A Comprehensive Review on Fly Ash-Based Geopolymer
Abstract
:1. Introduction
Research Methodology
2. Geopolymers
2.1. Constituents of Geopolymers
2.2. Mineralogy
2.3. Chemistry of Geopolymerization, Hardening Mechanism, Classification, Structure and Terminology
- I.
- “Sialates” (-Si-O-Al-). This is a short form of the chemical title that is provided to “Silicon-Oxo-Aluminate”;
- II.
- “Poly sialate” (-Si-O-Al-O-)n. This is a contraction of the chemical heading for “Silico-Aluminates”;
- III.
- “Poly -sialate siloxo” (-Si-O-Al-O-Si-O-)n
Binder Amorphous Poly(Sialate-Siloxo) (-Si-O-Al-O-Si-O-)
- (i)
- Aluminium–silicate hydroxide calcination (Si2O4, Al2(OH)4), or;
- (ii)
- SiO and Al2O vapours condensation [90]:
- (a)
- 2(Si2O5, Al2(OH)4) → 2(Si2O5, Al2O2)n+ 4H2O;
- (b)
- 4SiO (vapor) + 2Al2O (vapor) + 4O2 → (Si2O5, Al2O2)n
2.4. Properties of Geopolymers
2.5. Applications of Geopolymers
2.5.1. Application of GP Binder as a Sustainable Repair Material
2.5.2. Application of GP as Multi-Layer Walls
2.5.3. Application of GP as a Coating Material
2.5.4. Application of GP as a Self-Cleaning Material
2.5.5. Application of GP as a Geopolymer Foam
2.5.6. Application of 3D Printed Geopolymer
2.5.7. Application of Porous Geopolymer
2.6. Advantages and Disadvantages of Geopolymers
- An innovative, noble and revolutionized material which cuts carbon footprint by mitigating GHG emissions, providing relief from global warming;
- Thermal and fire-resistant materials [115];
- Can immobilize the hazardous, radioactive wastes [116];
- High early strength contributing to sustainable composites [119];
- Excellent resistance to chemicals and freeze–thaw conditions [120], etc.;
- No water curing, because water is released during the chemical reaction in the geopolymerization process of geopolymer concrete, and this water tends to evaporate as the specimens are heated during the curing phase. Similarly, drying shrinkage in stiff specimens is low due to the little amount of water in the pores [18,116,117,118,119,120,121];
- Hardening mechanism is quicker and at low temperatures [124];
- Noteworthy resistances to chemical, fire and thermal conditions. Mostly, the Si-O and Al-O bonding of geopolymers hardly ever react with other acids, except for hydrofluoric acid (HF). Moreover, the structure of the oxide network of geopolymers is stable at high temperatures, and the lower thermal conductivity of 0.24 to 0.38 W/(m·K) altogether prove it as an exceptional heat-insulated material [127];
- Faster curing rate and higher force for internal binding with the quicker formation of gel and rapid dehydration enable its high early strength as compared to the OPC system;
- Contrary to different cement structures, the geopolymer is found to be strongly bonded to aggregate, enabling it to be employed as a possible mend for a concrete product;
- Lower cost in addition to a widespread source for natural and industrial precursors that are available in plenty to synthesize geopolymer. The requisite elements for geopolymer are silicon, oxygen and aluminium, which exist in the earth’s crust in a proportion of 26.3%, 48.6% as well as 7.73%, respectively, in that order. The precursors are kaolinites and industrial wastes such as fly ashes [128,129].
- Potential applications of special kind of geopolymer structure of silicon tetrahedral and aluminium tetrahedral form ring chain structures such as the cage cavity are favoured its utilization as a building material for immobilization of heavy metals, the disposal of nuclear waste, as well as novel making of inorganic membranes [30,69,70].
Disadvantages of Geopolymers
- Geopolymer concrete needs specific handling and is exceedingly difficult to produce. It necessitates the use of potentially hazardous chemicals such as sodium hydroxide [129];
- Due to the hazards that are connected with its production, geopolymer concrete is only available as a pre-cast or pre-mix material [129];
- The geopolymerization process is sensitive—research in this sector has been inconclusive and exceedingly volatile. There is no consistency [129];
- Transporting the primary material, fly ash, to the needed site;
- Excessive cost of alkaline solution [115];
- Safety concern linked with high alkalinity of activating solution [115];
- Practical challenges in implementing steam curing/high-temperature curing procedure [115].
3. Coal Fly Ash
3.1. Sources of Fly Ash:
3.2. Properties of Fly Ash
3.2.1. Chemistry and Morphology
3.2.2. Morphology
3.3. Types or Chemical Classification of Fly Ashes
- A.
- Class C fly ash:
- B.
- Class F fly ash:
3.4. Nature of Fly Ash—Crystalline or Amorphous
3.5. The General Applications of Fly Ashes
3.6. Opportunities of Coal Fly Ash
4. Fly Ash Based Geopolymers
4.1. Production of Fly Ash based Geopolymers
4.2. Fly Ash Based Geopolymer: Properties
4.2.1. Compressive Strength
4.2.2. Flexural and Splitting Tensile Strength
4.3. Durability Properties
4.3.1. Resistance against Chloride
4.3.2. Resistance against Sulphate
4.3.3. Acid Resistance
4.3.4. Resistance against High Temperatures
4.3.5. Freeze–Thaw Resistance
4.3.6. Resistance against Efflorescence
4.4. Fly Ash-Based Geopolymer for Concrete
4.5. Fly Ash-Based Geopolymer for Mortar
4.5.1. Properties
Workability
Compressive Strength
Tensile Strength
Flexural Strength
Acid Resistance
Water Absorption
Micro-Structures of Fly Ash-Based Geopolymer Mortar
4.6. Fly Ash Based Geopolymer Paste
4.6.1. Properties
Workability
Flowability
4.6.2. Setting Time
4.6.3. Compressive Strength
4.6.4. Water Absorption
4.6.5. Drying Shrinkage
4.6.6. Microstructures of Fly Ash-Based Geopolymers Composites
X-ray Diffraction (XRD)
Fourier Transform Infrared Spectroscopy (FTIR)
Thermogravimetric Analysis
Mercury Intrusion Porosimetry (MIP)
5. Advantages of Fly Ash-Based Geopolymer Concrete
- The abundant waste of fly ash will find its systematic disposal;
- Necessitates 60% less energy than OPC and only needs a low, or room temperature, as well as low atmospheric pressure, to be produced;
- It is effectively employed for residential buildings, pedestrian driveways, etc., due to its light weight;
- Exhibits brilliant durability and strength, sustainability, immobilization of toxic waste, relief from global warming by lowering emissions of GHG, and the organized solution of the disposal of diverse wastes by consuming them for their manufacturing; otherwise, they would fill land spaces and pollute the environment, soils, surface and subsurface water;
- Conservation of limited natural resources such as limestones, coals, etc., otherwise they would be exhausted by using them as either raw material or be burned up for obtaining an elevated temperature for calcination to produce OPC;
- Fly ash-based cement can be used underground as a sealant to store CO2;
- Demonstrate excellent mechanical properties; remarkable resistance to chemicals, acid, sulphate, fire and thermal; fast curing speed; and high interfacial binding force, etc.;
- CFA-based adsorbents are efficient and eco-benevolent in comparison with commercial adsorbents, and they are utilized to clean up real wastewaters containing dyes, petroleum compounds, heavy metals, agricultural nutrients, radionuclides, etc;
- The radiological characteristic of fly ash is an important parameter. Research on uses of radioactive fly ash for mine acid water or the fixation of radioactive elements could be of interest in terms of applicability, as mine locations are usually far from residences.
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Imbabi, M.S.; Carrigan, C.; McKenna, S. Trends and developments in green cement and concrete technology. Int. J. Sustain. Built Environ. 2012, 1, 194–216. [Google Scholar] [CrossRef]
- Zaidi, F.H.A.; Ahmad, R.; Abdullah, M.M.A.B.; Wan Ibrahim, W.A.N.; Aziz, I.H.; Junaidi, S. Assessment of Geopolymer Concrete for Underwater Concreting Properties. Arch. Metall. Mater. 2022, 2, 677–684. [Google Scholar]
- Arokiasamy, P.; Abdullah, M.M.A.B.; Abd Rahim, S.Z.; Sandu, A.V.; Jamil, N.H.; Nabiałek, M. Synthesis methods of hydroxyapatite from natural sources: A review. Ceram. Int. 2022, 48, 14959–14979. [Google Scholar] [CrossRef]
- Petrillo, A.; Farina, I.; Travaglioni, M.; Salzano, C.; Puca, S.; Ramondo, A.; Olivares, R.; Cossentino, L.; Cioffi, R. Opportunities and future challenges of geopolymer mortars for sustainable development. In Handbook of Sustainable Concrete and Industrial Waste Management; Woodhead Publishing: Sawston, UK, 2022; pp. 661–686. [Google Scholar] [CrossRef]
- Luhar, I.; Luhar, S.; Abdullah, M.M.A.B.; Razak, R.A.; Vizureanu, P.; Sandu, A.V.; Matasaru, P.-D. A State-of-the-Art Review on Innovative Geopolymer Composites Designed for Water and Wastewater Treatment. Materials 2021, 14, 7456. [Google Scholar] [CrossRef] [PubMed]
- Antunes, M.; Santos, R.L.; Pereira, J.; Rocha, P.; Horta, R.B.; Colaço, R. Alternative Clinker Technologies for Reducing Carbon Emissions in Cement Industry: A Critical Review. Materials 2021, 15, 209. [Google Scholar] [CrossRef] [PubMed]
- Luhar, S.; Luhar, I. Additive Manufacturing in the Geopolymer Construction Technology: A Review. Open Constr. Build. Technol. J. 2020, 14, 150–161. [Google Scholar] [CrossRef]
- Andrew, R.M. Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data 2019, 11, 1675–1710. [Google Scholar] [CrossRef]
- McCaffrey, R. Climate Change and the Cement Industry. Glob. Cem. Lime Mag. 2022, 15, 19. [Google Scholar]
- Nanthagopalan, P.; Santhanam, M. Fresh and hardened properties of self- compacting concrete produced with Manufactured sand. Cem. Concr. Compos. 2011, 33, 353–358. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Shasavandi, A.; Jalali, S. Eco-Efficient Concrete Using Industrial Wastes: A Review. Mater. Sci. Forum 2012, 730–732, 581–586. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I.; Shaikh, F.U.A. A Review on the Performance Evaluation of Autonomous Self-Healing Bacterial Concrete: Mechanisms, Strength, Durability, and Microstructural Properties. J. Compos. Sci. 2022, 6, 23. [Google Scholar] [CrossRef]
- Luhar, I.; Luhar, S.; Savva, P.; Theodosiou, A.; Petrou, M.F.; Nicolaides, D. Light Transmitting Concrete: A Review. Buildings 2021, 11, 480. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I.; Abdullah, M.M.A.B.; Hussin, K. Challenges and prospective trends of various industrial and solid wastes incorporated with sustainable green concrete. In Advances in Organic Farming; Woodhead Publishing: Sawston, UK, 2021; pp. 223–240. [Google Scholar] [CrossRef]
- Dananjayan, R.R.T.; Kandasamy, P.; Andimuthu, R. Direct mineral carbonation of coal fly ash for CO2 sequestration. J. Clean. Prod. 2016, 112, 4173–4182. [Google Scholar] [CrossRef]
- Ukwattage, N.L.; Ranjith, P.G.; Yellishetty, M.; Bui, H.H.; Xu, T. A laboratory-scale study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration. J. Clean. Prod. 2015, 103, 665–674. [Google Scholar] [CrossRef]
- Bai, Y.; Guo, W.; Wang, X.; Pan, H.; Zhao, Q.; Wang, D. Utilization of municipal solid waste incineration fly ash with red mud-carbide slag for eco-friendly geopolymer preparation. J. Clean. Prod. 2022, 340, 130820. [Google Scholar] [CrossRef]
- Nurruddin, M.F.; Sani, H.; Mohammed, B.S.; Shaaban, I. Methods of curing geopolymer concrete: A review. Int. J. Adv. Appl. Sci. 2018, 5, 31–36. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I. Rubberized Geopolymer Concrete: Application of Taguchi Method for Various Factors. Int. J. Recent Technol. Eng. 2020, 8, 1167–1174. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I. Application of artificial neural network for predicting compressive strength of geopolymer concrete. Indian Concr. J. 2019, 93, 38–43. [Google Scholar]
- Luhar, S.; Luhar, I. Application of Seawater and Sea Sand to Develop Geopolymer Composites. Int. J. Recent Technol. Eng. 2020, 8, 5625–5633. [Google Scholar] [CrossRef]
- Huseien, G.F.; Mirza, J.; Ismail, M.; Ghoshal, S.; Hussein, A.A. Geopolymer mortars as sustainable repair material: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 80, 54–74. [Google Scholar] [CrossRef]
- Liew, Y.-M.; Heah, C.-Y.; Mohd Mustafa, A.B.; Kamarudin, H. Structure and properties of clay-based geopolymer cements: A review. Prog. Mater. Sci. 2016, 83, 595–629. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; Bonilla-Petriciolet, A.; Prasad, S.; van Hullebusch, E.D.; Rtimi, S. Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives. J. Environ. Manag. 2021, 290, 112627. [Google Scholar] [CrossRef]
- Hasanbeigi, A.; Price, L.; Lin, E. Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review. Renew. Sustain. Energy Rev. 2012, 16, 6220–6238. [Google Scholar] [CrossRef]
- Luhar, S.; Khandelwal, U. A study on durability of dredged marine sand concrete. Int. J. Eng. Res. Rev. 2015, 3, 56–76. [Google Scholar]
- Roy, D.M.; Jiang, W.; Silsbee, M.R. Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties. Cem. Concr. Res. 2000, 30, 1879–1884. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.; Cheng, Y.-B. Sulfate attack on alkali-activated slag concrete. Cem. Concr. Res. 2002, 32, 211–216. [Google Scholar] [CrossRef]
- Puertas, F.; Gutierrez, R.D.; Fernández-Jiménez, A.; Delvasto, S.; Maldonado, J. Alkaline cement mortars. Chemical resistance to sulfate and seawater attack. Mater. Constr. 2002, 52, 55–71. [Google Scholar] [CrossRef]
