Seismic Composite Metamaterial: A Review
Abstract
:1. Introduction
2. Overview Periodic Structure Theory
2.1. Lattice Space Dimension
2.1.1. Two-Dimensional Metamaterials
2.1.2. Three-Dimensional Metamaterial
2.2. Bandgap Engineering Theory
2.2.1. Bandgaps of Bragg Scattering
2.2.2. Bandgap of Local Resonance
2.2.3. Combination of Bragg and Local Bandgaps
2.3. Propagation Mechanism
3. Toward Aiming Planting
3.1. Vibration Mitigation in Urban Environment
3.2. Naturally Available Metamaterial
4. Governing Mathematical Equations
5. Parametric Study Comparation
6. Conclusions
- -
- Through comprehensive observation of vibration patterns there are Bragg scattering-type bandgaps and local resonance bandgaps, due to the periodic arrangement of the MMs, causing the elastic wave to be reflected, refracted, and deflected at lower frequencies so that propagation is suppressed at the specified frequency.
- -
- In this paper, the urban green forest is considered as a periodic structure (super seismic resonators) through the method of dynamic computation of the periodic attenuation field of urban green forests based on the periodic theory, and the paper verifies the effectiveness of the attenuation by external vibration tests, providing ideal theoretical support for urban vegetation formation with vibration and noise reduction functions.
- -
- The mechanical properties of soils and resonators play a major role in the scattering of the directed waves, and the ideal controlling properties are the elastic modulus, density, and Poisson’s ratio.
- -
- The geometric properties of the resonator’s height, diameter, distribution lattice constant, number of trees, distance from the wave source, and the height of the studied soil model are the most influential properties in the width and position of bandgaps and in determining the starting point for those FBGs.
- -
- Adopting and enhancing urban design approaches for cities and infrastructure to safeguard them from ground vibrations, especially in tiny spaces surrounding facilities.
- -
- Encouraging the investigation of alternative plant types and the application of adequate soil to provide acceptable vibration damping in the fewest possible rows of super-resonant materials.
- -
- Researchers in the fields of the environment and forests should perform experiments and ecological insights on the development of natural resonant super-materials with significant seismic damping to protect city buildings.
- -
- Consideration of how natural resonant metamaterials can reduce noise, vibration, and other pollution sources feature in producing wide bandgaps for both high and low frequency ranges.
- -
- Natural metamaterials can minimize the cost of synthetic ones, last longer, and attenuate vibrations and surface and particle waves better.
- -
- With natural growth and climate change, industrial activities, engines, and generators in all sectors, including cooling in the summer and heating in the winter, may generate additional noise and disturbance and must be reduced; natural metamaterial may help limit this spread.
- -
- The appropriate technique is to arrange forest green belts periodically around protected constructures, along transportation lines, and in crowded areas of cities.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Codinhoto, R.; Boyko, C.; Darby, A.; Watson, M. Buildings for Health, Cities for Wellbeing. In Designing Future Cities for Wellbeing; Routledge: London, UK, 2020; pp. 139–157. ISBN 0429470681. [Google Scholar]
- Zhang, K.; Luo, J.; Hong, F.; Deng, Z. Seismic Metamaterials with Cross-like and Square Steel Sections for Low-Frequency Wide Band Gaps. Eng. Struct. 2021, 232, 111870. [Google Scholar] [CrossRef]
- Julian, B.R.; Miller, A.D.; Foulger, G.R. Non-double-couple Earthquakes 1. Theory. Rev. Geophys. 1998, 36, 525–549. [Google Scholar] [CrossRef] [Green Version]
- Mottee, L.K.; Arts, J.; Vanclay, F.; Miller, F.; Howitt, R. Metro Infrastructure Planning in Amsterdam: How Are Social Issues Managed in the Absence of Environmental and Social Impact Assessment? Impact Assess. Proj. Apprais. 2020, 38, 320–335. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhang, Y.; Tan, X. Review on Vibration-Based Structural Health Monitoring Techniques and Technical Codes. Symmetry 2021, 13, 1998. [Google Scholar] [CrossRef]
- Hong, J.; Kang, H.; An, J.; Choi, J.; Hong, T.; Park, H.S.; Lee, D.-E. Towards Environmental Sustainability in the Local Community: Future Insights for Managing the Hazardous Pollutants at Construction Sites. J. Hazard. Mater. 2021, 403, 123804. [Google Scholar] [CrossRef]
- Chatziioannou, I.; Alvarez-Icaza, L.; Bakogiannis, E.; Kyriakidis, C.; Chias-Becerril, L. A Structural Analysis for the Categorization of the Negative Externalities of Transport and the Hierarchical Organization of Sustainable Mobility’s Strategies. Sustainability 2020, 12, 6011. [Google Scholar] [CrossRef]
- Pedersen, E. City Dweller Responses to Multiple Stressors Intruding into Their Homes: Noise, Light, Odour, and Vibration. Int. J. Environ. Res. Public Health 2015, 12, 3246–3263. [Google Scholar] [CrossRef] [Green Version]
- Vasilyeva, N.; Fedorova, E.; Kolesnikov, A. Big Data as a Tool for Building a Predictive Model of Mill Roll Wear. Symmetry 2021, 13, 859. [Google Scholar] [CrossRef]
- de Souza, T.B.; Alberto, K.C.; Barbosa, S.A. Evaluation of Noise Pollution Related to Human Perception in a University Campus in Brazil. Appl. Acoust. 2020, 157, 107023. [Google Scholar] [CrossRef]
- Tolstoy, A.; Lesovik, V.; Fediuk, R.; Amran, M.; Gunasekaran, M.; Vatin, N.; Vasilev, Y. Production of Greener High-Strength Concrete Using Russian Quartz Sandstone Mine Waste Aggregates. Materials 2020, 13, 5575. [Google Scholar] [CrossRef]
- Sathio, B.; Brohi, K.M.; Laghari, R. To Analyze the Effect of Road Traffic Noise on Surrounding Buildings. In Proceedings of the AIP Conference Proceedings, Leuven, Belgium, 8–10 April 2019; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2119, p. 20012. [Google Scholar]
- Fediuk, R.S.; Lesovik, V.S.; Liseitsev, Y.L.; Timokhin, R.A.; Bituyev, A.V.; Zaiakhanov, M.Y.; Mochalov, A.V. Composite Binders for Concretes with Improved Shock Resistance. Mag. Civ. Eng. 2019, 85, 28–38. [Google Scholar] [CrossRef]
- Garg, N. Noise Sources: Characteristics and Control. In Environmental Noise Control; Springer: Berlin/Heidelberg, Germany, 2022; pp. 27–62. [Google Scholar]
