Physico-Chemical Characterization of Alkali-Treated Ethiopian Arabica Coffee Husk Fiber for Composite Materials Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Alkali Treatments of Coffee Husk Fiber
2.3. Physical Properties of Coffee Husk Fiber
2.3.1. Densities ()
2.3.2. Coffee Husk Fiber Moisture Absorption
2.3.3. Fiber Diameter Measurement
2.3.4. Determination of Volatile Matter (VM)
2.3.5. Determination of Fixed Carbon
2.3.6. Determination of Porosity of Coffee Husk Fiber
2.4. Chemical Composition of Coffee Husk Fiber
Extraction of Wax, Cellulose, Hemicellulose, and Lignin
2.5. Fourier Transform Infrared Spectroscopy
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physical Properties of the Experimented Fibers
Moisture Content
3.2. Chemical Properties of Coffee Husk Fibers
3.3. Fourier Transform Infrared (FTIR) Spectrometry
4. Conclusions
- The chemical properties of coffee husk fiber were significantly treated by NaOH for a better interfacial surface with the polymer matrices.
- The treated coffee husk shows greater reduction in lignin and hemicellulose, 73% and 52%, respectively.
- Water absorption is minimum for treated coffee husk than untreated coffee husk fiber.
- The FTIR information shows a reduction of lignin and hemicellulose, compared to an untreated husk due to chemical treatment.
- The peaks 1460–1650 cm−1 represent the aromatic structure of lignin found in fiber. In untreated coffee husk fiber, the peak 1602.90 cm−1 can be found. In untreated coffee husk fiber, the peak 1602.90 cm−1 can be found.
- The peaks at 1602.90 cm−1 and 1602.66 cm−1 in untreated and alkali-treated coffee husk fiber were attributed to C=O stretching vibration of acetyl groups in hemicellulose compounds
- Regression analysis of the data showed that the untreated coffee husk is the most water absorbed.
- The study’s findings can then be used to build coffee husk fiber polymer composites for a variety of applications.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bekele, A.E.; Lemu, H.G.; Jiru, M.G. Experimental study of physical, chemical and mechanical properties of enset and sisal fibers. Polym. Test. 2021, 106, 107453. [Google Scholar] [CrossRef]
- Cangussu, L.B.; Melo, J.C.; Franca, A.S. Chemical Characterization of Coffee Husks, a By-Product of Coffea arabica Production. Foods 2021, 10, 3125. [Google Scholar] [CrossRef] [PubMed]
- Franca, A.S.; Oliveira, L.S. Coffee processing solid wastes: Current uses and future perspectives. Agric. Wastes 2016, 12, 90–96. [Google Scholar]
- Tolesa, L.D.; Gupta, B.S.; Lee, M. Treatment of Coffee Husk with Ammonium-Based Ionic Liquids: Lignin Extraction, Degradation, and Characterization. ACS Omega 2018, 3, 10866–10876. [Google Scholar] [CrossRef]
- Calvo-flores, F.G.; Dobado, J.A. Lignin as Renewable Raw Material. ChemSusChem 2010, 3, 1227–1235. [Google Scholar] [CrossRef]
- Lee, R.A.; Berberi, V.; Labranche, J.; Lavoie, J. Bioresource Technology Lignin extraction—Reassessment of the severity factor with respect to hydroxide concentration. Bioresour. Technol. 2014, 169, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Constant, S.; Basset, C.; Dumas, C.; Di Renzo, F.; Constant, S.; Basset, C.; Dumas, C.; Di Renzo, F.; Robitzer, M. Reactive Organosolv Lignin Extraction from Wheat Straw: Influence of Lewis Acid Catalysts on Structural and Chemical Properties of Lignins To Cite This Version: HAL Id: Hal-01093037 Lewis acid Catalysts on Structural and Chemical Properties of Lignins; Elseiver: Amsterdam, The Netherlands, 2018; Volume 65, pp. 180–189. [Google Scholar]
- Serna, L.V.D.; Alzate, C.E.O.; Alzate, C.A.C. Bioresource Technology Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 2015, 199, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Njuguna, J. An Introduction to Lightweight Composite Materials and Their Use in Transport Structures. In Lightweight Composite Structures in Transport: Design, Manufacturing, Analysis and Performance; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 3–34. [Google Scholar]