- Fernandez-Jimenez, A.; García-Lodeiro, I.; Palomo, A. Durability of alkali-activated fly ash cementitious materials. J. Mater. Sci. 2006, 42, 3055–3065. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I.; Gupta, R. Durability performance evaluation of green geopolymer concrete. Eur. J. Environ. Civ. Eng. 2020, 26, 4297–4345. [Google Scholar] [CrossRef]
- Shi, C.; Stegemann, J.A. Acid corrosion resistance of different cementing materials. Cem. Concr. Res. 2000, 30, 803–808. [Google Scholar] [CrossRef]
- Pu, X.; Yang, C.; Liu, F. Studies on resistance of alkali activated slag concrete to acid attack. In Proceedings of the 2nd International Conference on Alkaline Cements and Concretes; VIPOL Stock Company: Kiev, Ukraine, 1999; pp. 717–721. [Google Scholar]
- Luhar, S. Performance Evaluation of Rubberized Geopolymer Concrete and Fly Ash based Geopolymer Mortar. Ph.D. Thesis, MNIT, Jaipur, India, 2018. [Google Scholar]
- Puertas, F.; Amat, T.; Fernández-Jiménez, A.; Vázquez, T. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem. Concr. Res. 2003, 33, 2031–2036. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I.; Nicolaides, D.; Gupta, R. Durability Performance Evaluation of Rubberized Geopolymer Concrete. Sustainability 2021, 13, 5969. [Google Scholar] [CrossRef]
- Shi, C. Corrosion resistance of alkali-activated slag cement. Adv. Cem. Res. 2003, 15, 77–81. [Google Scholar] [CrossRef]
- Jimenez, A.M.F.; Palomo, J.; Puertas, F. Alkali-activated slag mortars: Mechanical strength behaviour. Cem. Concr. Res. 1999, 29, 1313–1321. [Google Scholar] [CrossRef]
- Krizan, D.; Zivanovic, B. Effects of dosage and modulus of waterglass on early hydration of alkali–slag cements. Cem. Concr. Res. 2002, 32, 1181–1188. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I. Effect of different variables on fly ash based geopolymer concrete. Indian Concr. J. 2020, 94, 62–68. [Google Scholar]
- Escalante-García, J.I.; Fuentes, A.F.; Gorokhovsky, A.; Fraire-Luna, P.E.; Mendoza-Suarez, G. Hydration Products and Reactivity of Blast-Furnace Slag Activated by Various Alkalis. J. Am. Ceram. Soc. 2003, 86, 2148–2153. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Puertas, F.; Sobrados, I.; Sanz, J. Structure of calcium silicate hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator. J. Am. Ceram. Soc. 2003, 86, 1389–1394. [Google Scholar] [CrossRef]
- Puertas, F.; Fernández-Jiménez, A.; Blanco-Varela, M. Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem. Concr. Res. 2004, 34, 139–148. [Google Scholar] [CrossRef]
- Luhar, S.; LUHAR, I. Durability performance of Green Concrete Incorporating Various Wastes: A Review. J. Mater. Eng. Struct. 2019, 6, 469–484. [Google Scholar]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Geopolymer foam concrete: An emerging material for sustainable construction. Constr. Build. Mater. 2014, 56, 113–127. [Google Scholar] [CrossRef]
- Pérez-Villarejo, L.; Bonet-Martínez, E.; Eliche-Quesada, D.; Sánchez-Soto, P.; Rincón-López, J.; Galiano, E.C. Biomass fly ash and aluminium industry slags-based geopolymers. Mater. Lett. 2018, 229, 6–12. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I.; Shaikh, F. Review on Performance Evaluation of Autonomous Healing of Geopolymer Composites. Infrastructures 2021, 6, 94. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, H.; Zhou, C.; Wang, H. Geopolymer from kaolin in China: An overview. Appl. Clay Sci. 2015, 119, 31–41. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, M.; Rai, S. Geopolymer cement and concrete: Properties. Mater. Today Proc. 2020, 29, 743–748. [Google Scholar] [CrossRef]
- Luhar, I.; Luhar, S. Rubberized Geopolymer Composites: Value-Added Applications. J. Compos. Sci. 2021, 5, 312. [Google Scholar] [CrossRef]
- Albitar, M.; Ali, M.M.; Visintin, P. Experimental study on fly ash and lead smelter slag-based geopolymer concrete columns. Constr. Build. Mater. 2017, 141, 104–112. [Google Scholar] [CrossRef]
- Hajimohammadi, A.; Ngo, T.; Kashani, A. Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders. J. Clean. Prod. 2018, 193, 593–603. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Chemistry and Applications; Geopolymer Institute: Saint-Quentin, France, 2008. [Google Scholar]
- Guo, B.; Liu, B.; Yang, J.; Zhang, S. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. J. Environ. Manag. 2017, 193, 410–422. [Google Scholar] [CrossRef]
- Yakubu, Y.; Zhou, J.; Ping, D.; Shu, Z.; Chen, Y. Effects of pH dynamics on solidification/stabilization of municipal solid waste incineration fly ash. J. Environ. Manag. 2017, 207, 243–248. [Google Scholar] [CrossRef]
- Sarker, P.; Haque, R.; Ramgolam, K.V. Fracture behaviour of heat cured fly ash based geopolymer concrete. Mater. Des. 2013, 44, 580–586. [Google Scholar] [CrossRef]
- Rabiaa, E.; Mohamed, R.A.S.; Sofi, W.H.; Tawfik, T.A. Developing Geopolymer Concrete Properties by Using Nanomaterials and Steel Fibers. Adv. Mater. Sci. Eng. 2020, 2020, 5186091. [Google Scholar] [CrossRef]
- Verma, M.; Dev, N.; Rahman, I.; Nigam, M.; Ahmed, M.; Mallick, J. Geopolymer Concrete: A Material for Sustainable Development in Indian Construction Industries. Crystals 2022, 12, 514. [Google Scholar] [CrossRef]
- Luhar, S.; Rajamane, N.P.; Corbu, O.; Luhar, I. Impact of incorporation of volcanic ash on geopolymerization of eco-friendly geopolymer composites: A review. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Iasi, Romania, 16–17 May 2019; IOP Publishing: Bristol, UK, 2019; Volume 572, p. 012001. [Google Scholar] [CrossRef]
- Siddika, A.; Hajimohammadi, A.; Mamun, M.A.A.; Alyousef, R.; Ferdous, W. Waste Glass in Cement and Geopolymer Concretes: A Review on Durability and Challenges. Polymers 2021, 13, 2071. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, P.; Vasugi, V. A Critical Review of Waste Glass Powder as an Aluminosilicate Source Material for Sustainable Geopolymer Concrete Production. Silicon 2021, 13, 3649–3663. [Google Scholar] [CrossRef]
- Sulthan, F. Literature Review On Geopolymer Mortar Using Agricultural Waste As Precursor. Int. J. Sci. Technol. Res. 2019, 8, 232–236. [Google Scholar]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Verdolotti, L.; Iannace, S.; Lavorgna, M.; Lamanna, R. Geopolymerization reaction to consolidate incoherent pozzolanic soil. J. Mater. Sci. 2007, 43, 865–873. [Google Scholar] [CrossRef]
- Luhar, S.; Cheng, T.W. Impact of Integration of Industrial Wastes on Microstructural Properties of Geopolymer Composites—A Review. Int. J. Mech. Prod. Eng. 2020, 8, 1–6. [Google Scholar]
- Luhar, S.; Chaudhary, S.; Luhar, I. Development of rubberized geopolymer concrete: Strength and durability studies. Constr. Build. Mater. 2019, 204, 740–753. [Google Scholar] [CrossRef]
- Khan, M.A.; Memon, S.A.; Farooq, F.; Javed, M.F.; Aslam, F.; Alyousef, R. Compressive Strength of Fly-Ash-Based Geopolymer Concrete by Gene Expression Programming and Random Forest. Adv. Civ. Eng. 2021, 2021, 6618407. [Google Scholar] [CrossRef]
- Hardjito, D. Studies of Fly Ash-based Geopolymer Concrete. Ph.D. Dissertation, Curtin University, Bentley, WA, Australia, 2005. [Google Scholar]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Compos. 2015, 62, 97–105. [Google Scholar] [CrossRef]
- Palomo, A.; Blanco-Varela, M.; Granizo, M.; Puertas, F.; Vazquez, T.; Grutzeck, M. Chemical stability of cementitious materials based on metakaolin. Cem. Concr. Res. 1999, 29, 997–1004. [Google Scholar] [CrossRef]
- Choudhary, V.; Luhar, S. Fly Ash Utilization: A Review. Int. J. Civ. Eng. Technol. 2017, 8, 301–312. [Google Scholar]
- Luhar, S.; Dave, U. Investigations on mechanical properties of fly ash and slag based geopolymer concrete. Ind. Concr. J. 2016, 2, 34–41. [Google Scholar]
- Barbosa, V.F.; MacKenzie, K.J.; Thaumaturgo, C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers. Int. J. Inorg. Mater. 2000, 2, 309–317. [Google Scholar] [CrossRef]
- Xu, H.; Deventer, J.S. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000, 59, 247–266. [Google Scholar] [CrossRef]
- Jaarsveld, V.; Deventer, V.; Lorenzen, L. The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications. Miner. Eng. 1997, 10, 659–669. [Google Scholar] [CrossRef]
- Falah, M.; Ohenoja, K.; Obenaus-Emler, R.; Kinnunen, P.; Illikainen, M. Improvement of mechanical strength of alkali-activated materials using micro low-alumina mine tailings. Constr. Build. Mater. 2020, 248, 118659. [Google Scholar] [CrossRef]
- Davidovits, J.; Orlinski, J. Proceedings Geopolymer; Geopolymer Institute: Saint-Quentin, France, 1988. [Google Scholar]
- Mierzwiński, D.; Walter, J. Autoclaving of alkali-activated materials. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Montevideo, Uruguay, 28–29 November 2019; IOP Publishing: Bristol, UK, 2019; Volume 706, p. 012012. [Google Scholar]
- Davidovits, J. Global Warming effect on cement and aggregate industries. Worlds Resour. Rev. 1994, 6, 263–278. [Google Scholar]
- Davidovits, J. Environmentally Driven Geopolymer Cement Applications. In Proceedings of the Geopolymer Conference, Melbourne, Australia, 28–29 October 2002. [Google Scholar]
- Provis, J.L.; Lukey, A.G.C.; van Deventer, J.S.J. Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results. Chem. Mater. 2005, 17, 3075–3085. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers: Inorganic polymeric new materials. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Davidovits, J. Soft Mineralurgy and Geopolymers. In Proceedings of the the Geopolymer 88, First European Conference on Soft Mineralurgy, Compiegne, France, 1–3 June 1988. [Google Scholar]
- Davidovits, J. Geopolymer Chemistry and Properties. In Proceedings of the the Geopolymer 88, First European Conference on Soft Mineralurgy, Compiegne, France, 1–3 June 1988. [Google Scholar]
- Jaarsveld, V.; Deventer, V.; Lukey, G.C. The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chem. Eng. J. 2002, 89, 63–73. [Google Scholar] [CrossRef]
- Lan, T.; Meng, Y.; Ju, T.; Chen, Z.; Du, Y.; Deng, Y.; Song, M.; Han, S.; Jiang, J. Synthesis and application of geopolymers from municipal waste incineration fly ash (MSWI FA) as raw ingredient—A review. Resour. Conserv. Recycl. 2022, 182, 106308. [Google Scholar] [CrossRef]
- Weng, L.; Sagoe-Crentsil, K. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I—Low Si/Al ratio systems. J. Mater. Sci. 2007, 42, 2997–3006. [Google Scholar] [CrossRef]
- Mackenzie, K.J.D. What are these things called geopolymers? A physico-chemical perspective. Ceram. Trans. 2003, 153, 175–186. [Google Scholar]
- EUR 7716; Davidovits, J. The Need to Create a New Technical Language for the Transfer of Basic Scientific Information. Transfer and Exploitation of Scientific and Technical Information; Commission of the European Communities: Luxembourg, 1982. [Google Scholar]
- Davidovits, J. Properties of geopolymer cements. In Proceedings of the First International Conference on Alkaline Cements and Concretes; Kiev State Technical University, Scientific Research Institute on Binders and Materials: Kiev, Ukraine, 1994; Volume 1, pp. 131–149. [Google Scholar]
- Chanh, N.V.; Trung, D.B.; Tuan, D.V. Recent Research Geopolymer Concrete. In Proceedings of the 3rd ACF International Conferance, Ho Chi Minh City, Vietnam, 11–13 November 2008. [Google Scholar]
- Luhar, S.; Nicolaides, D.; Luhar, I. Fire Resistance Behaviour of Geopolymer Concrete: An Overview. Buildings 2021, 11, 82. [Google Scholar] [CrossRef]
- He, R.; Dai, N.; Wang, Z. Thermal and Mechanical Properties of Geopolymers Exposed to High Temperature: A Literature Review. Adv. Civ. Eng. 2020, 2, 7532703. [Google Scholar] [CrossRef]
- Rangan, B.V.; Hardjito, D.; Wallah, S.E.; Sumajouw, D.M.J. Studies on Fly Ash Based Geopolymer Concrete. In Green Chemistry and Sustainable Development Solutions, 1st ed.; Geopolymer: Saint-Quentin, France, 2005. [Google Scholar]
- Thaarrini, J.; Dhivya, S. Comparative study on the production cost of geopolymer and conventional concretes. Int. J. Civ. Eng. Res. 2016, 7, 117–124. [Google Scholar]
- Bhavin, B.; Pitroda, J.; Bhavsar, J.J. Geopolymer concrete and its feasibility in India. In Proceedings of the National Conference CRDCE13, Vasad, India, 20–21 December 2013; pp. 20–21. [Google Scholar]
- Timmons, S.F. Cementitious composition. U.S. Patent 7,442,248, 28 October 2008. [Google Scholar]
- Gourley, J.T. Geopolymers; Opportunities for Environmentally Friendly Construction Materials. In Proceedings of the Materials 2003 Conference: Adaptive Materials for a Modern Society, Sydney, Australia, 1–3 October 2003. [Google Scholar]
- Gourley, J.T.; Johnson, G.B. Developments in Geopolymer Precast Concrete. In Proceedings of the International Workshop on Geopolymers and Geopolymer Concrete, Perth, Australia, 28–29 September 2005. [Google Scholar]
- Ganesan, N.; Indira, P.V.; Santhakumar, A. Prediction of ultimate strength of reinforced geopolymer concrete wall panels in one-way action. Constr. Build. Mater. 2013, 48, 91–97. [Google Scholar] [CrossRef]
- Dawczyńnski, S.; Krzywon, R.; Orski, M.G.; Dubińnska, W.; Samoszuk, M. Geopolymer concrete—Applications in civil engineering. In Proceedings of the XXXI Salon Tecnologico de la Construccion—EXCO 2017, Valencia, Spain, 20–24 February 2017. [Google Scholar]
- Ober, J.A. Mineral Commodity Summaries; US Geological Survey: Reston, VA, USA, 2018.