- Oganian, Y.; Fox, N.P.; Chang, E.F. Cortical Representation of Speech Sounds: Insights from Intracranial Electrophysiology. In Speech Perception; Springer: New York, NY, USA, 2022; pp. 45–79. [Google Scholar]
- Abdi, D.D.; Monazzam, M.; Taban, E.; Putra, A.; Golbabaei, F.; Khadem, M. Sound Absorption Performance of Natural Fiber Composite from Chrome Shave and Coffee Silver Skin. Appl. Acoust. 2021, 182, 108264. [Google Scholar] [CrossRef]
- Fediuk, R.; Pak, A.; Kuzmin, D. Fine-Grained Concrete of Composite Binder. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Birmingham, UK, 13–15 October 2017; Volume 262. [Google Scholar]
- Kotzen, B.; English, C. Environmental Noise Barriers: A Guide to Their Acoustic and Visual Design; CRC Press: Boca Raton, FL, USA, 2014; ISBN 0429153449. [Google Scholar]
- Khelf, M.; Boukebbab, S. The Effect of Noise on the Comfort of Passengers inside the Tramway and Its Impact on Traffic Congestion in the Urban Area. J. Vibroeng. 2018, 20, 530–540. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.J.; Kouroussis, G.; Ntotsios, E. Modelling, Simulation and Evaluation of Ground Vibration Caused by Rail Vehicles. Veh. Syst. Dyn. 2019, 57, 936–983. [Google Scholar] [CrossRef] [Green Version]
- Shan, Y.; Cheng, G.; Gu, X.; Zhou, S.; Xiao, F. Optimization of Design Parameters of Displacement Isolation Piles Constructed between a High-Speed Railway Bridge and a Double-Line Metro Tunnel: From the View Point of Vibration Isolation Effect. Comput. Geotech. 2021, 140, 104460. [Google Scholar] [CrossRef]
- Semenov, P.A.; Uzunian, A.V.; Davidenko, A.M.; Derevschikov, A.A.; Goncharenko, Y.M.; Kachanov, V.A.; Khodyrev, V.Y.; Meschanin, A.P.; Minaev, N.G.; Mochalov, V.V.; et al. First Study of Radiation Hardness of Lead Tungstate Crystals at Low Temperatures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 582, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Makris, N. Seismic Isolation: Early History. Earthq. Eng. Struct. Dyn. 2019, 48, 269–283. [Google Scholar] [CrossRef]
- Abid, S.R.; Murali, G.; Amran, M.; Vatin, N.; Fediuk, R.; Karelina, M. Evaluation of Mode II Fracture Toughness of Hybrid Fibrous Geopolymer Composites. Materials 2021, 14, 349. [Google Scholar] [CrossRef]
- Balaji, P.S.; Rahman, M.E.; Moussa, L.; Lau, H.H. Wire Rope Isolators for Vibration Isolation of Equipment and Structures—A Review. In Proceedings of the IOP conference series: Materials science and engineering, Macau, China, 3–6 August 2015; IOP Publishing: Bristol, UK, 2015; Volume 78, p. 12001. [Google Scholar]
- Henderson, J.-P.; Plummer, A.; Johnston, N. An Electro-Hydrostatic Actuator for Hybrid Active-Passive Vibration Isolation. Int. J. Hydromechatronics 2018, 1, 47–71. [Google Scholar] [CrossRef]
- Balaji, P.S.; Karthik SelvaKumar, K. Applications of Nonlinearity in Passive Vibration Control: A Review. J. Vib. Eng. Technol. 2021, 9, 183–213. [Google Scholar] [CrossRef]
- Feng, X.; Jing, X. Human Body Inspired Vibration Isolation: Beneficial Nonlinear Stiffness, Nonlinear Damping & Nonlinear Inertia. Mech. Syst. Signal Process. 2019, 117, 786–812. [Google Scholar]
- Pathirage, C.S.N.; Li, J.; Li, L.; Hao, H.; Liu, W.; Ni, P. Structural Damage Identification Based on Autoencoder Neural Networks and Deep Learning. Eng. Struct. 2018, 172, 13–28. [Google Scholar] [CrossRef]
- Ali, M.; Alabdulkarem, A.; Nuhait, A.; Al-Salem, K.; Iannace, G.; Almuzaiqer, R. Characteristics of Agro Waste Fibers as New Thermal Insulation and Sound Absorbing Materials: Hybrid of Date Palm Tree Leaves and Wheat Straw Fibers. J. Nat. Fibers 2021, 1, 1–19. [Google Scholar] [CrossRef]
- Svoboda, J.; Dvorský, T.; Václavík, V.; Charvát, J.; Máčalová, K.; Heviánková, S.; Janurová, E. Sound-Absorbing and Thermal-Insulating Properties of Cement Composite Based on Recycled Rubber from Waste Tires. Appl. Sci. 2021, 11, 2725. [Google Scholar] [CrossRef]
- Smirnova, O.M.; Menéndez Pidal de Navascués, I.; Mikhailevskii, V.R.; Kolosov, O.I.; Skolota, N.S. Sound-Absorbing Composites with Rubber Crumb from Used Tires. Appl. Sci. 2021, 11, 7347. [Google Scholar] [CrossRef]
- Wang, H.; Chiang, P.-C.; Cai, Y.; Li, C.; Wang, X.; Chen, T.-L.; Wei, S.; Huang, Q. Application of Wall and Insulation Materials on Green Building: A Review. Sustainability 2018, 10, 3331. [Google Scholar] [CrossRef] [Green Version]
- Roque, E.; Santos, P.; Pereira, A.C. Thermal and Sound Insulation of Lightweight Steel-Framed Façade Walls. Sci. Technol. Built Environ. 2019, 25, 156–176. [Google Scholar] [CrossRef]
- Inamdar, D.M.; Kachare, P.S.; Salunkhe, S.Y. Analysis of Sound Absorption and Damping Coefficient for Different Configurations of Aluminum Metal Foam. In Techno-Societal 2018; Springer: Berlin/Heidelberg, Germany, 2020; pp. 975–986. [Google Scholar]
- Alabuzhev, P.M. Vibration Protection and Measuring Systems with Quasi-Zero Stiffness; CRC Press: Boca Raton, FL, USA, 1989; ISBN 0891168117. [Google Scholar]
- Jovičić, N.; Jovanović, S. Techno-Economic Analysis of A Sound Absorbing Barrier Made of Recycled Textile Materials. In Proceedings of the 3rd International Conference on Quality of Life, Surabaya, Indonesia, 16–18 November 2018. [Google Scholar]
- Rathoure, A.K.; Modi, J. Zero Noise Pollution: Green Belt Development. In Zero Waste; CRC Press: Boca Raton, FL, USA, 2019; pp. 25–49. ISBN 0429059248. [Google Scholar]
- Xu, H.; Liu, S.J.; Hu, J.Y. Study on the Control Measure of Road Traffic Noise in the Urban Mast Plan. Adv. Mater. Res. 2012, 374, 1110–1113. [Google Scholar] [CrossRef]
- Nilsson, M.; Bengtsson, J.; Klæboe, R. Environmental Methods for Transport Noise Reduction; CRC Press: Boca Raton, FL, USA, 2014; ISBN 0415675235. [Google Scholar]
- Huang, J.; Liu, Y.; Li, Y. Trees as Large-Scale Natural Phononic Crystals: Simulation and Experimental Verification. Int. Soil Water Conserv. Res. 2019, 7, 196–202. [Google Scholar] [CrossRef]
- Dzhambov, A.M.; Dimitrova, D.D. Urban Green Spaces’ Effectiveness as a Psychological Buffer for the Negative Health Impact of Noise Pollution: A Systematic Review. Noise Health 2014, 16, 157. [Google Scholar] [CrossRef]
- Önder, S.; Akay, A. Reduction of Traffic Noise Pollution Effects by Using Vegetation, Turkey’ Sample. J. Eng. Econ. Dev. 2015, 2, 23. [Google Scholar]