- Catalán, E.; Komilis, D.; Sánchez, A. Environmental impact of cellulase production from coffee husks by solid-state fermentation: A life-cycle assessment. J. Clean. Prod. 2019, 233, 954–962. [Google Scholar] [CrossRef]
- Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt, A. Improving properties of thermoplastic starch films by incorporating active extracts and cellulose fibres isolated from rice or coffee husk. Food Packag. Shelf Life 2019, 22, 36–100. [Google Scholar] [CrossRef]
- Vadivel, V.; Brindha, P. Antioxidant property of solvent extract and acid/alkali hydrolysates from rice hulls. Food Biosci. 2015, 11, 85–91. [Google Scholar] [CrossRef]
- Feng, N.; Guo, X.; Liang, S. Adsorption study of copper (II) by chemically modified orange peel. J. Hazard. Mater. 2009, 164, 1286–1292. [Google Scholar] [CrossRef] [PubMed]
- Wan Ngah, W.S.; Hanafiah, M.A.K.M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 2008, 10, 3935–3948. [Google Scholar] [CrossRef] [PubMed]
- Pehlivan, E.; Altun, T.; Parlayici, S. Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chem. 2012, 135, 2229–2234. [Google Scholar] [CrossRef] [PubMed]
- Selatnia, A.; Bakhti, M.Z.; Madani, A.; Kertous, L.; Mansouri, Y. Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy 2004, 75, 11–24. [Google Scholar] [CrossRef]
- Naeem, H.; Bhatti, H.N.; Sadaf, S.; Iqbal, M. Uranium remediation using modified Vigna radiata waste biomass. Appl. Radiat. Isot. 2017, 123, 94–101. [Google Scholar] [CrossRef]
- Ashrafi, S.D.; Kamani, H.; Mahvi, A.H. The optimization study of direct red 81 and methylene blue adsorption on NaOH-modified rice husk. Desalin. Water Treat. 2016, 57, 738–746. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mishra, R.; Saha, P.; Kushwaha, P. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 2011, 265, 159–168. [Google Scholar] [CrossRef]
- Ebrahimian Pirbazari, A.; Saberikhah, E.; Badrouh, M.; Emami, M.S. Alkali treated Foumanat tea waste as an efficient adsorbent for methylene blue adsorption from aqueous solution. Water Resour. Ind. 2014, 6, 64–80. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, D.P.; Cruz, J.; Fangueiro, R. Surface Modification of Natural Fibers in Polymer Composites; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 276, pp. 13–23. [Google Scholar]
- Rohit, K.; Dixit, S. A Review—Future Aspect of Natural Fiber Reinforced Composite. Polym. Renew. Resour. 2016, 7, 43–59. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Applied Surface Science Effects of chemical treatments on hemp fibre structure. Appl. Surf. Sci. 2013, 276, 13–23. [Google Scholar] [CrossRef]
- Ajouguim, S.; Abdelouahdi, K.; Waqif, M.; Stefanidou, M.; Saâdi, L. Modifications of Alfa fibers by alkali and hydrothermal treatment. Cellulose 2019, 26, 1503–1516. [Google Scholar] [CrossRef]
- Bekele, A.E.; Lemu, H.G.; Jiru, M.G. Exploration of Mechanical Properties of Enset—Sisal Hybrid Polymer Composite. Fibers 2022, 10, 14. [Google Scholar] [CrossRef]
- Gonçalves, B.M.M.; de Oliveira Camillo, M.; Oliveira, M.P.; Carreira, L.G.; Moulin, J.C.; Neto, H.F.; de Oliveira, B.F.; Pereira, A.C.; Monteiro, S.N. Surface treatments of coffee husk fiber waste for effective incorporation into polymer biocomposites. Polymers 2021, 13, 3428. [Google Scholar] [CrossRef] [PubMed]
- Pratap, G.K.; Shantaram, M. Green synthesis of silver nanoparticles (Ag-nps) from olea dioica roxb., leaf extracts and its biological activity. Iforest-Biogeosci. For. 2019, 39, 544–549. [Google Scholar] [CrossRef]
- TAPPI T211 T211; Ash in Wood, Pulp, Paper and Paperboard: Combustion at 525 °C. TAPPI Test Methods. TAPPI: Atlanta, GA, USA, 2007; Volume T211 om–02, p. 5.
