journal of Composites Science 6, no. 11: 331. https://doi.org/10.3390/jcs6110331
APA StyleKhomutinnikova, L. L., Evstropiev, S. K., Danilovich, D. P., Meshkovskii, I. K., & Bulyga, D. V. (2022). Structural Engineering of Photocatalytic ZnO-SnO2-Fe2O3 Composites. Journal of Composites Science, 6(11), 331. https://doi.org/10.3390/jcs6110331