- Klæboe, R.; Veisten, K. Economic Analyses of Surface Treatments, Tree Belts, Green Façades, Barriers and Roofs. In Environmental Methods for Transport Noise Reduction; Nilsson, M., Bengtsson, J., Klæboe, R., Eds.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Samara, T.; Tsitsoni, T. The Effects of Vegetation on Reducing Traffic Noise from a City Ring Road. Noise Control Eng. J. 2011, 59, 68–74. [Google Scholar] [CrossRef]
- Fang, C.-F.; Ling, D.-L. Guidance for Noise Reduction Provided by Tree Belts. Landsc. Urban Plan. 2005, 71, 29–34. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Forssén, J.; Attenborough, K.; Jean, P.; Defrance, J.; Hornikx, M.; Kang, J. Using Natural Means to Reduce Surface Transport Noise during Propagation Outdoors. Appl. Acoust. 2015, 92, 86–101. [Google Scholar] [CrossRef] [Green Version]
- Amran, M.; Al-Fakih, A.; Chu, S.H.; Fediuk, R.; Haruna, S.; Azevedo, A.; Vatin, N. Long-Term Durability Properties of Geopolymer Concrete: An in-Depth Review. Case Stud. Constr. Mater. 2021, 15, e00661. [Google Scholar] [CrossRef]
- Egab, L.; Wang, X.; Fard, M. Acoustical Characterisation of Porous Sound Absorbing Materials: A Review. Int. J. Veh. Noise Vib. 2014, 10, 129–149. [Google Scholar] [CrossRef]
- Andreassen, E.; Manktelow, K.; Ruzzene, M. Directional Bending Wave Propagation in Periodically Perforated Plates. J. Sound Vib. 2015, 335, 187–203. [Google Scholar] [CrossRef] [Green Version]
- Blaeß, C.; Müller, R. Sintering and Foaming of Bioactive Glasses. J. Am. Ceram. Soc. 2022, 105, 6616–6626. [Google Scholar] [CrossRef]
- Fredianelli, L.; Del Pizzo, L.G.; Licitra, G. Recent Developments in Sonic Crystals as Barriers for Road Traffic Noise Mitigation. Environments 2019, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Irwin, G.R.; Paris, P.C. Fundamental Aspects of Crack Growth and Fracture. In Engineering Fundamentals and Environmental Effects; Elsevier: Amsterdam, The Netherlands, 1971; pp. 1–46. [Google Scholar]
- Yang, X.L.; Guo, S.H.; Chan, F.T.; Wong, K.W.; Ching, W.Y. Analytic Solution of a Two-Dimensional Hydrogen Atom. I. Nonrelativistic Theory. Phys. Rev. A 1991, 43, 1186. [Google Scholar] [CrossRef]
- Huang, J.; Shi, Z. Vibration Reduction of Plane Waves Using Periodic In-Filled Pile Barriers. J. Geotech. Geoenviron. Eng. 2015, 141, 4015018. [Google Scholar] [CrossRef]
- Zhang, J. Investigations on Coherence of Active Control of Traffic Noise Transmission through an Open Window into a Rectangular Room in High-Rise Buildings. Noise Vib. Worldw. 2003, 34, 8–17. [Google Scholar] [CrossRef]
- Waddington, D.C.; Woodcock, J.; Peris, E.; Condie, J.; Sica, G.; Moorhouse, A.T.; Steele, A. Human Response to Vibration in Residential Environments. J. Acoust. Soc. Am. 2014, 135, 182–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ögren, M.; Gidlöf-Gunnarsson, A.; Smith, M.; Gustavsson, S.; Persson Waye, K. Comparison of Annoyance from Railway Noise and Railway Vibration. Int. J. Environ. Res. Public Health 2017, 14, 805. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.W. From Photonic Crystals to Seismic Metamaterials: A Review via Phononic Crystals and Acoustic Metamaterials. Arch. Comput. Methods Eng. 2021, 1, 1–62. [Google Scholar]
- Djafari-Rouhani, B.; El-Jallal, S.; Oudich, M.; Pennec, Y. Optomechanic Interactions in Phoxonic Cavities. AIP Adv. 2014, 4, 124602. [Google Scholar] [CrossRef]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Jiménez, N.; Groby, J.P.; Romero-García, V. Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media; The Transfer Matrix Method in Acoustics; Springer International Publishing: Cham, Switzerland, 2021; pp. 103–164. [Google Scholar]
- Romero-García, V.; Krynkin, A.; Garcia-Raffi, L.M.; Umnova, O.; Sánchez-Pérez, J.V. Multi-Resonant Scatterers in Sonic Crystals: Locally Multi-Resonant Acoustic Metamaterial. J. Sound Vib. 2013, 332, 184–198. [Google Scholar] [CrossRef] [Green Version]
- Sigmund, O.; Schevenels, M.; Lazarov, B.S.; Lombaert, G. Topology Optimization of Two-Dimensional Elastic Wave Barriers. J. Sound Vib. 2016, 376, 95–111. [Google Scholar]
- Li, G.; Chen, Y.; Chen, W.; Liu, J.; He, H. Local Resonance–Helmholtz Lattices with Simultaneous Solid-Borne Elastic Waves and Air-Borne Sound Waves Attenuation Performance. Appl. Acoust. 2022, 186, 108450. [Google Scholar] [CrossRef]
- Claeys, C.; de Melo Filho, N.G.R.; Van Belle, L.; Deckers, E.; Desmet, W. Design and Validation of Metamaterials for Multiple Structural Stop Bands in Waveguides. Extrem. Mech. Lett. 2017, 12, 7–22. [Google Scholar] [CrossRef] [Green Version]
- Krylov, V.V. On the Theory of Railway-Induced Ground Vibrations. J. Phys. IV 1994, 4, C5-769–C5-772. [Google Scholar] [CrossRef] [Green Version]
- Hunt, J.A.; Dalgleish, D.G. Effect of PH on the Stability and Surface Composition of Emulsions Made with Whey Protein Isolate. J. Agric. Food Chem. 1994, 42, 2131–2135. [Google Scholar] [CrossRef]
- Svinkin, M.R. Prediction and Calculation of Construction Vibrations. In Proceedings of the DFI 24th Annual Members’ Conference, Decades of Technology-Advancing into the Future, Dearborn, MI, USA, 14–16 October 1999; pp. 53–69. [Google Scholar]
- Colaço, A.; Costa, P.A.; Connolly, D.P. The Influence of Train Properties on Railway Ground Vibrations. Struct. Infrastruct. Eng. 2016, 12, 517–534. [Google Scholar] [CrossRef]
- Di Matteo, A.; Masnata, C.; Pirrotta, A. Hybrid Passive Control Strategies for Reducing the Displacements at the Base of Seismic Isolated Structures. Front. Built Environ. 2019, 5, 132. [Google Scholar] [CrossRef]
- Jiang, J.; Toward, M.G.R.; Dijckmans, A.; Thompson, D.J.; Degrande, G.; Lombaert, G.; Ryue, J. Reducing Railway Induced Ground-Borne Vibration by Using Trenches and Buried Soft Barriers. In Noise and Vibration Mitigation for Rail Transportation Systems; Springer: Berlin/Heidelberg, Germany, 2015; pp. 555–562. [Google Scholar]
- Kumar, G. Structual-Acoustic Properties of Automotive Panels with Shell Elements; Loughborough University: Loughborough, UK, 2014. [Google Scholar]
- Huang, J.; Shi, Z. Attenuation Zones of Periodic Pile Barriers and Its Application in Vibration Reduction for Plane Waves. J. Sound Vib. 2013, 332, 4423–4439. [Google Scholar] [CrossRef]
- Coulier, P.; Hunt, H.E.M. Experimental Study of a Stiff Wave Barrier in Gelatine. Soil Dyn. Earthq. Eng. 2014, 66, 459–463. [Google Scholar] [CrossRef]
