The Effect of Micromechanics Models: 2D and 3D Numerical Modeling for Predicting the Mechanical Properties of PP/Alfa Short Fiber Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Manufacturing Process
2.2. Tensile Tests
2.3. Micromechanical Models
2.4. Finite Element Modeling: The Projected Fiber (PF) Approach
2.4.1. The 2D Approach
2.4.2. The 3D Approach
3. Results and Discussion
3.1. Estimation of the Alfa Fiber’s Young’s Modulus
3.2. Influence of the Volume Fraction of the Fiber on the Young’s Modulus of the Composite
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berger, H.; Kari, S.; Gabbert, U.; Rodriguez Ramos, R.; Bravo Castillero, J.; Guinovart Diaz, R. Evaluation of effective material properties of randomly distributed short cylindrical fiber composites using a numerical homogenization technique. J. Mech. Mater. Struct. 2007, 2, 1561–1570. [Google Scholar] [CrossRef] [Green Version]
- Kebir, H.; Ayad, R. A specific finite element procedure for the analysis of elastic behaviour of short fibre reinforced composites. The Projected Fibre approach. Compos. Struct. 2014, 118, 580–588. [Google Scholar] [CrossRef]
- Jha, N.K.; Kumar, S.; Tyagi, A.; Jha, D.K.; Jha, C.S. Micromechanical property and stress analysis of fiber reinforced composite using finite element analysis (Simpsons Method). Mater. Today Proc. 2021, 50, 1671–1678. [Google Scholar] [CrossRef]
- Tiar, A.; Zouari, W.; Kebir, H.; Ayad, R. A nonlinear finite element formulation for large deflection analysis of 2D composite structures. Compos. Struct. 2016, 153, 262–270. [Google Scholar] [CrossRef]
- Huang, H.-B.; Huang, Z.-M. Micromechanical prediction of elastic-plastic behavior of a short fiber or particle reinforced composite. Compos. Part A Appl. Sci. Manuf. 2020, 134, 105889. [Google Scholar] [CrossRef]
- Cunha, V.M.; Barros, J.A.; Sena-Cruz, J.M. A finite element model with discrete embedded elements for fibre reinforced composites. Comput. Struct. 2012, 94, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Pelegri, A.A. Finite Element Analysis on the Random Chopped Fiber Composites. In Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition, Lake Buena Vista, FL, USA, 13–19 November 2009. [Google Scholar]
- Doghri, I.; Tinel, L. Micromechanical modeling and computation of elasto-plastic materials reinforced with distributed-orientation fibers. Int. J. Plast. 2005, 21, 1919–1940. [Google Scholar] [CrossRef]
- Barile, C.; Casavola, C.; Pappalettere, C. The influence of stitching and unconventional fibres orientation on the tensile properties of CFRP laminates. Compos. Part B Eng. 2017, 110, 248–254. [Google Scholar] [CrossRef]
- Hardiman, M.; Vaughan, T.J.; McCarthy, C.T. A review of key developments and pertinent issues in nanoindentation testing of fibre reinforced plastic microstructures. Compos. Struct. 2017, 180, 782–798. [Google Scholar] [CrossRef]
- Singh, D.; Chawla, N.; Tang, G.; Shen, Y.-L. Micropillar compression of Al/SiC nanolaminates. Acta Mater. 2010, 58, 6628–6636. [Google Scholar] [CrossRef]
- Ferreira, S.R.; Martinelli, E.; Pepe, M.; de Andrade Silva, F.; Toledo Filho, R.D. Inverse identification of the bond behavior for jute fibers in cementitious matrix. Compos. Part B Eng. 2016, 95, 440–452. [Google Scholar] [CrossRef]
- Rahmani, B.; Mortazavi, F.; Villemure, I.; Levesque, M. A new approach to inverse identification of mechanical properties of composite materials: Regularized model updating. Compos. Struct. 2013, 105, 116–125. [Google Scholar] [CrossRef]