- Guo, J.Z.; Li, B.; Liu, L.; Lv, K. Removal of methylene blue from aqueous solutions by chemically modified bamboo. Chemosphere 2014, 111, 225–231. [Google Scholar] [CrossRef]
- Gebresemati, M.; Gabbiye, N.; Sahu, O. Sorption of cyanide from aqueous medium by coffee husk: Response surface methodology. J. Appl. Res. Technol. 2017, 15, 27–35. [Google Scholar] [CrossRef]
- Zhu, G.; Xing, X.; Wang, J.; Zhang, X. Effect of acid and hydrothermal treatments on the dye adsorption properties of biomass-derived activated carbon. J. Mater. Sci. 2017, 52, 7664–7676. [Google Scholar] [CrossRef]
- Kocaman, S.; Karaman, M.; Gursoy, M.; Ahmetli, G. Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials. Carbohydr. Polym. 2017, 159, 48–57. [Google Scholar] [CrossRef]
- Huang, R.; He, L.; Zhang, T.; Li, D.; Tang, P.; Zhao, Y.; Feng, Y. Fabrication and adsorption behavior of magnesium silicate hydrate nanoparticles towards methylene blue. Nanomaterials 2018, 8, 271. [Google Scholar] [CrossRef] [Green Version]
Properties | NaOH Treated Coffee Husk | Untreated Coffee Husk |
---|---|---|
Tt10% | Untt. | |
Moisture (%) | 3.02 ± 0.07 | 5.43 ± 0.66 |
Density (g/cm3) | 5.26 ± 0.04 | 3.1 ± 0.05 |
Volatile Matter | 82.24 ± 0.03 | 84.77 ± 0.16 |
Fixed carbon | 92.22 ± 0.12 | 91.81 ± 0.04 |
Porosity | 50 ± 0.05 | 46.42 ± 0.041 |
Samples | Wax | Cellulose | Hemicellulose | Lignin | Ash Content of the Samples |
---|---|---|---|---|---|
Untt | 7.51 ± 0.22 | 53.2 ± 0.07 | 17 ± 0.22 | 8 ± 0.03 | 3.42 ± 0.01 |
Tt10% | 0.94 ± 0.12 | 56.58 ± 0.03 | 11 ± 0.12 | 4.75 ± 0.25 | 5.54 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amena, B.T.; Altenbach, H.; Tibba, G.S.; Hossain, N. Physico-Chemical Characterization of Alkali-Treated Ethiopian Arabica Coffee Husk Fiber for Composite Materials Production. J. Compos. Sci. 2022, 6, 233. https://doi.org/10.3390/jcs6080233
Amena BT, Altenbach H, Tibba GS, Hossain N. Physico-Chemical Characterization of Alkali-Treated Ethiopian Arabica Coffee Husk Fiber for Composite Materials Production. Journal of Composites Science. 2022; 6(8):233. https://doi.org/10.3390/jcs6080233
Chicago/Turabian StyleAmena, Berhanu Tolessa, Holm Altenbach, Getechew Shunki Tibba, and Nazia Hossain. 2022. "Physico-Chemical Characterization of Alkali-Treated Ethiopian Arabica Coffee Husk Fiber for Composite Materials Production" Journal of Composites Science 6, no. 8: 233. https://doi.org/10.3390/jcs6080233
APA StyleAmena, B. T., Altenbach, H., Tibba, G. S., & Hossain, N. (2022). Physico-Chemical Characterization of Alkali-Treated Ethiopian Arabica Coffee Husk Fiber for Composite Materials Production. Journal of Composites Science, 6(8), 233. https://doi.org/10.3390/jcs6080233