- Ma, C.-K.; Awang, A.Z.; Omar, W. Structural and material performance of geopolymer concrete: A review. Constr. Build. Mater. 2018, 186, 90–102. [Google Scholar] [CrossRef]
- Pilehvar, S.; Cao, V.D.; Szczotok, A.M.; Valentini, L.; Salvioni, D.; Magistri, M.; Pamies, R.; Kjøniksen, A.-L. Mechanical properties and microscale changes of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials. Cem. Concr. Res. 2017, 100, 341–349. [Google Scholar] [CrossRef]
- Zuhua, Z.; Xiao, Y.; Huajun, Z.; Yue, C. Role of water in the synthesis of calcined kaolin-based geopolymer. Appl. Clay Sci. 2009, 43, 218–223. [Google Scholar] [CrossRef]
- Cao, V.D.; Pilehvar, S.; Salas-Bringas, C.; Szczotok, A.M.; Valentini, L.; Carmona, M.; Rodriguez, J.F.; Kjøniksen, A.-L. Influence of microcapsule size and shell polarity on thermal and mechanical properties of thermoregulating geopolymer concrete for passive building applications. Energy Convers. Manag. 2018, 164, 198–209. [Google Scholar] [CrossRef]
- Cao, V.D.; Pilehvar, S.; Salas-Bringas, C.; Szczotok, A.M.; Bui, T.Q.; Carmona, M.; Rodriguez, J.F.; Kjøniksen, A.-L. Thermal performance and numerical simulation of geopolymer concrete containing different types of thermoregulating materials for passive building applications. Energy Build. 2018, 173, 678–688. [Google Scholar] [CrossRef]
- Zeyad, A.M.; Johari, M.A.M.; Abutaleb, A.; Tayeh, B.A. The effect of steam curing regimes on the chloride resistance and pore size of high–strength green concrete. Constr. Build. Mater. 2021, 280, 122409. [Google Scholar] [CrossRef]
- Zeyad, A.M.; Johari, M.A.M.; Alharbi, Y.R.; Abadel, A.A.; Amran, Y.M.; Tayeh, B.A.; Abutaleb, A. Influence of steam curing regimes on the properties of ultrafine POFA-based high-strength green concrete. J. Build. Eng. 2021, 38, 102204. [Google Scholar] [CrossRef]
- Humphreys, K.; Mahasenan, M. Toward a Sustainable Cement Industry. Substudy 8, Climate Change 2; World Business Council for Sustainable Development: Geneva, Switzerland, 2002. [Google Scholar]
- Panda, B.; Unluer, C.; Tan, M.J. Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing. Cem. Concr. Compos. 2018, 94, 307–314. [Google Scholar] [CrossRef]
- Bernal, S.A.; Provis, J.; Rose, V.; De Gutierrez, R.M. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 2011, 33, 46–54. [Google Scholar] [CrossRef]
- Wang, C.; Xu, G.; Gu, X.; Gao, Y.; Zhao, P. High value-added applications of coal fly ash in the form of porous materials: A review. Ceram. Int. 2021, 47, 22302–22315. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, C.; Qiao, Y.; Wang, X.; Jia, D.; Li, H.; Colombo, P. Porous geopolymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2021, 150, 106629. [Google Scholar] [CrossRef]
- Jeremiah, J.J.; Abbey, S.J.; Booth, C.A.; Kashyap, A. Geopolymers as Alternative Sustainable Binders for Stabilisation of Clays—A Review. Geotechnics 2021, 1, 439–459. [Google Scholar] [CrossRef]
- Paz-Gómez, D.C.; Vilarinho, I.S.; Pérez-Moreno, S.M.; Carvalheiras, J.; Guerrero, J.L.; Novais, R.M.; Seabra, M.P.; Ríos, G.; Bolívar, J.P.; Labrincha, J.A. Immobilization of Hazardous Wastes on One-Part Blast Furnace Slag-Based Geopolymers. Sustainability 2021, 13, 13455. [Google Scholar] [CrossRef]
- Amran, M.; Al-Fakih, A.; Chu, S.H.; Fediuk, R.; Haruna, S.; Azevedo, A.; Vatin, N. Long-term durability properties of geopolymer concrete: An in-depth review. Case Stud. Constr. Mater. 2021, 15, e00661. [Google Scholar] [CrossRef]
- Cong, P.; Cheng, Y. Advances in geopolymer materials: A comprehensive review. J. Traffic Transp. Eng. 2021, 8, 283–314. [Google Scholar] [CrossRef]
- Ganesh, A.C.; Muthukannan, M. Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. J. Clean. Prod. 2021, 282, 124543. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, P.; Wu, J.; Jing, Y.; Zhang, D.; Zhang, T. Comprehensive review of the properties of fly ash-based geopolymer with additive of nano-SiO2. Nanotechnol. Rev. 2022, 11, 1478–1498. [Google Scholar] [CrossRef]
- Hardjito, W.; Sumajouw, R. Fly ash-based geopolymer concrete. Aust. J. Struct. Eng. 2015, 73, 77–86. [Google Scholar] [CrossRef]
- Heah, C.; Kamarudin, H.; Al Bakri, A.M.; Binhussain, M.; Luqman, M.; Nizar, I.K.; Ruzaidi, C.; Liew, Y. Effect of Curing Profile on Kaolin-based Geopolymers. Phys. Procedia 2011, 22, 305–311. [Google Scholar] [CrossRef]
- Rovnaník, P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010, 24, 1176–1183. [Google Scholar] [CrossRef]
- Ranjbar, N.; Kuenzel, C.; Spangenberg, J.; Mehrali, M. Hardening evolution of geopolymers from setting to equilibrium: A review. Cem. Concr. Compos. 2020, 114, 103729. [Google Scholar] [CrossRef]
- Farooq, F.; Jin, X.; Javed, M.F.; Akbar, A.; Shah, M.I.; Aslam, F.; Alyousef, R. Geopolymer concrete as sustainable material: A state of the art review. Constr. Build. Mater. 2021, 306, 124762. [Google Scholar] [CrossRef]
- Shehata, N.; Mohamed, O.; Sayed, E.T.; Abdelkareem, M.A.; Olabi, A. Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials. Sci. Total Environ. 2022, 836, 155577. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, D. Effects of Water on Pore Structure and Thermal Conductivity of Fly Ash-Based Foam Geopolymers. Adv. Mater. Sci. Eng. 2019, 2019, 3202794. [Google Scholar] [CrossRef]
- 128. Promoda Kumar Behera. Influence of High Temperatures on Properties of Geopolymers Filled by Inorganic Fibrous Particles. Masters’s Thesis, Technical University of Liberec, Liberec, Czechia, 2019.
- Aleem, M.A.; Arumairaj, P.D. Geopolymer concrete–A review. Int. J. Eng. Sci. Emerg. Technol. 2012, 1, 118–122. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. A review on the utilization of fly ash. Prog. Energy Combust. Sci. 2010, 36, 327–363. [Google Scholar] [CrossRef]
- Gorai, B.; Jana, R.K.; Premchand. Characteristics and utilization of copper slag a review. Resour. Conserv. Recycl. 2006, 39, 299–313. [Google Scholar] [CrossRef]
- International Energy Outlook; U.S. Energy Information Administration: Washington, DC, USA, 2018.
- Klima, K.; Schollbach, K.; Brouwers, H.; Yu, Q. Thermal and fire resistance of Class F fly ash based geopolymers—A review. Constr. Build. Mater. 2022, 323, 126529. [Google Scholar] [CrossRef]
- Querol, X.; Juan, R.; Lopez-Soler, A.; Fernandez-Turiel, J.; Ruiz, C.R. Mobility of trace elements from coal and combustion wastes. Fuel 1996, 75, 821–838. [Google Scholar] [CrossRef]
- Jegadeesan, G.; Al-Abed, S.R.; Pinto, P. Influence of trace metal distribution on its leachability from coal fly ash. Fuel 2008, 87, 1887–1893. [Google Scholar] [CrossRef]
- Huggins, F.; Rezaee, M.; Honaker, R.; Hower, J. On the removal of hexavalent chromium from a Class F fly ash. Waste Manag. 2016, 51, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xia, M.S.; Xi, Y.Q. A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef]
- Bhattacharjee, U.; Kandpal, T.C. Potential of fly ash utilisation in India. Energy 2002, 27, 151–166. [Google Scholar] [CrossRef]
- European Coal Combustion Products Association. Production and Utilisation of CCPs in 2016 in Europe (EU 15); European Coal Combustion Products Association: Essen, Germany, 2016. [Google Scholar]
- American Coal Ash Association. Coal Combustion Products Production & Use Reports; American Coal Ash Association: Denver, CO, USA, 2020. [Google Scholar]
- Moreno, N.; Querol, X.; Ayora, C.; Pereira, C.F.; Janssen-Jurkovicová, M. Utilization of Zeolites Synthesized from Coal Fly Ash for the Purification of Acid Mine Waters. Environ. Sci. Technol. 2001, 35, 3526–3534. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.B.; Zevenhoven, R.; Bhattacharya, P.; Sajwan, K.S.; Kikuchi, R. Mercury flow via coal and coal utilization by-products: A global perspective. Resour. Conserv. Recycl. 2008, 52, 571–591. [Google Scholar] [CrossRef]
- Sibanda, V.; Ndlovu, S.; Dombo, G.; Shemi, A.; Rampou, M. Towards the Utilization of Fly Ash as a Feedstock for Smelter Grade Alumina Production: A Review of the Developments. J. Sustain. Met. 2016, 2, 167–184. [Google Scholar] [CrossRef]
- Yao, Z.; Xia, M.; Sarker, P.; Chen, T. A review of the alumina recovery from coal fly ash, with a focus in China. Fuel 2014, 120, 74–85. [Google Scholar] [CrossRef]
- Belviso, C. State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues. Prog. Energy Combust. Sci. 2018, 65, 109–135. [Google Scholar] [CrossRef]
- Belviso, C.; Cavalcante, F.; Fiore, S. Synthesis of zeolite from Italian coal fly ash: Differences in crystallization temperature using seawater instead of distilled water. Waste Manag. 2010, 30, 839–847. [Google Scholar] [CrossRef]
- Belviso, C.; Cavalcante, F.; Ragone, P.; Fiore, S. Immobilization of Ni by synthesising zeolite at low temperatures in a polluted soil. Chemosphere 2010, 78, 1172–1176. [Google Scholar] [CrossRef]
- Belviso, C.; Cavalcante, F.; Lettino, A.; Fiore, S. Effects of ultrasonic treatment on zeolite synthesized from coal fly ash. Ultrason. Sonochemistry 2011, 18, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Belviso, C.; Cavalcante, F.; Ragone, P.; Fiore, S. Immobilization of Zn and Pb in Polluted Soil by In Situ Crystallization Zeolites from Fly Ash. Water Air Soil Pollut. 2012, 223, 5357–5364. [Google Scholar] [CrossRef]
- Wang, P.; Hu, Y.; Cheng, H. Municipal solid waste (MSW) incineration fly ash as an important source of heavy metal pollution in China. Environ. Pollut. 2019, 252, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Havlica, J.; Brandstetr, J.; Odler, I. Possibilities of Utilizing Solid Residues from Pressured Fluidized Bed Coal Combustion (PSBC) for the Production of Blended Cements. Cem. Concr. Res. 1998, 28, 299–307. [Google Scholar] [CrossRef]
- Li, X.-G.; Chen, Q.-B.; Ma, B.-G.; Huang, J.; Jian, S.-W.; Wu, B. Utilization of modified CFBC desulfurization ash as an admixture in blended cements: Physico-mechanical and hydration characteristics. Fuel 2012, 102, 674–680. [Google Scholar] [CrossRef]
- Brandštetr, J.; Havlica, J. Phase composition of solid residues of fluidized bed coal combustion, quality tests, and application possibilities. Chem. Pap. 1996, 50, 188–194. [Google Scholar]
- Kaewmanee, K.; Krammart, P.; Sumranwanich, T.; Choktaweekarn, P.; Tangtermsirikul, S. Effect of free lime content on properties of cement–fly ash mixtures. Constr. Build. Mater. 2013, 38, 829–836. [Google Scholar] [CrossRef]
- Dvořák, R.; Chlápek, P.; Jecha, D.; Puchýř, R.; Stehlík, P. New approach to common removal of dioxins and NOx as a contribution to environmental protection. J. Clean. Prod. 2010, 18, 881–888. [Google Scholar] [CrossRef]
- Brendel, G.F.; Bonetti, J.E.; Rathbone, R.F.; Frey, R.N.F., Jr. Investigation of Ammonia Adsorption on Fly Ash Due to the Installation of Selective Catalytic Reduction Systems; U.S. Department of Energy, Office of Scientific and Technical Informatio: Pittsburgh, PA, USA, 2000.