- Ramault, C.; Makris, A.; Sol, H.; van Hemelrijck, D.; Lecompte, D.; Lamkanfi, E.; van Paepegem, W. Development of an inverse method for material characterization using a biaxially loaded cruciform composite specimen. In Proceedings of the SEM Annual Conference, Albuquerque, NM, USA, 1–4 June 2009. [Google Scholar]
- Ogierman, W. Inverse identification of elastic properties of constituents of discontinuously reinforced composites. Materials 2018, 11, 2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuś, W.; Burczyński, T. Bioinspired algorithms in multiscale optimization. In Computer Methods in Mechanics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 183–192. [Google Scholar]
- El-Abbassi, F.E.; Assarar, M.; Ayad, R.; Lamdouar, N. Effect of alkali treatment on Alfa fibre as reinforcement for polypropylene based eco-composites: Mechanical behaviour and water ageing. Compos. Struct. 2015, 133, 451–457. [Google Scholar] [CrossRef]
- Poilâne, C.; Vivet, A.; Momayez, L.; Doudou, B.B.; Ayachi, M.H.; Chen, J. Traction de fibre unitaire et mesure des déformations en champ complet. Application à la fibre de lin = Full field strain measurement of flax fibre during tensile test. In Proceedings of the 16èmes Journées Nationales sur les Composites (JNC 16), Toulouse, France, 1–2 June 2009. [Google Scholar]
- Baley, C. Fibres naturelles de renfort pour matériaux composites. sl: Techniques de l’ingénieur. Ref. AM 2014, 5, 130. [Google Scholar]
- Khaldi, M.; Vivet, A.; Poilâne, C.; Doudou, B.B.; Chen, J.; Bourmaud, A.; Sereir, Z. Etude en rupture d’un composite à fibres végétales d’Alfa. In Proceedings of the Conférence Matériaux 2014—Colloque Ecomatériau, Montpellier, France, 24–28 November 2014. [Google Scholar]
PP/Alfa | Mori-Tanaka | Self-Consistent | Diluted Model | Voigt | Neerfeld-Hill | PF 2D | PF 3D |
---|---|---|---|---|---|---|---|
10% | 16.24 | 15.16 | 17.35 | 7.03 | 11.03 | 24.30 | 35.22 |
20% | 18.21 | 15.75 | 21.13 | 7.83 | 12.41 | 30.20 | 40.47 |
30% | 17.23 | 14.21 | 21.74 | 8.03 | 12.78 | 31.40 | 36.57 |
40% | 16.44 | 13.15 | 22.80 | 8.27 | 12.81 | 32.63 | 46.59 |
Average (GPa) | 17.03 | 14.57 | 20.75 | 7.79 | 12.26 | 29.63 | 39.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Abbassi, F.E.; Assarar, M.; Sakami, S.; Kebir, H.; Ayad, R. The Effect of Micromechanics Models: 2D and 3D Numerical Modeling for Predicting the Mechanical Properties of PP/Alfa Short Fiber Composites. J. Compos. Sci. 2022, 6, 66. https://doi.org/10.3390/jcs6030066
El-Abbassi FE, Assarar M, Sakami S, Kebir H, Ayad R. The Effect of Micromechanics Models: 2D and 3D Numerical Modeling for Predicting the Mechanical Properties of PP/Alfa Short Fiber Composites. Journal of Composites Science. 2022; 6(3):66. https://doi.org/10.3390/jcs6030066
Chicago/Turabian StyleEl-Abbassi, Fatima Ezzahra, Mustapha Assarar, Siham Sakami, Hocine Kebir, and Rezak Ayad. 2022. "The Effect of Micromechanics Models: 2D and 3D Numerical Modeling for Predicting the Mechanical Properties of PP/Alfa Short Fiber Composites" Journal of Composites Science 6, no. 3: 66. https://doi.org/10.3390/jcs6030066
APA StyleEl-Abbassi, F. E., Assarar, M., Sakami, S., Kebir, H., & Ayad, R. (2022). The Effect of Micromechanics Models: 2D and 3D Numerical Modeling for Predicting the Mechanical Properties of PP/Alfa Short Fiber Composites. Journal of Composites Science, 6(3), 66. https://doi.org/10.3390/jcs6030066