- Dijckmans, A.; Ekblad, A.; Smekal, A.; Degrande, G.; Lombaert, G. Efficacy of a Sheet Pile Wall as a Wave Barrier for Railway Induced Ground Vibration. Soil Dyn. Earthq. Eng. 2016, 84, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Dijckmans, A.; Coulier, P.; Jiang, J.; Toward, M.G.R.; Thompson, D.J.; Degrande, G.; Lombaert, G. Mitigation of Railway Induced Ground Vibration by Heavy Masses next to the Track. Soil Dyn. Earthq. Eng. 2015, 75, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Persson, P.; Persson, K.; Sandberg, G. Numerical Study of Reduction in Ground Vibrations by Using Barriers. Eng. Struct. 2016, 115, 18–27. [Google Scholar] [CrossRef]
- Huang, J.; Liu, W.; Shi, Z. Surface-Wave Attenuation Zone of Layered Periodic Structures and Feasible Application in Ground Vibration Reduction. Constr. Build. Mater. 2017, 141, 1–11. [Google Scholar] [CrossRef]
- Bordón, J.D.R.; Aznárez, J.J.; Schevenels, M.; Maeso, O.; Lombaert, G. Shape Optimized Inclined Single and Double Wall Wave Barriers for Ground Vibration Mitigation. Soil Dyn. Earthq. Eng. 2018, 112, 215–231. [Google Scholar] [CrossRef]
- Le, P.T.T.; Yarmohammadi, M. Perpendicular Electric Field Effects on the Propagation of Electromagnetic Waves through the Monolayer Phosphorene. J. Magn. Magn. Mater. 2019, 491, 165629. [Google Scholar] [CrossRef]
- Mitchell, J.T. On Systematics and Their Mitigation in MAGIS-100 Atomic Interferometer Experiment to Explore the Dark Sector and Early Universe; Northern Illinois University ProQuest Dissertations Publishing: DeKalb, IL, USA, 2020. [Google Scholar]
- Barbosa, J.; Costa, P.A.; Calçada, R. Abatement of Railway Induced Vibrations: Numerical Comparison of Trench Solutions. Eng. Anal. Bound. Elem. 2015, 55, 122–139. [Google Scholar] [CrossRef]
- Donzella, V.; Sherwali, A.; Flueckiger, J.; Grist, S.M.; Fard, S.T.; Chrostowski, L. Design and Fabrication of SOI Micro-Ring Resonators Based on Sub-Wavelength Grating Waveguides. Opt. Express 2015, 23, 4791–4803. [Google Scholar] [CrossRef] [PubMed]
- Godinho, L.; Soares Jr, D.; Santos, P.G. An ACA-MFS Approach for the Analysis of Sound Propagation in Sonic Crystals. Bound. Elem. Other Mesh Reduct. Methods XXXVIII 2015, 61, 23. [Google Scholar]
- Godinho, L.; Santos, P.G.; Amado-Mendes, P.; Pereira, A.; Martins, M. Experimental and Numerical Analysis of Sustainable Sonic Crystal Barriers Based on Timber Logs. Proc. EuroRegio2016 Porto Port. 2016, 1, 13–15. [Google Scholar]
- Castanheira-Pinto, A.; Alves-Costa, P.; Godinho, L.; Amado-Mendes, P. On the Application of Continuous Buried Periodic Inclusions on the Filtering of Traffic Vibrations: A Numerical Study. Soil Dyn. Earthq. Eng. 2018, 113, 391–405. [Google Scholar] [CrossRef]
- Kelsall, R.W.; Hamley, I.W.; Geoghegan, M. Nanoscale Science and Technology; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Valipour, A.; Kargozarfard, M.H.; Rakhshi, M.; Yaghootian, A.; Sedighi, H.M. Metamaterials and Their Applications: An Overview. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2021, 1, 1464420721995858. [Google Scholar] [CrossRef]
- Liu, J.; Guo, H.; Wang, T. A Review of Acoustic Metamaterials and Phononic Crystals. Crystals 2020, 10, 305. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.N.; Hu, G.K.; Sun, C.T.; Huang, G.L. Wave Propagation Characterization and Design of Two-Dimensional Elastic Chiral Metacomposite. J. Sound Vib. 2011, 330, 2536–2553. [Google Scholar] [CrossRef]
- Thierry, V.; Brown, L.; Chronopoulos, D. Multi-Scale Wave Propagation Modelling for Two-Dimensional Periodic Textile Composites. Compos. Part B Eng. 2018, 150, 144–156. [Google Scholar] [CrossRef] [Green Version]
- Wilm, M.; Ballandras, S.; Laude, V.; Pastureaud, T. A Full 3D Plane-Wave-Expansion Model for 1-3 Piezoelectric Composite Structures. J. Acoust. Soc. Am. 2002, 112, 943–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bria, D.; Assouar, M.B.; Oudich, M.; Pennec, Y.; Vasseur, J.; Djafari-Rouhani, B. Opening of Simultaneous Photonic and Phononic Band Gap in Two-Dimensional Square Lattice Periodic Structure. J. Appl. Phys. 2011, 109, 14507. [Google Scholar] [CrossRef]
- Alegre, T.P.M.; Safavi-Naeini, A.; Winger, M.; Painter, O. Quasi-Two-Dimensional Optomechanical Crystals with a Complete Phononic Bandgap. Opt. Express 2011, 19, 5658–5669. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-F.; Wang, Y.-S. Multiple Wide Complete Bandgaps of Two-Dimensional Phononic Crystal Slabs with Cross-like Holes. J. Sound Vib. 2013, 332, 2019–2037. [Google Scholar] [CrossRef]
- El-Jallal, S.; Oudich, M.; Pennec, Y.; Djafari-Rouhani, B.; Laude, V.; Beugnot, J.-C.; Martinez, A.; Escalante, J.M.; Makhoute, A. Analysis of Optomechanical Coupling in Two-Dimensional Square Lattice Phoxonic Crystal Slab Cavities. Phys. Rev. B 2013, 88, 205410. [Google Scholar] [CrossRef]
- Oudich, M.; Senesi, M.; Assouar, M.B.; Ruzenne, M.; Sun, J.-H.; Vincent, B.; Hou, Z.; Wu, T.-T. Experimental Evidence of Locally Resonant Sonic Band Gap in Two-Dimensional Phononic Stubbed Plates. Phys. Rev. B 2011, 84, 165136. [Google Scholar] [CrossRef]
- Acar, G.; Yilmaz, C. Experimental and Numerical Evidence for the Existence of Wide and Deep Phononic Gaps Induced by Inertial Amplification in Two-Dimensional Solid Structures. J. Sound Vib. 2013, 332, 6389–6404. [Google Scholar] [CrossRef]
- Laude, V.; Achaoui, Y.; Benchabane, S.; Khelif, A. Evanescent Bloch Waves and the Complex Band Structure of Phononic Crystals. Phys. Rev. B 2009, 80, 92301. [Google Scholar] [CrossRef] [Green Version]
- Veres, I.A.; Berer, T.; Matsuda, O. Complex Band Structures of Two Dimensional Phononic Crystals: Analysis by the Finite Element Method. J. Appl. Phys. 2013, 114, 83519. [Google Scholar] [CrossRef]
- Meseguer, F.; Holgado, M.; Caballero, D.; Benaches, N.; Sanchez-Dehesa, J.; López, C.; Llinares, J. Rayleigh-Wave Attenuation by a Semi-Infinite Two-Dimensional Elastic-Band-Gap Crystal. Phys. Rev. B 1999, 59, 12169. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Tamura, S. Acoustic Stop Bands of Surface and Bulk Modes in Two-Dimensional Phononic Lattices Consisting of Aluminum and a Polymer. Phys. Rev. B 1999, 60, 13294. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.-W.; Tsai, Y.-C.; Lin, Y.-C.; Ono, T.; Tanaka, S.; Wu, T.-T. Design and Fabrication of a Phononic-Crystal-Based Love Wave Resonator in GHz Range. Aip Adv. 2014, 4, 124201. [Google Scholar] [CrossRef] [Green Version]
- Brûlé, S.; Javelaud, E.H.; Enoch, S.; Guenneau, S. Experiments on Seismic Metamaterials: Molding Surface Waves. Phys. Rev. Lett. 2014, 112, 133901. [Google Scholar] [CrossRef] [Green Version]
