Mitigating Early Phase Separation of Aliphatic Random Ionomers by the Hydrophobic H-Bond Acceptor Addition
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Random Ionomers
2.3. Fabrication of Random-Ionomer Membranes
2.4. Characterization
2.4.1. Proton Conductivity
2.4.2. Reduced Viscosity and Zeta Potential
2.4.3. Laser Light Scattering (LLS)
2.4.4. Transmission Electron Microscopy (TEM)
2.4.5. Ultraviolet-Visible Spectroscopy
3. Results and Discussion
3.1. Effects of Hydrophobic Modifier Addition on Phase Separation during Copolymerization
3.2. Influence of Co-Monomer Distribution on Ionomer Solvation in Aqueous Medium
3.3. Additional Characterizations of the Ternary and Quaternary Ionomer Chains
3.4. Effect of the TFPM Units on the Proton Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hickner, M.A.; Ghassemi, H.; Kim, Y.S.; Einsla, B.R.; McGrath, J.E. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 2004, 104, 4587–4612. [Google Scholar] [CrossRef] [PubMed]
- Hickner, M.A.; Pivovar, B.S. The Chemical and Structural Nature of Proton Exchange Membrane Fuel Cell Properties. Fuel Cells 2005, 5, 213–229. [Google Scholar] [CrossRef]
- Nagao, Y. Progress on highly proton-conductive polymer thin films with organized structure and molecularly oriented structure. Sci. Technol. Adv. Mater. 2020, 79, 79–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higa, M.; Feng, S.; Endo, N.; Kakihana, Y. Characteristics and direct methanol fuel cell performance of polymer electrolyte membranes prepared from poly(vinyl alcohol-b-styrene sulfonic acid). Electrochim. Acta 2015, 153, 83–89. [Google Scholar] [CrossRef]
- Yang, Y.; Holdcroft, S. Synthetic strategies for controlling the morphology of proton conducting polymer membranes. Fuel Cells 2005, 5, 171–186. [Google Scholar] [CrossRef]
- Francisco-Vieira, L.; Benavides, R.; Cuara-Diaz, E.; Morales-Acosta, D. Styrene-co-butyl acrylate copolymers with potential application as membranes in PEM fuel cell. Int. J. Hydrogen Energy 2019, 44, 12492–12499. [Google Scholar] [CrossRef]
- Register, R.A. Morphology and structure–property relationships in random ionomers: Two foundational articles from macromolecules. Macromolecules 2020, 53, 1523–1526. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Ko, H.; Nam, S.Y.; Kim, K. Study on control of polymeric architecture of sulfonated hydrocarbon-based polymers for high-performance polymer electrolyte membranes in fuel cell applications. Polymers 2021, 13, 3520. [Google Scholar] [CrossRef]
- Fu, R.Q.; Hong, L.; Lee, J.Y. Membrane Design for Direct Ethanol Fuel Cells: A Hybrid Proton-Conducting Interpenetrating Polymer Network. Fuel Cells 2008, 8, 52–61. [Google Scholar] [CrossRef]
- Pei, H.; Hong, L.; Lee, J.Y. Polymer electrolyte membrane based on 2-acrylamido-2-methyl propanesulfonic acid fabricated by embedded polymerization. J. Power Sources 2006, 160, 949–956. [Google Scholar] [CrossRef]
- Sui, Y.; Du, Y.; Hu, H.; Qian, J.; Zhang, X. Do acid-base interactions really improve the ion conduction in a proton exchange membrane?—A study on the effect of basic groups. J. Mater. Chem. A 2019, 7, 19820–19830. [Google Scholar] [CrossRef]
- Alonso, A.; Catalina, F.; Salvador, E.F.; Peinado, C. Synthesis of amphiphilic random copolymers and fluorescence study of their association behavior in water. Macromol. Chem. Phys. 2001, 202, 2293–2299. [Google Scholar] [CrossRef]