- Mazur, M.; Janda, T.; Zukowski, W. Chemical and ThermalMethods for Removing Ammonia from Fly Ashes. Tech. Trans. 2017, 6, 31–50. [Google Scholar]
- Michalik, A.; Babińska, J.; Chyliński, F.; Piekarczuk, A. Ammonia in Fly Ashes from Flue Gas Denitrification Process and its Impact on the Properties of Cement Composites. Buildings 2019, 9, 225. [Google Scholar] [CrossRef]
- Procházka, L.; Boháčová, J.; Vojvodíková, B. Influence of Fly Ash Denitrification on Properties of Hybrid Alkali-Activated Composites. Crystals 2022, 12, 633. [Google Scholar] [CrossRef]
- Jimenez, A.M.F.; Garcia-Lodeiro, I.; Maltseva, O.; Palomo, A. Mechanical-Chemical Activation of Coal Fly Ashes: An Effective Way for Recycling and Make Cementitious Materials. Front. Mater. 2019, 6, 51. [Google Scholar] [CrossRef]
- Pavithra, P.; Reddy, M.S.; Dinakar, P.; Rao, B.H.; Satpathy, B.; Mohanty, A. A mix design procedure for geopolymer concrete with fly ash. J. Clean. Prod. 2016, 133, 117–125. [Google Scholar] [CrossRef]
- Kurtoglu, A.E.; Alzeebaree, R.; Aljumaili, O.; Nis, A.; Gulsan, M.E.; Humur, G.; Cevik, A. Mechanical and durability properties of fly ash and slag based geopolymer concrete. Adv. Concr. Constr. 2018, 6, 345. [Google Scholar]
- Okoye, F.; Durgaprasad, J.; Singh, N. Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceram. Int. 2016, 42, 3000–3006. [Google Scholar] [CrossRef]
- Xie, T.; Ozbakkaloglu, T. Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram. Int. 2015, 41, 5945–5958. [Google Scholar] [CrossRef]
- Assi, L.; Ghahari, S.; Deaver, E.; Leaphart, D.; Ziehl, P. Improvement of the early and final compressive strength of fly ash-based geopolymer concrete at ambient conditions. Constr. Build. Mater. 2016, 123, 806–813. [Google Scholar] [CrossRef]
- Hager, I.; Sitarz, M.; Mróz, K. Fly-ash-based geopolymer mortar for high-temperature application–Effect of slag addition. J. Clean. Prod. 2021, 316, 128168. [Google Scholar] [CrossRef]
- Embong, R.; Kusbiantoro, A.; Shafiq, N.; Nuruddin, M.F. Strength and microstructural properties of fly ash based geopolymer concrete containing high-calcium and water-absorptive aggregate. J. Clean. Prod. 2016, 112, 816–822. [Google Scholar] [CrossRef]
- Sreevidya, V.; Anuradha, R.; Dinakar, D.; Venkatasubramani, R. Acid resistance of flyash based geopolymer mortar under ambient curing and heat curing. Int. J. Eng. Sci. Technol. 2012, 4, 681–684. [Google Scholar]
- Duan, P.; Yan, C.; Luo, W.; Zhou, W. Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste. Constr. Build. Mater. 2016, 106, 115–125. [Google Scholar] [CrossRef]
- Rajak, M.; Rai, B. Effect of Micro Polypropylene Fibre on the Performance of Fly Ash-Based Geopolymer Concrete. J. Appl. Eng. Sci. 2019, 9, 97–108. [Google Scholar] [CrossRef]
- Liu, M.Y.J.; Alengaram, U.J.; Santhanam, M.; Jumaat, M.Z.; Mo, K.H. Microstructural investigations of palm oil fuel ash and fly ash based binders in lightweight aggregate foamed geopolymer concrete. Constr. Build. Mater. 2016, 120, 112–122. [Google Scholar] [CrossRef]
- Park, Y.; Abolmaali, A.; Kim, Y.H.; Ghahremannejad, M. Compressive strength of fly ash-based geopolymer concrete with crumb rubber partially replacing sand. Constr. Build. Mater. 2016, 118, 43–51. [Google Scholar] [CrossRef]
- Khan, M.; Castel, A.; Akbarnezhad, A.; Foster, S.; Smith, M. Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete. Cem. Concr. Res. 2016, 89, 220–229. [Google Scholar] [CrossRef]
- Assaedi, H.; Shaikh, F.U.A.; Low, I.M. Influence of mixing methods of nano silica on the microstructural and mechanical properties of flax fabric reinforced geopolymer composites. Constr. Build. Mater. 2016, 123, 541–552. [Google Scholar] [CrossRef]
- Gunasekara, C.; Law, D.; Setunge, S. Long term permeation properties of different fly ash geopolymer concretes. Constr. Build. Mater. 2016, 124, 352–362. [Google Scholar] [CrossRef]
- Leong, H.Y.; Ong, D.E.L.; Sanjayan, J.; Nazari, A. Suitability of Sarawak and Gladstone fly ash to produce geopolymers: A physical, chemical, mechanical, mineralogical and microstructural analysis. Ceram. Int. 2016, 42, 9613–9620. [Google Scholar] [CrossRef]
- Huiskes, D.M.A.; Keulen, A.; Yu, Q.L.; Brouwers, H.J.H. Design and performance evaluation of ultra-lightweight geopolymer concrete. Mater. Des. 2016, 89, 516–526. [Google Scholar] [CrossRef]
- Zeng, S.; Wang, J. Characterization of mechanical and electric properties of geopolymers synthesized using four locally available fly ashes. Constr. Build. Mater. 2016, 121, 386–399. [Google Scholar] [CrossRef]
- Tho-In, T.; Sata, V.; Boonserm, K.; Chindaprasirt, P. Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash. J. Clean. Prod. 2018, 172, 2892–2898. [Google Scholar] [CrossRef]
- Das, S.; Yang, P.; Singh, S.S.; Mertens, J.C.; Xiao, X.; Chawla, N.; Neithalath, N. Effective properties of a fly ash geopolymer: Synergistic application of X-ray synchrotron tomography, nanoindentation, and homogenization models. Cem. Concr. Res. 2015, 78, 252–262. [Google Scholar] [CrossRef]
- Pilehvar, S.; Cao, V.D.; Szczotok, A.M.; Carmona, M.; Valentini, L.; Lanzón, M.; Pamies, R.; Kjøniksen, A.-L. Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro-encapsulated phase change materials. Constr. Build. Mater. 2018, 173, 28–39. [Google Scholar] [CrossRef]
- Blissett, R.S.; Rowson, N.A. A review of the multi-component utilisation of coal fly ash. Fuel 2012, 97, 1–23. [Google Scholar] [CrossRef]
- Bhatt, A.; Priyadarshini, S.; Mohanakrishnan, A.A.; Abri, A.; Sattler, M.; Techapaphawit, S. Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Stud. Constr. Mater. 2019, 11, e00263, Erratum in Case Stud. Constr. Mater. 2021, 14, e00486. [Google Scholar] [CrossRef]
- Korniejenko, K.; Halyag, N.P.; Mucsi, G. Fly ash as a raw material for geopolymerisation-chemical composition and physical properties. IOP Conf. Ser. Mater. Sci. Eng. 2019, 706, 012002. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Phoo-Ngernkham, T.; Hanjitsuwan, S.; Horpibulsuk, S.; Poowancum, A.; Injorhor, B. Effect of calcium-rich compounds on setting time and strength development of alkali-activated fly ash cured at ambient temperature. Case Stud. Constr. Mater. 2018, 9, e00198. [Google Scholar] [CrossRef]
- Yadav, V.K.; Fulekar, M.H. Advances in Methods for Recovery of Ferrous, Alumina, and Silica Nanoparticles from Fly Ash Waste. Ceramics 2020, 3, 384–420. [Google Scholar] [CrossRef]
- Nyale, S.M.; Eze, C.P.; Akinyeye, R.O.; Gitari, W.M.; Akinyemi, S.A.; Fatoba, O.O.; Petrik, L.F. The leaching behaviour and geochemical fractionation of trace elements in hydraulically disposed weathered coal fly ash. J. Environ. Sci. Health Part A 2013, 49, 233–242. [Google Scholar] [CrossRef]
- Tiwari, M.; Sahu, S.K.; Bhangare, R.C.; Ajmal, P.Y.; Pandit, G.G. Elemental characterization of coal, fly ash, and bottom ash using an energy dispersive X-ray fluorescence technique. Appl. Radiat. Isot. 2014, 90, 53–57. [Google Scholar] [CrossRef]
- Neupane, G.; Donahoe, R.J. Leachability of elements in alkaline and acidic coal fly ash samples during batch and column leaching tests. Fuel 2013, 104, 758–770. [Google Scholar] [CrossRef]
- Shibayama, A.; Kim, Y.; Harjanto, S.; Sugai, Y.; Okada, K.; Fujita, T. Remediation of contaminated soil by fly ash containing dioxins from incineration by using flotation. Mater. Trans. 2005, 46, 990–995. [Google Scholar] [CrossRef]
- Nomura, Y.; Fujiwara, K.; Terada, A.; Nakai, S.; Hosomi, M. Prevention of lead leaching from fly ashes by mechanochemical treatment. Waste Manag. 2010, 30, 1290–1295. [Google Scholar] [CrossRef] [PubMed]
- Slanička, Š. The influence of fly ash fineness on the strength of concrete. Cem. Concr. Res. 1991, 21, 285–296. [Google Scholar] [CrossRef]
- Erdoğdu, K.; Türker, P. Effects of fly ash particle size on strength of portland cement fly ash mortars. Cem. Concr. Res. 1998, 28, 1217–1222. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Chotithanorm, C.; Cao, H.; Sirivivatnanon, V. Influence of fly ash fineness on the chloride penetration of concrete. Constr. Build. Mater. 2007, 21, 356–361. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Jaturapitakkul, C.; Sinsiri, T. Effect of fly ash fineness on microstructure of blended cement paste. Constr. Build. Mater. 2007, 21, 1534–1541. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Homwuttiwong, S.; Sirivivatnanon, V. Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cem. Concr. Res. 2004, 34, 1087–1092. [Google Scholar] [CrossRef]
- Jones, M.; McCarthy, A.; Booth, A.; Jones, R. Characteristics of the ultrafine component of fly ash. Fuel 2006, 85, 2250–2259. [Google Scholar] [CrossRef]
- Yazici, S.; Arel, H.S. Effects of fly ash fineness on the mechanical properties of concrete. Sadhana 2012, 37, 389–403. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G. A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour. Fuel 2007, 86, 1490–1512. [Google Scholar] [CrossRef]
- ASTM-C618-8a; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; ASTM International: West Conshohocken, PA, USA, 2009.
- Bankowski, P.; Zou, L.; Hodges, R. Reduction of metal leaching in brown coal fly ash using geopolymers. J. Hazard. Mater. 2004, 114, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Antiohos, S.; Tsimas, S. A novel way to upgrade the coarse part of a high calcium fly ash for reuse into cement systems. Waste Manag. 2007, 27, 675–683. [Google Scholar] [CrossRef]
- Medhat, H.; Michail, D. The effect of fly ash composition on the expansion of concrete due to alkali silica reaction. Cem. Concr. Res. 2000, 30, 1063–1072. [Google Scholar]
- Wedding, P.; Dunstan, E. A Possible Method for Identifying Fly Ashes That Will Improve the Sulfate Resistance of Concretes. Cem. Concr. Aggregates 1980, 2, 20–30. [Google Scholar] [CrossRef]
- Smith, R. Is the available alkali test a good durability predictor for fly ash concrete incorporating reactive aggregate. In Proceedings of the MRS Symposium, Pittsburg, PA, USA, 30 November–5 December 1988; pp. 249–256. [Google Scholar]
- Odler, I. Special Inorganic Cements; CRC Press: London, UK, 2009. [Google Scholar]
- Diamond, S. Effects of two Danish fly ashes on alkali contents of pore solutions of cement-fly ash pastes. Cem. Concr. Res. 1981, 11, 383–394. [Google Scholar] [CrossRef]
- Joshi, R.C.; Lohtia, R.P. Fly Ash in Concrete Production, Properties and Uses; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Temuujin, J.; Van Riessen, A. Effect of fly ash preliminary calcination on the properties of geopolymer. J. Hazard. Mater. 2009, 164, 634–639. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, G.; Solem, J.; Manz, O.; Hassett, D. Use of a Database of Chemical, Mineralogical, and Physical Properties of North American Fly Ash to Study the Nature of Fly Ash and Its Utilization as a Mineral Admixture in Concrete; Materials Research Society: Boston, MA, USA, 1989; p. 178. [Google Scholar]
- Durdzinski, P.T.; Snellings, R.; Dunant, C.F.; Haha, M.B.; Scrivener, K.L. Fly ash as an assemblage of model Ca-Mg-Naealuminosilicate glasses. Cem. Concr. Res. 2015, 78, 263–272. [Google Scholar] [CrossRef]
- Sakai, E.; Miyahara, S.; Ohsawa, S.; Lee, S.-H.; Daimon, M. Hydration of fly ash cement. Cem. Concr. Res. 2005, 35, 1135–1140. [Google Scholar] [CrossRef]
- Tkaczewska, E. Effect of size fraction and glass structure of siliceous fly ashes on fly ash cement hydration. J. Ind. Eng. Chem. 2014, 20, 315–321. [Google Scholar] [CrossRef]
- Malhotra, V. Durability of concrete incorporating high-volume of low-calcium (ASTM Class F) fly ash. Cem. Concr. Compos. 1990, 12, 271–277. [Google Scholar] [CrossRef]
- Sobolev, K.; Vivian, I.F.; Saha, R.; Wasi, N.M.W.; Saltibus, N.E. The effect of fly ash on the rheological properties of bituminous materials. Fuel 2014, 116, 471–477. [Google Scholar] [CrossRef]
- Rubel, A.; Andrews, R.; Gonzalez, R.; Groppo, J.; Robl, T. Adsorption of Hg and NOX on coal by-products. Fuel 2005, 84, 911–916. [Google Scholar] [CrossRef]
- Pereira, C.F.; Luna, Y.; Querol, X.; Antenucci, D.; Vale, J. Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers. Fuel 2009, 88, 1185–1193. [Google Scholar] [CrossRef]
- Ukwattage, N.; Ranjith, P.; Bouazza, M. The use of coal combustion fly ash as a soil amendment in agricultural lands (with comments on its potential to improve food security and sequester carbon). Fuel 2013, 109, 400–408. [Google Scholar] [CrossRef]
- Teixeira, E.R.; Mateus, R.; Camões, A.; Bragança, L.; Branco, F.G. Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. J. Clean. Prod. 2016, 112, 2221–2230. [Google Scholar] [CrossRef]
- Chang, H.-L.; Shih, W.-H. Synthesis of Zeolites A and X from Fly Ashes and Their Ion-Exchange Behavior with Cobalt Ions. Ind. Eng. Chem. Res. 2000, 39, 4185–4191. [Google Scholar] [CrossRef]