- Colombi, A.; Roux, P.; Guenneau, S.; Gueguen, P.; Craster, R. V Forests as a Natural Seismic Metamaterial: Rayleigh Wave Bandgaps Induced by Local Resonances. Sci. Rep. 2016, 6, 19238. [Google Scholar] [CrossRef]
- Muhammad; Wu, T.; Lim, C.W. Forest Trees as Naturally Available Seismic Metamaterials: Low Frequency Rayleigh Wave with Extremely Wide Bandgaps. Int. J. Struct. Stab. Dyn. 2020, 20, 2043014. [Google Scholar] [CrossRef]
- Lim, C.W. Natural Seismic Metamaterials: The Role of Tree Branches in the Birth of Rayleigh Wave Bandgap for Ground Born Vibration Attenuation. Trees 2021, 35, 1299–1315. [Google Scholar]
- Maurel, A.; Marigo, J.-J.; Pham, K.; Guenneau, S. Conversion of Love Waves in a Forest of Trees. Phys. Rev. B 2018, 98, 134311. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wood, J.D.; Chen, K.-S.; Cho, E.; Hersam, M.C. In Situ Thermal Decomposition of Exfoliated Two-Dimensional Black Phosphorus. J. Phys. Chem. Lett. 2015, 6, 773–778. [Google Scholar] [CrossRef] [Green Version]
- La Salandra, V.; Wenzel, M.; Bursi, O.S.; Carta, G.; Movchan, A.B. Conception of a 3D Metamaterial-Based Foundation for Static and Seismic Protection of Fuel Storage Tanks. Front. Mater. 2017, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Taniker, S.; Yilmaz, C. Design, Analysis and Experimental Investigation of Three-Dimensional Structures with Inertial Amplification Induced Vibration Stop Bands. Int. J. Solids Struct. 2015, 72, 88–97. [Google Scholar] [CrossRef]
- D’Alessandro, L.; Ardito, R.; Braghin, F.; Corigliano, A. Low Frequency 3D Ultra-Wide Vibration Attenuation via Elastic Metamaterial. Sci. Rep. 2019, 9, 8039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilal, O.R.; Foehr, A.; Daraio, C. Observation of Trampoline Phenomena in 3D-Printed Metamaterial Plates. Extrem. Mech. Lett. 2017, 15, 103–107. [Google Scholar] [CrossRef]
- Fei, X.; Jin, L.; Zhang, X.; Li, X.; Lu, M. Three-Dimensional Anti-Chiral Auxetic Metamaterial with Tunable Phononic Bandgap. Appl. Phys. Lett. 2020, 116, 21902. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Z.-G.; Ma, G. Synthetic Three-Dimensional Z× Z 2 Topological Insulator in an Elastic Metacrystal. Phys. Rev. Lett. 2021, 127, 214302. [Google Scholar]
- Cui, H.; Hensleigh, R.; Yao, D.; Maurya, D.; Kumar, P.; Kang, M.G.; Priya, S.; Zheng, X.R. Three-Dimensional Printing of Piezoelectric Materials with Designed Anisotropy and Directional Response. Nat. Mater. 2019, 18, 234–241. [Google Scholar] [CrossRef]
- Sigalas, M.; Economou, E.N. Band Structure of Elastic Waves in Two Dimensional Systems. Solid State Commun. 1993, 86, 141–143. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y.Y.; Yang, Z.; Chan, C.T.; Sheng, P. Locally Resonant Sonic Materials. Science 2000, 289, 1734–1736. [Google Scholar] [CrossRef]
- Ma, T.-X.; Su, X.-X.; Wang, Y.-S.; Wang, Y.-F. Effects of Material Parameters on Elastic Band Gaps of Three-Dimensional Solid Phononic Crystals. Phys. Scr. 2013, 87, 55604. [Google Scholar] [CrossRef]
- Suzuki, T.; Paul, K.L. Complex Elastic Wave Band Structures in Three-Dimensional Periodic Elastic Media. J. Mech. Phys. Solids 1998, 46, 115–138. [Google Scholar] [CrossRef]
- Cui, R.; Zhou, J.; Gong, D. Band Gap and Vibration Reduction Properties of Damped Rail with Two-Dimensional Honeycomb Phononic Crystals. Shock Vib. 2021, 2021, 8814962. [Google Scholar] [CrossRef]
- López-Mendoza, D.; Romero, A.; Connolly, D.P.; Galvín, P. Scoping Assessment of Building Vibration Induced by Railway Traffic. Soil Dyn. Earthq. Eng. 2017, 93, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Ainalis, D.; Kaufmann, O.; Tshibangu, J.-P.; Verlinden, O.; Kouroussis, G. Modelling the Source of Blasting for the Numerical Simulation of Blast-Induced Ground Vibrations: A Review. Rock Mech. Rock Eng. 2017, 50, 171–193. [Google Scholar] [CrossRef]
- Chen, Y.; Qian, F.; Scarpa, F.; Zuo, L.; Zhuang, X. Harnessing Multi-Layered Soil to Design Seismic Metamaterials with Ultralow Frequency Band Gaps. Mater. Des. 2019, 175, 107813. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, L.; Liu, D.; Gao, X.; Sheng, X.; Ping, W. Vibration Control Mechanism of the Metabarrier under Train Load via Numerical Simulation. J. Vib. Control 2019, 25, 2553–2566. [Google Scholar] [CrossRef]
- Li, C.; Zhang, S.; Liu, Q.; Zhou, C.; Qin, H.; Zhang, L.; Zhai, M. Low-Frequency Vibration Control of Metro Slab Track Based on Locally Resonant Theory. KSCE J. Civ. Eng. 2022, 26, 2695–2706. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, J.; Li, Y.; Shi, Z. Trees as Large-Scale Natural Metamaterials for Low-Frequency Vibration Reduction. Constr. Build. Mater. 2019, 199, 737–745. [Google Scholar] [CrossRef]
- Mahinroosta, R.; Senevirathna, L. A Review of the Emerging Treatment Technologies for PFAS Contaminated Soils. J. Environ. Manag. 2020, 255, 109896. [Google Scholar] [CrossRef]
- Zeng, Y.; Cao, L.; Wan, S.; Guo, T.; Wang, Y.-F.; Du, Q.-J.; Assouar, B.; Wang, Y.-S. Seismic Metamaterials: Generating Low-Frequency Bandgaps Induced by Inertial Amplification. Int. J. Mech. Sci. 2022, 221, 107224. [Google Scholar] [CrossRef]
- Hooshmand, P.; Khakrah, H.; Jamalabadi, M.Y.A.; Ross, D. RETRACTED: Natural Convection Heat Transfer in a Circle-Square Annulus Using Lattice Boltzmann Method-Treatment of Curved Boundary Conditions. Int. J. Mech. Sci. 2019, 161–162, 105086. [Google Scholar] [CrossRef]
- Wu, X.; Izmailian, N.; Guo, W. Shape-Dependent Finite-Size Effect of the Critical Two-Dimensional Ising Model on a Triangular Lattice. Phys. Rev. E 2013, 87, 22124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Deng, Z.; Huang, B.; Du, J. Elastic Wave Propagation in Triangular Chiral Lattices: Geometric Frustration Behavior of Standing Wave Modes. Int. J. Solids Struct. 2019, 158, 40–51. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, K.; Zhao, C.; Qi, L.; Deng, Z. In-Plane Wave Propagation Analysis for Waveguide Design of Hexagonal Lattice with Koch Snowflake. Int. J. Mech. Sci. 2021, 209, 106724. [Google Scholar] [CrossRef]
- Dietz, B.; Iachello, F.; Macek, M. Algebraic Theory of Crystal Vibrations: Localization Properties of Wave Functions in Two-Dimensional Lattices. Crystals 2017, 7, 246. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Liu, X.; Chen, X.; Xiang, H. Multiple Flexural-Wave Attenuation Zones of Periodic Slabs with Cross-like Holes on an Arbitrary Oblique Lattice: Numerical and Experimental Investigation. J. Sound Vib. 2018, 437, 135–149. [Google Scholar] [CrossRef]