- Carmen, P.; Fernando, C.; Veronica San, M. Synthesis and association properties in water solution of random copolymers of 2-acrylamido-2-methyl-1-propane sulfonic acid and isodecyl methacrylate-Potential application as surfactants in micellar-enhanced ultrafiltration processes. J. Appl. Polym. Sci. 2007, 106, 1982–1991. [Google Scholar]
- Okamura, H.; Takatori, Y.; Tsunooka, M.; Shirai, M. Synthesis of random and block copolymers of styrene and styrenesulfonic acid with low polydispersity using nitroxide-mediated living radical polymerization technique. Polymer 2002, 43, 3155–3162. [Google Scholar] [CrossRef]
- Weiss, R.A.; Turner, S.R.; Lundberg, R.D. Sulfonated polystyrene ionomers prepared by emulsion copolymerization of styrene and sodium styrene sulfonate. J. Polym. Sci. Polym. Chem. Part A 1985, 23, 525–533. [Google Scholar] [CrossRef]
- Hashidzume, A.; Morishima, Y.; Szczubialka, K. Amphiphilic Polyelectrolyte. In Handbook of Polyelectrolytes and Their Applications; Tripathy, S.K., Kumar, J., Nalwa, H.S., Eds.; American Scientific Publishers: Valencia, CA, USA, 2002; Volume 2. [Google Scholar]
- Zhang, T.; Guo, Q. A new route to prepare multiresponsive organogels from a block ionomer via charge-driven assembly. Chem. Commun. 2013, 49, 5076–5078. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Scott, C.; Ho, C.-C.; Co, C.C. Aqueous-Core Capsules via Interfacial Free Radical Alternating Copolymerization. Macromolecules 2006, 39, 5848–5853. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Mulmi, S.; Lee, C.-H.; Lee, Y.-M.; Ihn, K.-J. Synthesis of microphase-separated poly(styrene-co-sodium styrene sulfonate) membranes using amphiphilic urethane acrylate nonionomers as an reactive compatibilizer. J. Appl. Polym. Sci. 2008, 107, 2150–2158. [Google Scholar] [CrossRef]
- Zoppi, R.A.; Nunes, S.P. Electrochemical impedance studies of hybrids of perfluorosulfonic acid ionomer and silicon oxide by sol-gel reaction from solution. J. Electroanal. Chem. 1998, 445, 39–45. [Google Scholar] [CrossRef]
- Deluca, N.W.; Elabd, Y.A. Polymer electrolyte membranes for the direct methanol fuel cell: A review. J. Polym. Sci. Part B 2006, 44, 2201–2225. [Google Scholar] [CrossRef]
- Neburchilov, V.; Martin, J.; Wang, H.; Zhang, J. A review of polymer electrolyte membranes for direct methanol fuel cells. J. Power Sources 2007, 169, 221–238. [Google Scholar] [CrossRef]
- Yang, H.; Li, H.; Zhu, P.; Yan, Y.; Zhu, Q.; Chenggao, F. A novel method for determining the viscosity of polymer solution. Polym. Test. 2004, 23, 897–901. [Google Scholar] [CrossRef]
- Yu, K.; Eisenberg, A. Multiple morphologies in aqueous solutions of aggregates of polystyrene-block-poly(ethylene oxide) diblock copolymers. Macromolecules 1996, 29, 6359–6361. [Google Scholar] [CrossRef]
- Liaw, D.J.; Huang, C.C. Dilute solution properties of anionic poly(potassium-2-sulfopropylmethacrylate). J. Appl. Polym. Sci. 1997, 63, 175–185. [Google Scholar] [CrossRef]
- Angela, K.; Jaroslav, B.; Oldrich, P. Contribution to the study of the kinetics of radical homo- and copolymerization of fluoroalkyl methacrylates, 1. 2-chloro-2,3,3,3-tetrafluoropropyl methacrylate. Die Makromol. Chem. Rapid Commun. 1987, 8, 621–625. [Google Scholar]
- Brar, A.S.; Dutta, K. Acrylonitrile and glycidyl methacrylate copolymers: Nuclear magnetic resonance characterization. Macromolecules 1998, 31, 4695–4702. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Lee, W.-C. Preparation of methyl methacrylate and glycidyl methacrylate copolymerized nonporous particles. J. Polym. Sci. Part A 1999, 37, 1457–1463. [Google Scholar] [CrossRef]