- Luhar, S.; Cheng, T.W.; Nicolaides, D.; Luhar, I.; Panias, D.; Sakkas, K. Valorisation of glass wastes for the development of geopolymer composites–Durability, thermal and microstructural properties: A review. Constr. Build. Mater. 2019, 222, 673–687. [Google Scholar] [CrossRef]
- Asokan, P.; Saxena, M.; Asolekar, S.R. Coal combustion residuesdenvironmental implications and recycling potentials. Resour. Conserv. Recycl. 2005, 43, 239–262. [Google Scholar] [CrossRef]
- Heidrich, C.; Feuerborn, H.-J.; Weir, A. Coal combustion products: A global perspective. In Proceedings of the 2013 World of Coal Ash (WOCA) Conference, Lexington, KY, USA, 22–25 April 2013. [Google Scholar]
- Kovler, K. Radiological constraints of using building materials and industrial by-products in construction. Constr. Build. Mater. 2009, 23, 246–253. [Google Scholar] [CrossRef]
- Luhar, S.; Cheng, T.W.; Nicolaides, D.; Luhar, I.; Panias, D.; Sakkas, K. Valorisation of glass waste for development of Geopolymer composites–Mechanical properties and rheological characteristics: A review. Constr. Build. Mater. 2019, 220, 547–564. [Google Scholar] [CrossRef]
- McLellan, B.C.; Williams, R.P.; Lay, J.; van Riessen, A.; Corder, G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 2011, 19, 1080–1090. [Google Scholar] [CrossRef]
- Jen, G.; Skalamprinos, S.; Whittaker, M.; Galan, I.; Imbabi, M.S.; Glasser, F.P. The impact of intrinsic anhydrite in an experimental calcium sulfoaluminate cement from a novel, carbon-minimized produc-tion process. Mater. Struct. 2017, 50, 144. [Google Scholar] [CrossRef]
- Şahmaran, M.; Li, V.C. Durability properties of micro-cracked ECC containing high volumes fly ash. Cem. Concr. Res. 2009, 39, 1033–1043. [Google Scholar] [CrossRef]
- Nath, S.K.; Mukherjee, S.; Maitra, S.; Kumar, S. Kinetics study of geopolymerization of fly ash using isothermal conduction calorimetry. J. Therm. Anal. 2016, 127, 1953–1961. [Google Scholar] [CrossRef]
- Steins, P.; Poulesquen, A.; Diat, O.; Frizon, F. Structural Evolution during Geopolymerization from an Early Age to Consolidated Material. Langmuir 2012, 28, 8502–8510. [Google Scholar] [CrossRef] [PubMed]
- Dimas, D.; Giannopoulou, I.; Panias, D. Polymerization in sodium silicate solutions: A fundamental process in geopolymerization technology. J. Mater. Sci. 2009, 44, 3719–3730. [Google Scholar] [CrossRef]
- Davidovits, J. 30 years of successes and failures in geopolymer applications, market trends and potential breakthroughs. In Proceedings of the Geopolymer 2002 Conference, Melbourne, Australia, 28–29 October 2002. [Google Scholar]
- He, J.; Zhang, J.; Yu, Y.; Zhang, G. The strength and microstructure of two geopolymers derived from metakaolin and red mudefly ash admixture: A comparative study. Constr. Build. Mater. 2012, 30, 80–91. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Kriven, W.M.; van Deventer, J.S.J. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005, 269, 47–58. [Google Scholar] [CrossRef]
- Kriven, W.M.; Bell, J.L.; Gordon, M. Microstructure and Microchemistry of Fully-Reacted Geopolymers and Geopolymer Matrix Composites. Ceram. Trans. 2006, 153, 227–250. [Google Scholar]
- Xu, H.; van Deventer, J.S.J. The geopolymerisation of natural alumino-silicates. In Proceedings of the 2nd International Conference on Geopolymer, Saint-Quentin, France, 30 June–2 July 1999; pp. 43–63. [Google Scholar]
- Lizcano, M.; Kim, H.S.; Basu, S.; Radovic, M. Mechanical properties of sodium and potassium activated metakaolin-based geopolymers. J. Mater. Sci. 2011, 47, 2607–2616. [Google Scholar] [CrossRef]
- Duxson, P.; Lukey, G.C.; Separovic, F.; van Deventer, J.S.J. Effect of Alkali Cations on Aluminum Incorporation in Geopolymeric Gels. Ind. Eng. Chem. Res. 2005, 44, 832–839. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, J.; Ye, G. The pore structure and permeability of alkali activated fly ash. Fuel 2013, 104, 771–780. [Google Scholar] [CrossRef]
- Rattanasak, U.; Pankhet, K.; Chindaprasirt, P. Effect of chemical admixtures on properties of high-calcium fly ash geopolymer. Int. J. Miner. Met. Mater. 2011, 18, 364–369. [Google Scholar] [CrossRef]
- Diaz, E.; Allouche, E.; Eklund, S. Factors affecting the suitability of fly ash as source material for geopolymers. Fuel 2010, 89, 992–996. [Google Scholar] [CrossRef]
- Geetha, S.; Ramamurthy, K. Properties of geopolymerised low-calcium bottom ash aggregate cured at ambient temperature. Cem. Concr. Compos. 2013, 43, 20–30. [Google Scholar] [CrossRef]
- Hanjitsuwan, S.; Hunpratub, S.; Thongbai, P.; Maensiri, S.; Sata, V.; Chindaprasirt, P. Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cem. Concr. Compos. 2014, 45, 9–14. [Google Scholar] [CrossRef]
- Hardjito, D.; Wallah, S.; Sumajouw, D.; Rangan, B. On the development of fly ash-based geopolymer concrete. ACI Mater. J. 2004, 101, 467–472. [Google Scholar]
- Li, Z.; Liu, S. Influence of Slag as Additive on Compressive Strength of Fly Ash-Based Geopolymer. J. Mater. Civ. Eng. 2007, 19, 470–474. [Google Scholar] [CrossRef]
- Idawati, I.; Bernal, S.A.; Provis, J.L.; Nicolas, S.R.; Hamdan, S.; van Deventer, J.S.J. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem. Concr. Compos. 2014, 45, 125–135. [Google Scholar]
- Kumar, S.; Kumar, R.; Mehrotra, S.P. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J. Mater. Sci. 2010, 45, 607–615. [Google Scholar] [CrossRef]
- Yang, T.; Yao, X.; Zhang, Z.; Wang, H. Mechanical property and structure of alkali-activated fly ash and slag blends. J. Sustain. Cem. Mater. 2012, 1, 167–178. [Google Scholar] [CrossRef]
- Piga, F.P.; Stoppa, L. Recovering metals from red mud generated during alumina production. JOM 1993, 45, 55–59. [Google Scholar] [CrossRef]
- Fu, Q.; Xu, W.; Zhao, X.; Bu, M.; Yuan, Q.; Niu, D. The microstructure and durability of fly ash-based geopolymer concrete: A review. Ceram. Int. 2021, 47, 29550–29566. [Google Scholar] [CrossRef]
- De Vargas, A.S.; Dal Molin, D.C.C.; Vilela, A.C.F.; da Silva, F.J.; Pav~a, B.; Veit, H. The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers. Cem. Concr. Compos. 2011, 33, 653–660. [Google Scholar] [CrossRef]
- Helmy, A.I.I. Intermittent curing of fly ash geopolymer mortar. Constr. Build. Mater. 2016, 110, 54–64. [Google Scholar] [CrossRef]
- Criado, M.; Palomo, A.; Jimenez, A.M.F. Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products. Fuel 2005, 84, 2048–2054. [Google Scholar] [CrossRef]
- Rattanasak, U.; Chindaprasirt, P. Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 2009, 22, 1073–1078. [Google Scholar] [CrossRef]
- Yang, T.; Yao, X.; Zhang, Z. Geopolymer prepared with high-magnesium nickel slag: Characterization of properties and microstructure. Constr. Build. Mater. 2014, 59, 188–194. [Google Scholar] [CrossRef]
- Jang, J.G.; Lee, N.K.; Lee, H.K. Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers. Constr. Build. Mater. 2014, 50, 169–176. [Google Scholar] [CrossRef]
- Wang, W.-C.; Wang, H.-Y.; Lo, M.-H. The fresh and engineering properties of alkali activated slag as a function of fly ash replacement and alkali concentration. Constr. Build. Mater. 2015, 84, 224–229. [Google Scholar] [CrossRef]
- Deb, P.S.; Nath, P.; Sarker, P.K. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater. Des. 2014, 62, 32–39. [Google Scholar] [CrossRef]
- Xu, H.; Li, Q.; Shen, L.; Zhang, M.; Zhai, J. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis. Waste Manag. 2010, 30, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Nazari, A.; Bagheri, A.; Riahi, S. Properties of geopolymer with seeded fly ash and rice husk bark ash. Mater. Sci. Eng. A 2011, 528, 7395–7401. [Google Scholar] [CrossRef]
- Songpiriyakij, S.; Kubprasit, T.; Jaturapitakkul, C.; Chindaprasirt, P. Compressive strength and degree of reaction of biomass- and fly ash-based geopolymer. Constr. Build. Mater. 2010, 24, 236–240. [Google Scholar] [CrossRef]
- Zhang, M.; El-Korchi, T.; Zhang, G.P.; Liang, J.Y.; Tao, M.J. Synthesis factors affecting mechanical properties, microstructure, and chemical composition of red mud-fly ash-based geopolymers. Fuel 2014, 134, 315–325. [Google Scholar] [CrossRef]
- Schmucker, M.; Mackenzie, J.D.M. Microstructure of sodium polysialate siloxo geopolymer. Ceram. Int. 2005, 31, 433–440. [Google Scholar] [CrossRef]
- Leung, C.K.Y.; Pheerapha, T. Very high early strength of microwave cured concrete. Cem. Concr. Res. 1995, 25, 136–146. [Google Scholar] [CrossRef]
- Somna, K.; Jaturapitakkul, C.; Kajitvichyanukul, P.; Chindaprasirt, P. NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel 2011, 90, 2118–2124. [Google Scholar] [CrossRef]
- Nasvi, M.M.; Gamage, R.P.; Jay, S. Geopolymer as well cement and the variation of its mechanical behavior with curing temperature. Greenh. Gases: Sci. Technol. 2011, 2, 46–58. [Google Scholar] [CrossRef]
- Kim, B.-J.; Yi, C.; Kang, K.-I. Microwave curing of alkali-activated binder using hwangtoh without calcination. Constr. Build. Mater. 2015, 98, 465–475. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Rattanasak, U.; Taebuanhuad, S. Role of microwave radiation in curing the fly ash geopolymer. Adv. Powder Technol. 2013, 24, 703–707. [Google Scholar] [CrossRef]
- Lee, B.; Kim, G.; Kim, R.; Cho, B.; Lee, S.; Chon, C.-M. Strength development properties of geopolymer paste and mortar with respect to amorphous Si/Al ratio of fly ash. Constr. Build. Mater. 2017, 151, 512–519. [Google Scholar] [CrossRef]
- Zhuang, X.Y.; Chen, L.; Komarneni, S.; Zhou, C.H.; Tong, D.S.; Yang, H.M.; Yu, W.H.; Wang, H. Fly ash-based geopolymer: Clean production, properties and applications. J. Clean. Prod. 2016, 125, 253–267. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Kodur, V.; Wu, B.; Cao, L.; Wang, F. Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Constr. Build. Mater. 2016, 109, 17–24. [Google Scholar] [CrossRef]
- Adak, D.; Sarkar, M.; Mandal, S. Effect of nano-silica on strength and durability of fly ash based geopolymer mortar. Constr. Build. Mater. 2014, 70, 453–459. [Google Scholar] [CrossRef]
- Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.; Meikle, S. Development of geopolymer mortar under ambient temperature for in situ applications. Constr. Build. Mater. 2016, 120, 198–211. [Google Scholar] [CrossRef]
- Collins, F.; Sanjayan, J. Early Age Strength and Workability of Slag Pastes Activated by NaOH and Na2CO3. Cem. Concr. Res. 1998, 28, 655–664. [Google Scholar] [CrossRef]
- Rangan, B.V. Studies on fly-ash based geopolymer concrete. Malays. Constr. Res. J. 2008, 3, 1–20. [Google Scholar]
- Nath, P.; Sarker, P.K. Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Constr. Build. Mater. 2017, 130, 22–31. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Chalee, W. Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Constr. Build. Mater. 2014, 63, 303–310. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; Nicolas, R.S.; Brice, D.G.; Kilcullen, A.R.; Hamdan, S.; van Deventer, J.S. Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes. Constr. Build. Mater. 2013, 48, 1187–1201. [Google Scholar] [CrossRef]
- Yang, T.; Yao, X.; Zhang, Z.H. Quantification of chloride diffusion in fly asheslag-based geopolymers by X-ray fluorescence (XRF). Constr. Build. Mater. 2014, 69, 109–115. [Google Scholar] [CrossRef]
- Bakharev, T. Durability of geopolymer materials in sodium and magnesium sulphate solutions. Cem. Concr. Res. 2005, 35, 1233–1246. [Google Scholar] [CrossRef]
- Sukmak, P.; De Silva, P.; Horpibulsuk, S.; Chindaprasirt, P. Sulfate Resistance of Clay-Portland Cement and Clay High-Calcium Fly Ash Geopolymer. J. Mater. Civ. Eng. 2015, 27, 04014158. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; Hamdan, S.; van Deventer, J.S. Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Mater. Struct. 2013, 46, 361–373. [Google Scholar] [CrossRef]
- Puligilla, S.; Mondal, P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem. Concr. Res. 2013, 43, 70–80. [Google Scholar] [CrossRef]
- Bakharev, T. Resistance of geopolymer materials to acid attack. Cem. Concr. Res. 2005, 35, 658–670. [Google Scholar] [CrossRef]
- Lloyd, R.R.; Provis, J.L.; Van Deventer, J.S.J. Acid resistance of inorganic polymer binders. 1. Corrosion rate. Mater. Struct. 2012, 45, 1–14. [Google Scholar] [CrossRef]
- Nguyen, K.; Lee, Y.H.; Lee, J.; Ahn, N. Acid Resistance and Curing Properties for Green Fly Ash-geopolymer Concrete. J. Asian Arch. Build. Eng. 2013, 12, 317–322. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Rattanasak, U.; Taebuanhuad, S. Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer. Mater. Struct. 2013, 46, 375–381. [Google Scholar] [CrossRef]
- Rickard, W.D.; Williams, R.; Temuujin, J.; van Riessen, A. Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications. Mater. Sci. Eng. A 2011, 528, 3390–3397. [Google Scholar] [CrossRef]
- Razak, S.N.A.; Shafiq, N.; Guillaumat, L.; Farhan, S.A.; Lohana, V.K. Fire-Exposed Fly-Ash-Based Geopolymer Concrete: Effects of Burning Temperature on Mechanical and Microstructural Properties. Materials 2022, 15, 1884. [Google Scholar] [CrossRef] [PubMed]