- Hosseinkhani, A.; Ebrahimian, F.; Younesian, D.; Moayedizadeh, A. Defected Meta-Lattice Structures for the Enhanced Localized Vibrational Energy Harvesting. Nano Energy 2022, 100, 107488. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, P.; Kim, H.; Park, J. Optimal Design of a Composite Lattice Rectangular Plate for Solar Panels of a High-Agility Satellite. Int. J. Aeronaut. Sp. Sci. 2018, 19, 762–775. [Google Scholar] [CrossRef]
- He, Y. Band Gap Structure of Two Dimensional Acoustic Metamaterials with Coated Double Hybrid Lattice; Harbin Engineering University: Harbin, China, 2016. [Google Scholar]
- Lim, C.W.; Reddy, J.N. Built-up Structural Steel Sections as Seismic Metamaterials for Surface Wave Attenuation with Low Frequency Wide Bandgap in Layered Soil Medium. Eng. Struct. 2019, 188, 440–451. [Google Scholar]
- Aravantinos-Zafiris, N.; Sigalas, M.M. Large Scale Phononic Metamaterials for Seismic Isolation. J. Appl. Phys. 2015, 118, 64901. [Google Scholar] [CrossRef]
- Kushwaha, M.S.; Halevi, P.; Dobrzynski, L.; Djafari-Rouhani, B. Acoustic Band Structure of Periodic Elastic Composites. Phys. Rev. Lett. 1993, 71, 2022. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sala, R.; Sancho, J.; Sánchez, J.V.; Gómez, V.; Llinares, J.; Meseguer, F. Sound Attenuation by Sculpture. Nature 1995, 378, 241. [Google Scholar] [CrossRef]
- YARIV, A.; Mookherjea, S. Optical Wave Propagation in Periodic Structures. Int. J. High Speed Electron. Syst. 2002, 12, 207–214. [Google Scholar] [CrossRef]
- Johnson, W.R. Metamaterial Applications for Vibration and Wave Propagation in 1D Elastic Rods; Georgia Institute of Technology: Atlanta, GA, USA, 2020. [Google Scholar]
- Olsson, R.H.; El-Kady, I. Microfabricated Phononic Crystal Devices and Applications. Meas. Sci. Technol. 2008, 20, 12002. [Google Scholar] [CrossRef]
- Gao, N.; Zhang, Z.; Deng, J.; Guo, X.; Cheng, B.; Hou, H. Acoustic Metamaterials for Noise Reduction: A Review. Adv. Mater. Technol. 2022, 7, 2100698. [Google Scholar] [CrossRef]
- Lee, J.; Koh, C.Y.; Singer, J.P.; Jeon, S.; Maldovan, M.; Stein, O.; Thomas, E.L. 25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons. Adv. Mater. 2014, 26, 532–569. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.-C. Local Resonances-Induced Low-Frequency Band Gaps in Two-Dimensional Phononic Crystal Slabs with Periodic Stepped Resonators. J. Phys. D. Appl. Phys. 2011, 44, 55401. [Google Scholar] [CrossRef]
- Larabi, H.; Pennec, Y.; Djafari-Rouhani, B.; Vasseur, J.O. Multicoaxial Cylindrical Inclusions in Locally Resonant Phononic Crystals. Phys. Rev. E 2007, 75, 66601. [Google Scholar] [CrossRef]
- Rupp, C.J.; Evgrafov, A.; Maute, K.; Dunn, M.L. Design of Phononic Materials/Structures for Surface Wave Devices Using Topology Optimization. Struct. Multidiscip. Optim. 2007, 34, 111–121. [Google Scholar] [CrossRef]
- Colombi, A.; Ageeva, V.; Smith, R.J.; Clare, A.; Patel, R.; Clark, M.; Colquitt, D.; Roux, P.; Guenneau, S.; Craster, R.V. Enhanced Sensing and Conversion of Ultrasonic Rayleigh Waves by Elastic Metasurfaces. Sci. Rep. 2017, 7, 6750. [Google Scholar] [CrossRef]
- Huang, J.-K.; Liu, Y.-F.; Li, Y.-G. Trees as Large-Scale Natural Phononic Crystals. In Climate Change Impacts on Hydrological Processes and Sediment Dynamics: Measurement, Modelling and Management; Springer: Berlin/Heidelberg, Germany, 2019; pp. 52–56. [Google Scholar]
- Guo, D.-K.; Chen, T. Seismic Metamaterials for Energy Attenuation of Shear Horizontal Waves in Transversely Isotropic Media. Mater. Today Commun. 2021, 28, 102526. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Chen, W.; Li, Z.; Golub, M.V.; Fomenko, S.I. Precise and Target-Oriented Control of the Low-Frequency Lamb Wave Bandgaps. J. Sound Vib. 2021, 511, 116367. [Google Scholar] [CrossRef]
- Jian, Y.; Tang, L.; Hu, G.; Li, Z.; Aw, K.C. Design of Graded Piezoelectric Metamaterial Beam with Spatial Variation of Electrodes. Int. J. Mech. Sci. 2022, 218, 107068. [Google Scholar] [CrossRef]
- Hussein, M.I.; Hamza, K.; Hulbert, G.M.; Scott, R.A.; Saitou, K. Multiobjective Evolutionary Optimization of Periodic Layered Materials for Desired Wave Dispersion Characteristics. Struct. Multidiscip. Optim. 2006, 31, 60–75. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, T.; Pires, R.; Dias, J.M.S. D4MD: Deformation System for a Vehicle Simulation Game. In Proceedings of the 2005 ACM SIGCHI International Conference on Advances in computer entertainment technology, Valencia, Spain, 15–17 June 2005; pp. 330–333. [Google Scholar]
- Oudich, M.; Gerard, N.J.R.K.; Deng, Y.; Jing, Y. Bandgap Engineering in Phononic Crystals and Elastic Metamaterials. arXiv 2022, arXiv:2207.05234. [Google Scholar]
- Case, A.; Day, A. Designing with Sound: Fundamentals for Products and Services; O’Reilly Media: Newton, MA, USA, 2018; ISBN 1491961074. [Google Scholar]
- Nashif, A.D.; Jones, D.I.G.; Henderson, J.P. Vibration Damping; John Wiley & Sons: New York, NY, USA, 1991; ISBN 0471867721. [Google Scholar]
- Matlack, K.H.; Bauhofer, A.; Krödel, S.; Palermo, A.; Daraio, C. Composite 3D-Printed Metastructures for Low-Frequency and Broadband Vibration Absorption. Proc. Natl. Acad. Sci. USA 2016, 113, 8386–8390. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.-T.; Lin, S. Suppression of Lateral Vibration in Rectangular Ultrasonic Plastic Soldering Tool Based on Phononic Crystal Structure. Acta Acust. United Acust. 2019, 105, 953–959. [Google Scholar] [CrossRef]
- Karki, P.; Paulose, J. Stopping and Reversing Sound via Dynamic Dispersion Tuning in a Phononic Metamaterial. Phys. Rev. Appl. 2021, 15, 34083. [Google Scholar] [CrossRef]
- Jin, C.; Meng, X.; Cheng, B.; Li, Z.; Zhang, D. Photonic Gap in Amorphous Photonic Materials. Phys. Rev. B 2001, 63, 195107. [Google Scholar] [CrossRef]
- Rockstuhl, C.; Peschel, U.; Lederer, F. Correlation between Single-Cylinder Properties and Bandgap Formation in Photonic Structures. Opt. Lett. 2006, 31, 1741–1743. [Google Scholar] [CrossRef]
- Steurer, W.; Sutter-Widmer, D. Photonic and Phononic Quasicrystals. J. Phys. D. Appl. Phys. 2007, 40, R229. [Google Scholar] [CrossRef]