- Odian, G. Principles of Polymerization, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 29–32. [Google Scholar]
- Hara, M.; Wu, J.; Lee, A.H. Effect of intra- and intermolecular interactions on solution properties of sulfonated polystyrene ionomers. Macromolecules 1988, 21, 2214–2218. [Google Scholar] [CrossRef]
- Nomula, S.; Cooper, S.L. Effect of solvent polarity in ionomer solutions. Macromolecules 2001, 34, 925–930. [Google Scholar] [CrossRef]
- Hara, M.; Lee, A.H.; Wu, J. Solution properties of ionomers. 1. Counterion effect. J. Polym. Sci. Part B 1987, 25, 1407–1418. [Google Scholar] [CrossRef]
- Loppinet, B.; Gebel, G. Rodlike colloidal structure of short pendant chain perfluorinated ionomer solutions. Langmuir 1998, 14, 1977–1983. [Google Scholar] [CrossRef]
- Raihane, M.; Ameduri, B. Radical copolymerization of 2,2,2-trifluoroethyl methacrylate with cyano compounds for dielectric materials: Synthesis and characterization. J. Fluor. Chem. 2006, 127, 391–399. [Google Scholar] [CrossRef]
- Ida, S.; Nishisako, D.; Fujiseki, A.; Kanaoka, S. Thermoresponsive properties of polymer hydrogels induced by copolymerization of hydrophilic and hydrophobic monomers: Comprehensive study of monomer sequence and water affinity. Soft Matter 2021, 17, 6063–6072. [Google Scholar] [CrossRef] [PubMed]
- Pethkar, S.; Dharmadhikari, J.A.; Athawale, A.A.; Aiyer, R.C.; Vijayamohanan, K. Evidence for second-order optical nonlinearity in gamma-ray induced partially cross-linked polyacrylonitrile. J. Phy. Chem. B 2001, 105, 5110–5113. [Google Scholar] [CrossRef]
- Lisha Liu, L.; Huang, G.; Kohl, P.A. Anion conducting multiblock copolymers with multiple head-groups. J. Mater. Chem. A 2018, 6, 9000–9008. [Google Scholar]
Copolymer SX-Y * | SPM/AN/ TFPM (mol%) | After Initiation of Polymerization | After 6 h of Reaction |
---|---|---|---|
S0-10 | 10/70/0 | H | H |
S0-12 | 12/68/0 | H | T |
S0-14 | 14/66/0 | T | T |
S0-16 | 16/64/0 | T | T |
S5-10 | 10/65/5 | H | H |
S5-12 | 12/63/5 | H | H |
S5-14 | 14/61/5 | T | T |
S5-16 | 16/59/5 | T | T |
S10-10 | 10/60/10 | H | H |
S10-12 | 12/58/10 | H | H |
S10-14 | 14/56/10 | H | H |
S10-16 | 16/54/10 | T | T |
S20-10 | 10/50/20 | H | H |
S20-12 | 12/48/20 | H | H |
S20-14 | 14/46/20 | H | H |
S20-16 | 16/44/20 | H | H |
S20-18 | 18/42/20 | H | H |
Ionomer | SPM Content (mol%) | TFPM Content (mol%) | (g/mol) |
---|---|---|---|
S0-10 | 10 | 0 | 930 |
S5-10 | 10 | 5 | 1580 |
S10-10 | 10 | 10 | 1620 |
S20-10 | 10 | 20 | 2300 |
Poly(Styrene Sulfonate) *, Mw ~ 70,000 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Julius, D.; Fang, C.; Hong, L.; Lee, J.Y. Mitigating Early Phase Separation of Aliphatic Random Ionomers by the Hydrophobic H-Bond Acceptor Addition. J. Compos. Sci. 2022, 6, 73. https://doi.org/10.3390/jcs6030073
Julius D, Fang C, Hong L, Lee JY. Mitigating Early Phase Separation of Aliphatic Random Ionomers by the Hydrophobic H-Bond Acceptor Addition. Journal of Composites Science. 2022; 6(3):73. https://doi.org/10.3390/jcs6030073
Chicago/Turabian StyleJulius, David, Chunliu Fang, Liang Hong, and Jim Yang Lee. 2022. "Mitigating Early Phase Separation of Aliphatic Random Ionomers by the Hydrophobic H-Bond Acceptor Addition" Journal of Composites Science 6, no. 3: 73. https://doi.org/10.3390/jcs6030073
APA StyleJulius, D., Fang, C., Hong, L., & Lee, J. Y. (2022). Mitigating Early Phase Separation of Aliphatic Random Ionomers by the Hydrophobic H-Bond Acceptor Addition. Journal of Composites Science, 6(3), 73. https://doi.org/10.3390/jcs6030073