- Guerrieri, M.; Sanjayan, J.G. Behavior of combined fly ash/slag-based geopolymers when exposed to high temperatures. Fire Mater. 2010, 34, 163–175. [Google Scholar] [CrossRef]
- Rickard, W.D.A.; van Riessen, A.; Walls, P. Thermal character of geopolymers synthesized from Class F fly ash containing high concentrations of iron and alpha quartz. Int. J. Appl. Ceram. Technol. 2010, 7, 81–88. [Google Scholar] [CrossRef]
- Kong, D.L.Y.; Sanjayan, J.G.; Sagoe-Crentsil, K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res. 2007, 37, 1583–1589. [Google Scholar] [CrossRef]
- Bakharev, T. Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem. Concr. Res. 2006, 36, 1134–1147. [Google Scholar] [CrossRef]
- Rickard, W.D.A.; van Riessen, A. Performance of solid and cellular structured fly ash geopolymers exposed to a simulated fire. Cem. Concr. Compos. 2014, 48, 75–82. [Google Scholar] [CrossRef]
- Dombrowski, K.; Buchwald, A.; Weil, M. The influence of calcium content on the structure and thermal performance of fly ash based geopolymers. J. Mater. Sci. 2006, 42, 3033–3043. [Google Scholar] [CrossRef]
- Sarker, P.K.; Kelly, S.; Yao, Z. Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater. Des. 2014, 63, 584–592. [Google Scholar] [CrossRef]
- Hobbs, D. Concrete deterioration: Causes, diagnosis, and minimising risk. Int. Mater. Rev. 2001, 46, 117–144. [Google Scholar] [CrossRef]
- Temuujin, J.; Minjigmaa, A.; Davaabal, B.; Bayarzul, U.; Ankhtuya, A.; Jadambaa, T.; MacKenzie, K.J.D. Utilization of radioactive high-calcium Mongolian fly ash for the preparation of alkali-activated geopolymers for safe use as construction materials. Ceram. Int. 2014, 40, 16475–16483. [Google Scholar] [CrossRef]
- Sun, P.J.; Wu, H.C. Chemical and freezeethaw resistance of fly ash-based inorganic mortars. Fuel 2013, 111, 740–745. [Google Scholar] [CrossRef]
- Brooks, R.; Bahadory, M.; Tovia, F.; Rostami, H. Properties of alkali-activated fly ash: High performance to lightweight. Int. J. Sustain. Eng. 2010, 3, 211–218. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Jalali, S. Influence of sodium carbonate addition on the thermal reactivity of tungsten mine waste mud based binders. Constr. Build. Mater. 2010, 24, 56–60. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. 39K NMR of free potassium in geopolymers. Ind. Eng. Chem. Res. 2006, 45, 9208–9210. [Google Scholar]
- Bortnovsky, O.; Dědeček, J.; Tvaruzkova, Z.; Sobalík, Z.; Šubrt, J. Metal Ions as Probes for Characterization of Geopolymer Materials. J. Am. Ceram. Soc. 2008, 91, 3052–3057. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence. Cem. Concr. Res. 2014, 64, 30–41. [Google Scholar] [CrossRef]
- Lloyd, R.R.; Provis, J.L.; van Deventer, J.S. Pore solution composition and alkali diffusion in inorganic polymer cement. Cem. Concr. Res. 2010, 40, 1386–1392. [Google Scholar] [CrossRef]
- Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. Sustainable cement production—Present and future. Cem. Concr. Res. 2011, 41, 642–650. [Google Scholar] [CrossRef]
- Habert, G.; de Lacaillerie, J.D.E.; Roussel, N. An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. J. Clean. Prod. 2011, 19, 1229–1238. [Google Scholar] [CrossRef]
- Reddy, D.V.; Edouard, J.B.; Sobhan, K. Durability of fly ashebased geopolymer structural concrete in the marine environment. J. Mater. Civ. Eng. 2013, 25, 781–787. [Google Scholar] [CrossRef]
- Kupwade-Patil, K.; Allouche, E.N. Impact of Alkali Silica Reaction on Fly Ash-Based Geopolymer Concrete. J. Mater. Civ. Eng. 2013, 25, 131–139. [Google Scholar] [CrossRef]
- Topark-Ngarm, P.; Chindaprasirt, P.; Sata, V. Setting Time, Strength, and Bond of High-Calcium Fly Ash Geopolymer Concrete. J. Mater. Civ. Eng. 2015, 27, 04014198. [Google Scholar] [CrossRef]
- Kong, D.L.; Sanjayan, J.G. Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem. Concr. Res. 2010, 40, 334–339. [Google Scholar] [CrossRef]
- Sata, V.; Wongsa, A.; Chindaprasirt, P. Properties of pervious geopolymer concrete using recycled aggregates. Constr. Build. Mater. 2013, 42, 33–39. [Google Scholar] [CrossRef]
- Nuaklong, P.; Sata, V.; Chindaprasirt, P. Influence of recycled aggregate on fly ash geopolymer concrete properties. J. Clean. Prod. 2016, 112, 2300–2307. [Google Scholar] [CrossRef]
- Nematollahi, B.; Sanjayan, J. Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer. Mater. Des. 2014, 57, 667–672. [Google Scholar] [CrossRef]
- Nasvi, M.; Ranjith, P.; Sanjayan, J. The permeability of geopolymer at down-hole stress conditions: Application for carbon dioxide sequestration wells. Appl. Energy 2013, 102, 1391–1398. [Google Scholar] [CrossRef]
- Nasvi, M.; Ranjith, P.; Sanjayan, J.; Bui, H.H. Effect of temperature on permeability of geopolymer: A primary well sealant for carbon capture and storage wells. Fuel 2014, 117, 354–363. [Google Scholar] [CrossRef]
- Hardjito, D.; Wallah, S.E.; Sumajouw, D.M.J.; Rangan, B.V. Fly Ash Based Geopolymer Concrete. Aust. J. Struct. Eng. 2005, 6, 77–86. [Google Scholar] [CrossRef]
- Lloyd, N.A.; Rangan, B.V. Geopolymer Concrete with Fly Ash. In Proceedings of the Second International Conference on Sustainable Construction Materials and Technologies, Ancone, Italy, 28–30 June 2010. [Google Scholar]
- Panias, D.; Giannopoulou, I.P.; Perraki, T. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surf. A Phys. Chem. Eng. Asp. 2007, 301, 246–254. [Google Scholar] [CrossRef]
- Sofi, M.; Deventer, J.; Mendis, P.; Lukey, G.C. Engineering Properties of Inorganic Polymer Concretes (IPCs). Cem. Concr. Res. 2007, 37, 251–257. [Google Scholar] [CrossRef]
- Rangan, B.V.; Wallah, S.E. Low Calcium y Ash Based Geopolymer Concrete: Long Term Properties; Research Report GC2; Faculty of Engineering Curtin University of Technology: Perth, Australia, 2006. [Google Scholar]
- Fernandez, J.; Palomo, A. Characterization of Fly Ash: Potential Reactivity Alkaline Cements. Fuel 2003, 82, 2259–2265. [Google Scholar] [CrossRef]
- Neville, A.M. Properties of Concrete, 4th and Final ed.; Pearson Education, Longman Group: Essex, UK, 2000. [Google Scholar]
- Hardjito, D.; Wallah, S.E.; Sumajouw, D.M.; Rangan, B.V. Introducing Fly Ash-Based Geopolymer Concrete: Manufacture and Engineering Properties. In Proceedings of the Our World in Concrete and Structures International Conference, Singapore, 23–24 August 2005. [Google Scholar]
- Cheema, D.S.; Lloyd, N.A.; Rangan, B.V. Durability of Geopolymer Concrete Box Culverts—A Green Alternative. In Proceedings of the 34th Conference on OurWorld in Concrete and Structures, Singapore, 16–18 August 2009. [Google Scholar]
- Adam, A.A.; Molyneaux, T.C.K.; Patnaikuni, I.; Law, D.W. Strength, sorptivity and carbonation of geopolymer concrete. In Challenges, Opportunities and Solutions in Structural Engineering and Construction; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Thokchom, S.; Ghosh, P.; Ghosh, S. Performance of Fly ash Based Geopolymer Mortars in Sulphate Solution. J. Eng. Sci. Technol. Rev. 2010, 3, 36–40. [Google Scholar] [CrossRef]
- Anurag, M. Deepika, Namrata, Manish, Nidhi and Durga, Effect of concentration of alkaline liquid and Curing time on strength and water absorption Of geopolymer concrete. ARPN J. Eng. Appl. Sci. 2008, 3, 14–18. [Google Scholar]
- Song, S.; Jennings, H.M. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cem. Concr. Res. 1999, 29, 159–170. [Google Scholar] [CrossRef]
- Sathia, R.; Babu, K.G.; Santhanam, M. Durability study of low calcium fly ash geopolymer concrete. In Proceedings of the 3rd ACF International Coference ACF, Ho Chi Minh City, Vietenam, 11–13 November 2008. [Google Scholar]
- Bakharev, T. Heat resistance of geopolymer materials prepared using class F fly ash. J. Aust. Ceram. Soc. 2006, 42, 34–44. [Google Scholar]
- Wallah, S.E.; Hardjito, D.; Sumajouw, D.M.; Rangan, B.V. Sulfate and acid resistance of fly ash-based geopolymer concrete. In Proceedings of the Australian Structural Engineering Conference 2005, Newcastle, NSW, Australia, 11–14 September 2005; pp. 733–742. [Google Scholar]
- Bakharev, T.; Sanjayan, J.G.; Cheng, J.B. Resistance of alkali-activated slag concrete to acid attack. Cem. Concr. Res. 2003, 33, 1607–1611. [Google Scholar] [CrossRef]
- Song, X.J.; Marosszeky, M.M.; Munn, R. Durability of y ash-based Geopolymer concrete against sulphuric acid attack. In Proceedings of the International Conference on Durability of Building Materials and Components, Lyon, France, 17–20 April 2005. [Google Scholar]
- Olivia, M.; Nikraz, H. Corrosion Performance of Embedded Steel in Fly Ash Geopolymer Concrete by Impressed Voltage Method. In Proceedings of the 21st Australian Conference on the Mechanics of Structures and Materials, Melbourne, VIC, Australia, 7–10 December 2010; pp. 781–786. [Google Scholar]
- Roy, D.M. Alkali-activated cements Opportunities and challenges. Cem. Concr. Res. 1999, 29, 249–254. [Google Scholar] [CrossRef]
- Wallah, S.E.; Rangan, B.V. Low-Calcium fly Ash-Based Geopolymer Concrete: Long Term Properties; Reserch Report GC3; Faculty of Engineering, Curtain University: Perth, Australia, 2006. [Google Scholar]
- Rashad, A.M.; Zeedan, S.R. The effect of activator concentration on the residual compressive strength of alkali- activated fly ash paste subjected to thermal load. Constr. Build. Mater. 2011, 25, 3098–3107. [Google Scholar] [CrossRef]
- Kong, D.L.Y.; Sanjayan, J.G. Damage behavior of geopolymercomposites exposed to elevated temperatures. Cem. Concr. Compos. 2008, 30, 986–991. [Google Scholar] [CrossRef]
- Luhar, S.; Chaudhary, S.; Luhar, I. Thermal resistance of fly ash based rubberized geopolymer concrete. J. Build. Eng. 2018, 19, 420–428. [Google Scholar] [CrossRef]
- Pan, Z.; Sanjayan, J.G.; Rangan, B.V. An investigation of the mechanisms for strength gain or loss geopolymer mortar after exposure to elevated temperature. J. Mater. Sci. 2009, 44, 1873–1880. [Google Scholar] [CrossRef]
- Ranjbar, N.; Mehrali, M.; Alengaram, U.J.; Metselaar, H.S.C.; Jummat, M.Z. Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar under elevated temperatures. Constr. Build. Mater. 2014, 65, 114–121. [Google Scholar] [CrossRef]
- Kong, D.L.Y.; Sanjayan, J.G.; Crentsil, K.S. Factors affecting the performance of metakaolingeopolymers to elevated temperatures. J. Mater. Sci. 2008, 43, 824–831. [Google Scholar] [CrossRef]
- Pan, Z.; Sanjayan, J.G.; Collins, F. Effect of transient creep on compressive strength of geopolymer concrete for elevated temperature exposure. Cem. Concr. Res. 2014, 56, 182–189. [Google Scholar] [CrossRef]
- Hussain, M.W.; Bhutta, M.A.R.; Azreen, M.; Ramadhansyah, P.J.; Mirza, J. Performance of blended ash geopolymer concrete at elevated temperature. Mater. Struct. 2015, 48, 709–720. [Google Scholar] [CrossRef]
- Fan, F. Mechanical and Thermal Properties of Fly Ash-Based Geopolymer Cement. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 2014. [Google Scholar]
- Omar, A.A.; Bakri, A.M.; Kamarudin, H.; Nizar, I.K.; Saif, A.A. Effect of elevated temperatures on the thermal behaviour and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Constr. Build. Mater. 2014, 50, 377–387. [Google Scholar]
- Zhang, Y.; Sun, W.; Li, Z. Infrared spectroscopy study of structural nature of geopolymeric products. J. Wuhan Univ. Technol. Sci. Ed. 2008, 23, 522–527. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Chareerat, T.; Sirivivatnanon, V. Workability and strength of coarse high calcium fly ash geopolymer. Cem. Concr. Compos. 2007, 29, 224–229. [Google Scholar] [CrossRef]
- Jumrat, S.; Chatveera, B.; Rattanadecho, P. Dielectric properties and temperature profile of fly ash-based geopolymer mortar. Int. Commun. Heat Mass Transf. 2011, 38, 242–248. [Google Scholar] [CrossRef]
- Sukmak, P.; Horpibulsuk, S.; Shen, S.L. Strength development in clay–fly ash geopolymer. Constr. Build. Mater. 2013, 40, 566–574. [Google Scholar] [CrossRef]
- Rifaai, Y.; Yahia, A.; Mostafa, A.; Aggoun, S.; Kadri, E.H. Rheology of fly ash-based geopolymer: Effect of NaOH concentration. Constr. Build. Mater. 2019, 223, 583–594. [Google Scholar] [CrossRef]
- Patankar, S.V.; Ghugal, Y.M.; Jamkar, S.S. Effect of Concentration of Sodium Hydroxide and Degree of Heat Curing on Fly Ash-Based Geopolymer Mortar. Indian J. Mater. Sci. 2014, 2014, 938789. [Google Scholar] [CrossRef]
- Bhowmick, A.; Ghosh, S. Effect of synthesizing parameters on workability and compressive strength of fly ash based geopolymer mortar. Int. J. Civ. Struct. Eng. 2012, 3, 168–177. [Google Scholar]
- Malkawi, A.B.; Nuruddin, M.F.; Fauzi, A.; Almattarneh, H.; Mohammed, B.S. Effects of Alkaline Solution on Properties of the HCFA Geopolymer Mortars. Procedia Eng. 2016, 148, 710–717. [Google Scholar] [CrossRef]
- Lee, N.; Kim, E.; Lee, H. Mechanical properties and setting characteristics of geopolymer mortar using styrene-butadiene (SB) latex. Constr. Build. Mater. 2016, 113, 264–272. [Google Scholar] [CrossRef]