- Goffaux, C.; Sánchez-Dehesa, J.; Lambin, P. Comparison of the Sound Attenuation Efficiency of Locally Resonant Materials and Elastic Band-Gap Structures. Phys. Rev. B 2004, 70, 184302. [Google Scholar] [CrossRef] [Green Version]
- Palermo, A.; Krodel, S.; Marzani, A.; Daraio, C. Engineered Metabarrier as Shield from Seismic Surface Waves. Sci. Rep. 2016, 6, 39356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.; Gao, T.; Hedblom, M.; Xu, N.; Xiang, Y.; Hu, M.; Chen, Y.; Qiu, L. Soundscape Perceptions and Preferences for Different Groups of Users in Urban Recreational Forest Parks. Forests 2021, 12, 468. [Google Scholar] [CrossRef]
- Zhang, G.; He, B.-J. Towards Green Roof Implementation: Drivers, Motivations, Barriers and Recommendations. Urban For. urban Green. 2021, 58, 126992. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Ni, Z.; Zhang, X.; Xia, B. Benefits of the Ecosystem Services Provided by Urban Green Infrastructures: Differences between Perception and Measurements. Urban For. Urban Green. 2020, 54, 126774. [Google Scholar] [CrossRef]
- Bucur, V. Urban Forest Acoustics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; ISBN 3540307893. [Google Scholar]
- Schulze, E.-D.; Beck, E.; Buchmann, N.; Clemens, S.; Müller-Hohenstein, K.; Scherer-Lorenzen, M. Thermal Balance of Plants and Plant Communities. In Plant Ecology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 303–327. [Google Scholar]
- Lobel, A.; Blomme, R. Modeling Ultraviolet Wind Line Variability in Massive Hot Stars. Astrophys. J. 2008, 678, 408. [Google Scholar] [CrossRef]
- Pullin, R.; Holford, K.M.; Lark, R.J.; Eaton, M.J. Acoustic Emission Monitoring of Bridge Structures in the Field and Laboratory. J. Acoust. Emiss. 2008, 26, 172–181. [Google Scholar]
- Reynolds, H.R.; Jagen, M.A.; Tunick, P.A.; Kronzon, I. Sensitivity of Transthoracic versus Transesophageal Echocardiography for the Detection of Native Valve Vegetations in the Modern Era. J. Am. Soc. Echocardiogr. 2003, 16, 67–70. [Google Scholar] [CrossRef]
- Swearingen, M.E.; White, M.J. Influence of Scattering, Atmospheric Refraction, and Ground Effect on Sound Propagation through a Pine Forest. J. Acoust. Soc. Am. 2007, 122, 113–119. [Google Scholar] [CrossRef]
- Bard, P.-Y.; Riepl-Thomas, J. Wave Propagation in Complex Geological Structures and Their Effects on Strong Ground Motion. In Wave Motion Earthquake Engineering; WIT Press: Southampton, UK, 2000; pp. 37–95. [Google Scholar]
- Warzybok, A.; Kollmeier, B. TUESDAY AFTERNOON, 15 MAY 2012 HALL A, 1: 55 PM TO 6: 00 PM Session 2pAAa. J. Acoust. Soc. Am. 2012, 131, 3316–3356. [Google Scholar]
- Martens, M.J.M.; Michelsen, A. Absorption of Acoustic Energy by Plant Leaves. J. Acoust. Soc. Am. 1981, 69, 303–306. [Google Scholar] [CrossRef]
- Gade, A.C. Acoustic Concerns Related to Multi Cultural Societies. J. Acoust. Soc. Am. 2001, 110, 2664. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.H.; Ong, P.P.; Woon, H.S. Monte Carlo Simulation of Sound Propagation through Leafy Foliage Using Experimentally Obtained Leaf Resonance Parameters. J. Acoust. Soc. Am. 1986, 80, 1740–1744. [Google Scholar] [CrossRef]
- Speidel, L.; Forest, M.; Shi, S.; Myers, S.R. A Method for Genome-Wide Genealogy Estimation for Thousands of Samples. Nat. Genet. 2019, 51, 1321–1329. [Google Scholar] [CrossRef] [PubMed]
- Motamedi, M.; Warkiani, M.E.; Taylor, R.A. Transparent Surfaces Inspired by Nature. Adv. Opt. Mater. 2018, 6, 1800091. [Google Scholar] [CrossRef]
- de Langre, E. Plant Vibrations at All Scales: A Review. J. Exp. Bot. 2019, 70, 3521–3531. [Google Scholar] [CrossRef]
- Yu, T.; Jiang, F.; Wang, J.; Wang, Z.; Chang, Y.; Guo, C. Acoustic Insulation and Absorption Mechanism of Metallic Hollow Spheres Composites with Different Polymer Matrix. Compos. Struct. 2020, 248, 112566. [Google Scholar] [CrossRef]
- Zhao, S.-D.; Dong, H.-W.; Miao, X.-B.; Wang, Y.-S.; Zhang, C. Broadband Coding Metasurfaces with 2-Bit Manipulations. Phys. Rev. Appl. 2022, 17, 34019. [Google Scholar] [CrossRef]
- Kebede, A.M. Experimental Study on Sound Absorption Performance of Surface-Perforated Mortar for Mitigating Railway Noise. Constr. Build. Mater. 2022, 307, 124824. [Google Scholar]
- Burns, S.H. The Absorption of Sound by Pine Trees. J. Acoust. Soc. Am. 1979, 65, 658–661. [Google Scholar] [CrossRef]
- Nishi, S.; Yamada, T.; Izui, K.; Nishiwaki, S.; Terada, K. Isogeometric Topology Optimization of Anisotropic Metamaterials for Controlling High-frequency Electromagnetic Wave. Int. J. Numer. Methods Eng. 2020, 121, 1218–1247. [Google Scholar] [CrossRef]
- Padgham, M. Reverberation and Frequency Attenuation in Forests—Implications for Acoustic Communication in Animals. J. Acoust. Soc. Am. 2004, 115, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.H.; Tan, A.Y.K.; Tan, P.Y.; Chiang, K.; Wong, N.C. Acoustics Evaluation of Vertical Greenery Systems for Building Walls. Build. Environ. 2010, 45, 411–420. [Google Scholar] [CrossRef]
- Jha, M.K.; Paikra, S.S.; Sahu, M.R. Protected Cultivation of Horticulture Crops; Educreation Publishing: New Delhi, India, 2019. [Google Scholar]
- Taban, E.; Soltani, P.; Berardi, U.; Putra, A.; Mousavi, S.M.; Faridan, M.; Samaei, S.E.; Khavanin, A. Measurement, Modeling, and Optimization of Sound Absorption Performance of Kenaf Fibers for Building Applications. Build. Environ. 2020, 180, 107087. [Google Scholar] [CrossRef]
- Tang, V.T.; Rene, E.R.; Hu, L.; Behera, S.K.; Phong, N.T.; Thi Da, C. Vertical Green Walls for Noise and Temperature Reduction—An Experimental Investigation. Sci. Technol. Built Environ. 2021, 27, 806–818. [Google Scholar] [CrossRef]
- Pujević, V. Numerical Modeling of the Vegetation and Atmosphere Effect on the Behaviour of Civil Infrastructure Embankments. Ph.D. Thesis, University of Belgrade, Belgrade, Serbia, 2021. [Google Scholar]
- Yıldırım, M. Characterization of the Framework of Cu Doped TiO2 Layers: An Insight into Optical, Electrical and Photodiode Parameters. J. Alloys Compd. 2019, 773, 890–904. [Google Scholar] [CrossRef]
- Liu, C.R.; Wu, J.H.; Ma, F.; Chen, X.; Yang, Z. A Thin Multi-Order Helmholtz Metamaterial with Perfect Broadband Acoustic Absorption. Appl. Phys. Express 2019, 12, 84002. [Google Scholar] [CrossRef]
- Wood, J. The Top Ten Advances in Materials Science. Mater. today 2008, 11, 40–45. [Google Scholar] [CrossRef]
- Chen, T. Engineered Metamaterials: A Novel Technology for Seismic Protection. Impact 2022, 2022, 12–14. [Google Scholar] [CrossRef]
- Iyer, A.K.; Alu, A.; Epstein, A. Metamaterials and Metasurfaces—Historical Context, Recent Advances, and Future Directions. IEEE Trans. Antennas Propag. 2020, 68, 1223–1231. [Google Scholar] [CrossRef]
- Krödel, S.; Thomé, N.; Daraio, C. Wide Band-Gap Seismic Metastructures. Extrem. Mech. Lett. 2015, 4, 111–117. [Google Scholar] [CrossRef]
- Guo, Z.; Jiang, H.; Chen, H. Abnormal Wave Propagation in Tilted Linear-crossing Metamaterials. Adv. Photonics Res. 2021, 2, 2000071. [Google Scholar] [CrossRef]
- Watts, C.M.; Liu, X.; Padilla, W.J. Metamaterial Electromagnetic Wave Absorbers. Adv. Mater. 2012, 24, OP98–OP120. [Google Scholar]
- Habib, M. Light Manipulation in Multilayer Metamaterials; University of Missouri System: Columbia, MI, USA, 2022. [Google Scholar]
- Zhao, J.; Li, X.; Wang, Y.; Wang, W.; Zhang, B.; Gai, X. Membrane Acoustic Metamaterial Absorbers with Magnetic Negative Stiffness. J. Acoust. Soc. Am. 2017, 141, 840–846. [Google Scholar] [CrossRef]
- Zhang, H.K.; Chen, Y.; Liu, X.N.; Hu, G.K. An Asymmetric Elastic Metamaterial Model for Elastic Wave Cloaking. J. Mech. Phys. Solids 2020, 135, 103796. [Google Scholar] [CrossRef] [Green Version]
- Sang, S.; Sandgren, E.; Wang, Z. Wave Attenuation and Negative Refraction of Elastic Waves in a Single-Phase Elastic Metamaterial. Acta Mech. 2018, 229, 2561–2569. [Google Scholar] [CrossRef]
- Volkov, I.A.; Savelev, R.S. Unidirectional Coupling of a Quantum Emitter to a Subwavelength Grating Waveguide with an Engineered Stationary Inflection Point. Phys. Rev. B 2021, 104, 245408. [Google Scholar] [CrossRef]
- Acosta, R.C.; Timm, V.F.; Szinwelski, N.; da Costa, M.K.M.; Zefa, E. Mating Behavior and Acoustic Communication of the Long-Legged Cricket Endecous (Notendecous) Onthophagus (Berg, 1891) from Southern Brazil (Orthoptera: Grylloidea: Phalangopsidae). Zootaxa 2020, 4743, 427–437. [Google Scholar] [CrossRef]
- Slesarenko, V. Planar Mechanical Metamaterials with Embedded Permanent Magnets. Materials 2020, 13, 1313. [Google Scholar] [CrossRef] [Green Version]
- Markel, V.A. Correct Definition of the Poynting Vector in Electrically and Magnetically Polarizable Medium Reveals That Negative Refraction Is Impossible. Opt. Express 2008, 16, 19152–19168. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Yu, M.; Yu, T.; Liu, W.; Wang, T.; Liao, Q. Design of Phoxonic Virtual Waveguides for Both Electromagnetic and Elastic Waves Based on the Self-Collimation Effect: An Application to Enhance Acousto-Optic Interaction. Opt. Express 2020, 28, 24813–24819. [Google Scholar] [CrossRef] [PubMed]
- Colombi, A.; Colquitt, D.; Roux, P.; Guenneau, S.; Craster, R. V A Seismic Metamaterial: The Resonant Metawedge. Sci. Rep. 2016, 6, 27717. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Sala, R.; Rubio, C.; García-Raffi, L.M.; Sánchez-Pérez, J.V.; Sánchez-Pérez, E.A.; Llinares, J. Control of Noise by Trees Arranged like Sonic Crystals. J. Sound Vib. 2006, 291, 100–106. [Google Scholar] [CrossRef]
- Colquitt, D.J.; Colombi, A.; Craster, R.V.; Roux, P.; Guenneau, S.R.L. Seismic Metasurfaces: Sub-Wavelength Resonators and Rayleigh Wave Interaction. J. Mech. Phys. Solids 2017, 99, 379–393. [Google Scholar] [CrossRef]
- Mei, J.; Liu, Z.; Shi, J.; Tian, D. Theory for Elastic Wave Scattering by a Two-Dimensional Periodical Array of Cylinders: An Ideal Approach for Band-Structure Calculations. Phys. Rev. B 2003, 67, 245107. [Google Scholar] [CrossRef]
- Romero-Garcia, V.; Hladky-Hennion, A.-C. Fundamentals and Applications of Acoustic Metamaterials: From Seismic to Radio Frequency; John Wiley & Sons: Hoboken, NJ, USA, 2019; ISBN 1786303361. [Google Scholar]
- Bedford, A.; Drumheller, D.S. Introduction to Elastic Wave Propagation; John Wiley & Sons: Hoboken, NJ, USA, 1994; ISBN 0-471-93884-X. [Google Scholar]
- Lim, C.W. Elastic Waves Propagation in Thin Plate Metamaterials and Evidence of Low Frequency Pseudo and Local Resonance Bandgaps. Phys. Lett. A 2019, 383, 2789–2796. [Google Scholar]
- Huang, T.T.; Ren, X.; Zeng, Y.; Zhang, Y.; Luo, C.; Zhang, X.Y.; Xie, Y.M. Based on Auxetic Foam: A Novel Type of Seismic Metamaterial for Lamb Waves. Eng. Struct. 2021, 246, 112976. [Google Scholar] [CrossRef]
- Miniaci, M.; Krushynska, A.; Bosia, F.; Pugno, N.M. Large Scale Mechanical Metamaterials as Seismic Shields. New J. Phys. 2016, 18, 83041. [Google Scholar] [CrossRef]
- Das Braja, M. Principles of Geotechnical Engineering; PWS-KENT Publication Company: Boston, MA, USA, 1990; pp. 7–98. [Google Scholar]
- Zhu, R.; Huang, G.L.; Huang, H.H.; Sun, C.T. Experimental and Numerical Study of Guided Wave Propagation in a Thin Metamaterial Plate. Phys. Lett. A 2011, 375, 2863–2867. [Google Scholar] [CrossRef]
- Van Renterghem, T. Guidelines for Optimizing Road Traffic Noise Shielding by Non-Deep Tree Belts. Ecol. Eng. 2014, 69, 276–286. [Google Scholar] [CrossRef] [Green Version]
- An, N.M.N. Mitigation of Ground Vibration Induced by High-Speed Trains Using a Periodic Pile System. Master’s Thesis, Pukyong National University, Busan, Korea, 2022. [Google Scholar]
- Du, Q.; Zeng, Y.; Huang, G.; Yang, H. Elastic Metamaterial-Based Seismic Shield for Both Lamb and Surface Waves. AIP Adv. 2017, 7, 75015. [Google Scholar] [CrossRef]
Source of Study | Factor | Implications and Drawbacks |
---|---|---|
Ecological Engineering (Van Renterghem, 2014) [226] |
|
|
International Soil and Water Conservation [128] |
|
|
Repository [227] |
|
|
AIP ADVANCES 7 [228] |
|
|
International Journal of Structural Stability and Dynamics [107]. |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qahtan, A.-S.; Huang, J.; Amran, M.; Qader, D.N.; Fediuk, R.; Wael, A.-D. Seismic Composite Metamaterial: A Review. J. Compos. Sci. 2022, 6, 348. https://doi.org/10.3390/jcs6110348
Qahtan A-S, Huang J, Amran M, Qader DN, Fediuk R, Wael A-D. Seismic Composite Metamaterial: A Review. Journal of Composites Science. 2022; 6(11):348. https://doi.org/10.3390/jcs6110348
Chicago/Turabian StyleQahtan, Al-Shami, Jiankun Huang, Mugahed Amran, Diyar N. Qader, Roman Fediuk, and Al-Dhabir Wael. 2022. "Seismic Composite Metamaterial: A Review" Journal of Composites Science 6, no. 11: 348. https://doi.org/10.3390/jcs6110348
APA StyleQahtan, A.-S., Huang, J., Amran, M., Qader, D. N., Fediuk, R., & Wael, A.-D. (2022). Seismic Composite Metamaterial: A Review. Journal of Composites Science, 6(11), 348. https://doi.org/10.3390/jcs6110348