- Sathonsaowaphak, A.; Chindaprasirt, P.; Pimraksa, K. Workability and strength of lignite bottom ash geopolymer mortar. J. Hazard. Mater. 2009, 168, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, C.; Shen, L.; Zhai, J. Manufacturing F-fly ash based geopolymer mortars using CFBC bottom ash as fine aggregates. J. Chem. Soc. Pak. 2013, 35, 314–319. [Google Scholar]
- Huseien, G.F.; Mirza, J.; Ismail, M.; Hussin, M.W. Influence of different curing temperatures and alkali activators on properties of GBFS geopolymer mortars containing fly ash and palm-oil fuel ash. Constr. Build. Mater. 2016, 125, 1229–1240. [Google Scholar] [CrossRef]
- Islam, A.; Alengaram, U.J.; Jumaat, M.Z.; Bashar, I.I. The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Mater. Des. 2014, 56, 833–841. [Google Scholar] [CrossRef]
- Phoo-ngernkham, T.; Hanjitsuwan, S.; Li, L.Y.; Damrongwiriyanupap, N.; Chindaprasirt, P. Adhesion characterisation of Portland cement concrete and alkali-activated binders. Adv. Cem. Res. 2019, 31, 69–79. [Google Scholar] [CrossRef]
- Temuujin, J.; van Riessen, A.; MacKenzie, K.J.D. Preparation and characterization of fly ash based geopolymer mortars. Constr. Build Mater 2010, 24, 1906–1910. [Google Scholar] [CrossRef]
- Zejak, R.; Nikolic, I.; Blecic, D.; Radmilovic, V.; Radmilovic, V. Mechanical and microstructural properties of the fly-ash-based geopolymer paste and mortar. Mater. Technol. 2013, 47, 535–540. [Google Scholar]
- Zhang, P.; Kang, L.; Zheng, Y.; Zhang, T.; Zhang, B. Influence of SiO2/Na2O molar ratio on mechanical properties and durability of metakaolin-fly ash blend alkali-activated sustainable mortar incorporating manufactured sand. J. Mater. Res. Technol. 2022, 18, 3553–3563. [Google Scholar] [CrossRef]
- Kotwal, A.R.; Kim, Y.J.; Hu, J.; Sriraman, V. Characterization and Early Age Physical Properties of Ambient Cured Geopolymer Mortar Based on Class C Fly Ash. Int. J. Concr. Struct. Mater. 2014, 9, 35–43. [Google Scholar] [CrossRef]
- Görhan, G.; Kürklü, G. The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Compos. Part B Eng. 2014, 58, 371–377. [Google Scholar] [CrossRef]
- Bashar, I.I.; Alengaram, U.J.; Jumaat, M.Z.; Islam, A. The effect of variation of molarity of alkali activator and fine aggregate content on the compressive strength of the fly ash: Palm oil fuel ash based geopolymer mortar. Adv. Mater. Sci. Eng. 2014, 2014, 245473. [Google Scholar] [CrossRef]
- Okba, S.H.; Nasr, E.S.A.; Helmy, A.I.; Yousef, I.A.L. Effect of thermal exposure on the mechanical properties of polymer adhesives. Constr. Build. Mater. 2017, 135, 490–504. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.; Zhang, S.; Zheng, E. Mechanical Properties and Microstructure of Class C Fly Ash-Based Geopolymer Paste and Mortar. Materials 2013, 6, 1485–1495. [Google Scholar] [CrossRef] [PubMed]
- Adam, A.A.; Horianto, X. The Effect of Temperature and Duration of Curing on the Strength of Fly Ash Based Geopolymer Mortar. Procedia Eng. 2014, 95, 410–414. [Google Scholar] [CrossRef]
- Narayanan, A.; Shanmugasundaram, P. An Experimental Investigation on Flyash-based Geopolymer Mortar under different curing regime for Thermal Analysis. Energy Build. 2017, 138, 539–545. [Google Scholar] [CrossRef]
- Mallikarjuna Rao, G.; Gunneswara Rao, T.D. Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar. Arab. J. Sci. Eng. 2015, 40, 3067–3074. [Google Scholar] [CrossRef]
- Algaifi, H.A.; Mustafa Mohamed, A.; Alsuhaibani, E.; Shahidan, S.; Alrshoudi, F.; Huseien, G.F.; Bakar, S.A. Optimisation of GBFS, Fly Ash, and Nano-Silica Contents in Alkali-Activated Mortars. Polymers 2021, 13, 2750. [Google Scholar] [CrossRef] [PubMed]
- Chuah, S.; Duan, W.; Pan, Z.; Hunter, E.; Korayem, A.; Zhao, X.; Collins, F.; Sanjayan, J. The properties of fly ash based geopolymer mortars made with dune sand. Mater. Des. 2016, 92, 571–578. [Google Scholar] [CrossRef]
- Guades, E.J. Experimental investigation of the compressive and tensile strengths of geopolymer mortar: The effect of sand/fly ash (S/FA) ratio. Constr. Build. Mater. 2016, 127, 484–493. [Google Scholar] [CrossRef]
- Cyr, M.; Idir, R.; Poinot, T. Prpoerties of inorganic polymer (geopolymer) mortars made of glass cullet. J. Mater. Sci. 2012, 47, 2782–2797. [Google Scholar] [CrossRef]
- Atis, C.D.; Gorur, E.B.; Karahan, O.; Bilim, C.; Ilkentapar, S.; Luga, E. Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Constr. Build Mater. 2015, 96, 673–678. [Google Scholar] [CrossRef]
- Satya, Y.S.D.; Saputra, E.; Olivia, M. Performance of Blended Fly Ash (FA) and Palm Oil Fuel Ash (POFA) Geopolymer Mortar in Acidic Peat Environment. Mater. Sci. Forum 2016, 841, 83–89. [Google Scholar] [CrossRef]
- Olivia, M.; Wulandari, C.; Sitompul, I.R.; Darmayanti, L.; Djauhari, Z. Study of Fly Ash (FA) and Palm Oil Fuel Ash (POFA) Geopolymer Mortar Resistance in Acidic Peat Environment. Mater. Sci. Forum 2016, 841, 126–132. [Google Scholar] [CrossRef]
- Sreevidya, V.; Anuradha, R.; Thomas, T.; Venkatasubramani, R. Duribility studies on fly ash geopolymer mortar under in ambient curing condition. Asian J. Chem. 2013, 25, 2497–2499. [Google Scholar] [CrossRef]
- Abdollahnejad, Z.; Pacheco-Torgal, F.; Aguiar, J.; Jesus, C. Durability Performance of Fly Ash Based One-Part Geopolymer Mortars. Key Eng. Mater. 2015, 634, 113–120. [Google Scholar] [CrossRef]
- Thokchom, S.; Ghosh, P.; Ghosh, S. Acid resistance of fly ash based geopolymer mortars. Int. J. Recent Trends Eng. Technol. 2009, 1, 36–40. [Google Scholar]
- Kürklü, G. The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar. Compos. Part B Eng. 2016, 92, 9–18. [Google Scholar] [CrossRef]
- Djobo, J.N.Y.; Elimbi, A.; Tchakouté, H.K.; Kumar, S. Mechanical properties and durability of volcanic ash based geopolymer mortars. Constr. Build. Mater. 2016, 124, 606–614. [Google Scholar] [CrossRef]
- Abdulkareem, O.A.; Al Bakri, A.M.; Kamarudin, H.; Nizar, I.K.; Saif, A.A. Strength and porosity characterizations of blended biomass wood ash-fly ash-based geopolymer mortar. AIP Conf. Proc. 2018, 2045, 020096. [Google Scholar]
- Kumar, E.M.; Ramamurthy, K. Influence of production on the strength, density and water absorption of aerated geopolymer paste and mortar using Class F fly ash. Constr. Build. Mater. 2017, 156, 1137–1149. [Google Scholar] [CrossRef]
- Ling, Y.; Wang, K.; Fu, C. Shrinkage behavior of fly ash based geopolymer pastes with and without shrinkage reducing admixture. Cem. Concr. Compos. 2019, 98, 74–82. [Google Scholar] [CrossRef]
- Zuda, L.; Pavlík, Z.; Rovnanikova, P.; Bayer, P.; Černý, R. Properties of Alkali Activated Aluminosilicate Material after Thermal Load. Int. J. Thermophys. 2006, 27, 1250–1263. [Google Scholar] [CrossRef]
- Saha, S.; Rajasekaran, C. Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Constr. Build. Mater. 2017, 146, 615–620. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; De Silva, P.; Sagoe-Crentsil, K.; Hanjitsuwan, S. Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. J. Mater. Sci. 2012, 47, 4876–4883. [Google Scholar] [CrossRef]
- Alonso, S.; Palomo, A. Calorimetric study of alkaline activation of calcium hydroxide–metakaolin solid mixtures. Cem. Concr. Res. 2001, 31, 25–30. [Google Scholar] [CrossRef]
- Puertas, F.; Amat, T.; Vázquez, T. Behaviour of alkaline cement mortars reinforced with acrylic and polypropylene fibres. Mater. Constru. 2000, 50, 69–84. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A. Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cem. Concr. Res. 2005, 35, 1984–1992. [Google Scholar] [CrossRef]
- Liu, G.; Florea, M.V.A.; Brouwers, H.J.H. Waste glass as binder in alkali activated slag–fly ash mortars. Mater. Struct. 2019, 52, 101. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Rattanasak, U.; Vongvoradit, P.; Jenjirapanya, S. Thermal treatment and utilization of Al-rich waste in high calcium fly ash geopolymeric materials. Int. J. Miner. Met. Mater. 2012, 19, 872–878. [Google Scholar] [CrossRef]
- Fletcher, R.A.; MacKenzie, K.J.; Nicholson, C.L.; Shimada, S. The composition range of aluminosilicate geopolymers. J. Eur. Ceram. Soc. 2005, 25, 1471–1477. [Google Scholar] [CrossRef]
- De Silva, P.; Sagoe-Crenstil, K.; Sirivivatnanon, V. Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cem. Concr. Res. 2007, 37, 512–518. [Google Scholar] [CrossRef]
- Temuujin, J.; Van Riessen, A.; Williams, R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J. Hazard. Mater. 2009, 167, 82–88. [Google Scholar] [CrossRef]
- Guo, X.; Shi, H.; Dick, W.A. Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem. Concr. Compos. 2010, 32, 142–147. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J. Concrete Microstructure, Properties and Materials; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]
- Van Deventer, J.S.; San Nicolas, R.; Ismail, I.; Bernal, S.A.; Brice, D.G.; Provis, J.L. Microstructure and durability of alkali-activated materials as key parameters for standardization. J. Sustain. Cem. Mater. 2015, 4, 116–128. [Google Scholar] [CrossRef]
- Weir, A.J.; Abrams, G.; Adolphsen, C.E.; Alexander, J.P.; Alvarez, M.; Amidei, D.; Baden, A.R.; Barish, B.C.; Barklow, T.; Barnett, B.A.; et al. A reanalysis of B0-B̄0 mixing in e+ e− annihilation at 29 GeV. Phys. Lett. B 1990, 240, 289–296. [Google Scholar] [CrossRef]
- Brouwers, H.J.H.; Van Eijk, R.J. Fly ash reactivity: Extension and application of a shrinking core model and thermodynamic approach. J. Mater. Sci. 2002, 37, 2129–2141. [Google Scholar] [CrossRef]
- Phoo-ngernkham, T.; Chindaprasirt, P.; Sata, V.; Hanjitsuwan, S.; Hatanaka, S. The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Mater. Des. 2014, 55, 58–65. [Google Scholar] [CrossRef]
- Wongsa, A.; Boonserm, K.; Waisurasingha, C.; Sata, V.; Chindaprasirt, P. Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix. J. Clean. Prod. 2017, 148, 49–59. [Google Scholar] [CrossRef]
- Adak, D.; Sarkar, M.; Mandal, S. Structural performance of nano-silica modified fly-ash based geopolymer concrete. Constr. Build. Mater. 2017, 135, 430–439. [Google Scholar] [CrossRef]
- Salih, M.A.; Ali, A.A.A.; Farzadnia, N. Characterization of mechanical and microstructural properties of palm oil fuel ash geopolymer cement paste. Constr. Build. Mater. 2014, 65, 592–603. [Google Scholar] [CrossRef]
- Swanepoel, J.; Strydom, C. Utilisation of fly ash in a geopolymeric material. Appl. Geochem. 2002, 17, 1143–1148. [Google Scholar] [CrossRef]
- Ghani, U.; Hussain, S.; Imtiaz, M.; Khan, S.A. Role of calcination on geopolymerization of lateritic clay by alkali treatment. J. Saudi Chem. Soc. 2021, 25, 101198. [Google Scholar] [CrossRef]
- Gao, K.; Lin, K.L.; Wang, D.; Hwang, C.L.; Shiu, H.S.; Chang, Y.M.; Cheng, T.W. Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers, Constr. Build. Mater. 2014, 53, 503–510. [Google Scholar] [CrossRef]
- Zawrah, M.; Gado, R.; Feltin, N.; Ducourtieux, S.; Devoille, L. Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process Saf. Environ. Prot. 2016, 103, 237–251. [Google Scholar] [CrossRef]
- Duan, P.; Yan, C.; Zhou, W.; Luo, W. Fresh properties, mechanical strength and microstructure of fly ash geopolymer paste reinforced with sawdust. Constr. Build. Mater. 2016, 111, 600–610. [Google Scholar] [CrossRef]
- Okoye, F.; Durgaprasad, J.; Singh, N. Mechanical properties of alkali activated flyash/Kaolin based geopolymer concrete. Constr. Build. Mater. 2015, 98, 685–691. [Google Scholar] [CrossRef]
- Cai, J.; Jiang, J.; Gao, X.; Ding, M. Improving the Mechanical Properties of Fly Ash-Based Geopolymer Composites with PVA Fiber and Powder. Materials 2022, 15, 2363. [Google Scholar] [CrossRef]
- Kaze, C.R.; Adesina, A.; Lecomte-Nana, G.L.; Assaedi, H.; Alomayri, T.; Kamseu, E.; Melo, U.C. Physico-mechanical and microstructural properties of geopolymer binders synthesized with metakaolin and meta-halloysite as precursors. Clean. Mater. 2022, 4, 100070. [Google Scholar] [CrossRef]
- Ramli, M.I.I.; Salleh, M.A.A.M.; Abdullah, M.M.A.B.; Aziz, I.H.; Ying, T.C.; Shahedan, N.F.; Kockelmann, W.; Fedrigo, A.; Sandu, A.V.; Vizureanu, P.; et al. The Influence of Sintering Temperature on the Pore Structure of an Alkali-Activated Kaolin-Based Geopolymer Ceramic. Materials 2022, 15, 2667. [Google Scholar] [CrossRef] [PubMed]
- Kalombe, R.M.; Ojumu, V.T.; Eze, C.P.; Nyale, S.M.; Kevern, J.; Petrik, L.F. Fly Ash-Based Geopolymer Building Materials for Green and Sustainable Development. Materials 2020, 13, 5699. [Google Scholar] [CrossRef]
- Luhar, S.; Chaudhary, S.; Dave, U.V. Effect of different type of curing on fly ash and Slag based geopolymer concrete. Int. J. Civ. Struct. Environ. Infrastr. Eng. Res. Dev 2016, 69–78. Available online: https://www.researchgate.net/publication/309766349_Effect_of_Different_type_of_curing_on_fly_ash_and_slag_based_geopolymer_concrete (accessed on 20 April 2022).
- Sanni, S.H.; Khadiranaikar, R.B. Performance of geopolymer concrete under severe environmental conditions. Int. J. Civ. Struct. Eng. 2012, 3, 396. [Google Scholar]
- Luhar, S. Fly Ash and Slag Based Geopolymer Concrete: Experimental Facts; LAP Lambert Academic Publishing: Sunnyvale, CA, USA, 2016. [Google Scholar]
- Cheng, T.W.; Chiu, J.P. Fire-resistant geopolymer produced by granulated blast furnace slag. Miner. Eng. 2003, 16, 205–210. [Google Scholar] [CrossRef]
- World Bank. Solid Waste Manage; The World Bank Group: Washington, DC, USA, 2013. [Google Scholar]
- European Union. The EU in the World- Environment, 2020th ed.; European Union, Ed.; Eurostat: Luxembourg City, Luxembourg, 2020. [Google Scholar]
- Krautwurst, N.; Nicoleau, L.; Dietzsch, M.; Lieberwirth, I.; Labbez, C.; Fernandez- Martinez, A.; Van Driessche, A.E.S.; Barton, B.; Leukel, S.; Tremel, W. Twostep nucleation process of calcium silicate hydrate, the nanobrick of cement. Chem. Mater. 2018, 30, 2895–2904. [Google Scholar] [CrossRef]
- Korniejenko, K.; Kozub, B.; Bąk, A.; Balamurugan, P.; Uthayakumar, M.; Furtos, G. Tackling the Circular Economy Challenges—Composites Recycling: Used Tyres, Wind Turbine Blades, and Solar Panels. J. Compos. Sci. 2021, 5, 243. [Google Scholar] [CrossRef]
Reference | Type of Fly Ash | CaO | SiO2 | Al2O3 | Fe2O3 | SiO2 + Al2O3 + and Fe2O3 | Na2O | K2O | MnO | MgO | SO3 | TiO2 | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[161] | Class F | 0.87 | 61.89 | 28.05 | 4.11 | 94.05 | 0.4 | 0.82 | - | 0.38 | 1.32 | - | 0.49 |
[162] | Class F | 2.24 | 57.2 | 24.4 | 7.1 | - | 0.38 | 3.37 | - | 2.4 | 0.29 | - | 1.52 |
[163] | Class F | 2.38 | 50.7 | 28.8 | 8.8 | 88.3 | 0.84 | 2.4 | - | 1.39 | 0.3 | - | 3.79 |
[164] | Class F | 5 | 49 | 31 | 3 | 83 | 4 | 1 | - | 3 | 0 | 2 | 0 |
[165] | Class F | 1.55 | 53.5 | 28.8 | 7.47 | 89.77 | - | - | - | 0.81 | 0.14 | - | 3.11 |
[166] | - | 3.05 | 52.3 | 28.0 | 6.32 | - | - | 2.51 | - | - | - | - | - |
[167] | Class F | 10.58 | 17.57 | 36.37 | 12.43 | 66.37 | - | 1.77 | - | 3.05 | 1.39 | 0.88 | 1.19 |
[168] | - | 3.6 | 58.0 | 29.08 | 3.58 | - | 2.0 | 0.73 | - | 1.91 | 1.8 | 1.75 | 2.0 |
[169] | - | 5.41 | 27.35 | 50.85 | 2.01 | 80.21 | 0.04 | 0.33 | 0.02 | 0.28 | - | 2.12 | 7.74 |
[170] | Class F | 5.31 | 54.72 | 27.28 | 5.15 | 87.15 | 0.43 | 1 | 0.1 | 1.1 | 1.01 | 1.82 | 6.8 |
[171] | Class F | 0.2 | 57.6 | 28.9 | 5.8 | 92.3 | - | 0.9 | - | 0.9 | 0.2 | - | 3.6 |
[172] | Class F and Class C | 14.14 | 50.67 | 18.96 | 6.35 | 75.98 | 0.69 | - | - | 3.12 | 0.74 | - | 0.17 |
[173] | Class F | 1.64 | 66.56 | 22.47 | 3.54 | 92.57 | 0.58 | 1.75 | – | 0.65 | 0.1 | 0.88 | 1.66 |
[174] | Class F | 2.58 | 63.13 | 24.88 | 3.07 | 91.08 | 0.71 | 2.01 | 0.05 | 0.61 | 0.18 | 0.96 | 1.45 |
[175] | Class F | 3.81 | 47.87 | 28 | 14.09 | 89.96 | 0.41 | 0.62 | 0.21 | 0.93 | 0.27 | 1.99 | 0.43 |
[176] | Class F | 4.3 | 51.1 | 25.7 | 12.5 | 89.3 | 0.8 | 0.7 | 0.2 | 1.5 | 0.2 | 1.3 | 0.6 |
[177] | Class F | 12.92 | 52.75 | 18.05 | 5.92 | 76.72 | 1.11 | 2.09 | 0.14 | 3.86 | 1.76 | 1.01 | 1.6 |
[178] | Class F and Class C | 1.29 | 54.48 | 27.72 | 8.14 | 90.34 | 0.67 | - | - | - | 0.11 | - | 4.11 |
[179] | Class C | 17.16 | 35.86 | 15.05 | 17.31 | 68.22 | 1.58 | 3.12 | - | 2.34 | 5.94 | - | 0.1 |
[180] | Class F | 7.32 | 58.4 | 23.8 | 4.19 | 86.39 | 1.43 | 1.02 | - | 1.11 | 0.44 | - | 0.5 |
[181] | Class F | - | 50.83 | 23.15 | 6.82 | 80.8 | 1.29 | 2.14 | - | 1.7 | 1.24 | 1.01 | 0.55 |
Sr. No | Paper | Test Conducted | Observations | |
---|---|---|---|---|
1. | Strength studies | Hardjito [317], Llyod [318], Panias et al. [319], Sofi et al. [320] Rangan [321], | Compressive strength | Geopolymer composites based on fly ash exhibited high early strength compressive strength, compared to cement concrete. Higher temperature and higher sodium hydroxide concentration give the highest compressive strength. There is no major reduction in compressive strength with concrete age. |
Sofi et al. [320] | Flexural strength | The flexural strength determines the tensile properties of concrete under internal or external loading. The flexural strength of geopolymer concrete is more privileged than that of cement concrete, which exhibits a decreasing rate of crack propagation due to corrosion of embedded steel bars in the concrete. | ||
Sofi et al. [320] | Split tensile strength | The split tensile strength of geopolymer concrete decreased as the proportion of rubber tyre waste increased. However, the strength is higher than that of cement concrete due to good bonding between the geopolymer paste and aggregates. | ||
Sofi et al. [320] Fernande et al. [322] Neville [323] Hardjito et al. [324] | Modulus of elasticity | The modulus of elasticity of geopolymer concrete is dependent on the modulus of elasticity of the aggregate, as well as the microstructure and modulus of elasticity of the geopolymer paste. Geopolymer concrete exhibits good bonding between the geopolymer paste and aggregates. However, geopolymer concrete has a higher modulus of elasticity than cement concrete. | ||
2. | Durability studies | Cheema et al. [325] | Permeability | The coefficient of water permeability is low in geopolymer concrete as compared to OPC concrete. As the alkaline ratio increases, the water permeability of geopolymer concrete decreases. |
Adam et al. [326], Thokchom et al. [327] Mishra et al. [328] | Sorptivity | As the alkaline liquid ratio increased from 0.75 to 1.25, the sorptivity of geopolymer concrete decreased. An increase in Na2O content in geopolymer concrete decreased the sorptivity. | ||
Song [329] Sathia et al. [330] | Water absorption | The water absorption of geopolymer concrete is lower than in cement concrete. | ||
Bakharev [331] Wallah et al. [332] Thokchom et al. [327] | Sulphate resistance | Geopolymer concrete exhibits excellent performance against sulphates. Significant changes in mass and compressive strength have been observed in geopolymer concrete, as compared to cement concrete, as a result of alkaline liquid enhancing the stability of the geopolymeric structure. Increased alkaline content in the geopolymer mixture can improve the performance of geopolymer concrete against sulphates. | ||
Bharkdev [333] Song et al. [334] | Acid resistance | The degradation of mass and compressive strength of specimens after immersion in acid solution is less than observed in cement concrete specimens under an acidic environment. | ||
Monita et al. [335] | Corrosion | The corrosion of steel reinforcement embedded in geopolymer concrete is similar to that of steel embedded in cement concrete. | ||
Adam et al. [326] Roy [336] | Carbonation | The carbonation performance of geopolymer concrete is excellent compared to that of cement concrete. | ||
Monita et al. [335] | Chloride ion penetration | The chloride-ion penetration of fly ash geopolymer was higher than for OPC concrete. | ||
Wallah and Rangan [337] | Shrinkage | Geopolymer concrete has very little drying shrinkage compared to that of OPC concrete. | ||
3. | Elevated temperature effect | Rashad and Zeedan [338] | Residual strength of alkali-activated fly ash paste at a different temperature | Sodium silicate is more resistant to degradation caused by exposure to elevated temperatures than Portland cement specimens. The compressive strength and thermal shock resistance decreased. |
Kong and Sanjayan [339] | Residual thermal damage of geopolymer composites | Geopolymer strength increased by approximately 53% after exposure to elevated temperatures. Aggregate expanded with temperature. At 800 °C, expansion reached approximately 1.5–2.5%. | ||
Luhar et al. [340] | Compressive strength of geopolymer paste | Aggregates larger than 10 mm show higher strength at both ambient and elevated temperatures. | ||
Zhu pan et al. [341] | Compressive strength of geopolymer mortar | The compressive strength of geopolymer mortar decreases in some cases and increases in others after exposure to high temperatures. | ||
Ranjbar et al. [342] | Compressive strength, density and TGA of fuel ash-based geopolymer mortar | Palm oil fuel ash and fly ash used as source materials. Geopolymer mortar accelerated micropore formation at elevated temperatures. | ||
Kong et al. [343] | Compressive strength of fly ash and metakaolin | The compressive strength of fly ash-based geopolymer concrete is increased beyond 800 °C but the strength of the metakaolin based geopolymer concrete decreases at the same temperature. | ||
Zhu pan et al. [344] | Compressive strength and transient creep of geopolymer and OPC composites | At 550 °C, the strength of geopolymer paste increased, whereas the OPC paste exhibited little change. | ||
Hussain et al. [345] | Mass loss, compressive strength of blended ash geopolymer concrete | In comparison to OPC concrete at high temperatures, geopolymer concrete provides better compressive strength. | ||
4. | Fenghong Fan [346] | Thermo-Mechanical Properties | Study includes the thermo-mechanical properties of class F fly ash based geopolymer materials prepared using KOH and Na2SiO3 alkaline activators with different curing and cooling methods. | |
Omar et al. [347] | Compressive strength of lightweight geopolymer paste, mortar, and concrete | The unexposed geopolymers have excellent mechanical and microstructural properties. The deterioration of the properties of geopolymers begins at 800 °C. | ||
Sun et al. [348] | Compressive strength, TGA, SEM and FT-IR analysis of geopolymer paste | As source material, ceramic waste is used. A compressive resistance of 28 days of 71.1 MPa before and 75.6 MPa after thermal treatment at 1000 °C was presented with the synthesized geopolymer paste. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luhar, I.; Luhar, S. A Comprehensive Review on Fly Ash-Based Geopolymer. J. Compos. Sci. 2022, 6, 219. https://doi.org/10.3390/jcs6080219
Luhar I, Luhar S. A Comprehensive Review on Fly Ash-Based Geopolymer. Journal of Composites Science. 2022; 6(8):219. https://doi.org/10.3390/jcs6080219
Chicago/Turabian StyleLuhar, Ismail, and Salmabanu Luhar. 2022. "A Comprehensive Review on Fly Ash-Based Geopolymer" Journal of Composites Science 6, no. 8: 219. https://doi.org/10.3390/jcs6080219
APA StyleLuhar, I., & Luhar, S. (2022). A Comprehensive Review on Fly Ash-Based Geopolymer. Journal of Composites Science, 6(8), 219. https://doi.org/10.3390/jcs6080219