Stiffness Degradation under Cyclic Loading Using Three-Point Bending of Hybridised Carbon/Glass Fibres with a Polyamide 6,6 Nanofibre Interlayer
Abstract
:1. Introduction
2. Methodology and Materials
2.1. Resin and Fibre Characteristics
2.2. Fatigue Testing Cycles
2.3. Optical and SEM Analysis of Composite Laminates
2.4. Assessment of the Kink Band Angle Is Taken Using the Angle Measurement Function of ImageJ to Assess the Kink Band
3. Results
3.1. Stiffness Degradation as a Function of Maximum Flexural Strength
3.2. Fatigue Failure Mechanisms of Glass Fibre under Cyclic Loading
3.3. Fatigue Failure Mechanisms of Hybrid Glass and Carbon Fibre under Cyclic Loading
3.4. Comparison of Cycles and Flexural Modulus Retention
3.5. Rubber Toughening Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chai, B.X.; Eisenbart, B.; Nikzad, M.; Fox, B.; Blythe, A.; Blanchard, P.; Dahl, J. Simulation-based optimisation for injection configuration design of liquid composite moulding processes: A review. Composites. Part A Appl. Sci. Manuf. 2021, 149, 106540. [Google Scholar] [CrossRef]
- Elias, P.K.; Aikaterini-Flora, T.; Raquel-Miriam, S.; Marta, M.; Cláudio Monterio Dos, S.; Vanessa, I.; Robert, B.; Guan, G.; Agustin, C.; Ignaas, V.; et al. Research and development in carbon fibers and advanced high-performance composites supply chain in europe: A roadmap for challenges and the industrial uptake. J. Compos. Sci. 2019, 3, 86. [Google Scholar] [CrossRef]
- Heckadka, S.S.; Nayak, S.Y.; Narang, K.; Vardhan Pant, K. Chopped Strand/Plain Weave E-Glass as Reinforcement in Vacuum Bagged Epoxy Composites. J. Mater. 2015, 2015, 957043. [Google Scholar] [CrossRef]
- Rashid, B.; Sadeq, A.; Ebraheem, M.; Mohammed, A.R. Mechanical properties of hybrid woven roving and chopped strand mat glass fabric reinforced polyester composites. Mater. Res. Express 2019, 6, 105208. [Google Scholar] [CrossRef]
- Dong, C.; Davies, I.J. Effect of stacking sequence on the flexural properties of carbon and glass fibre-reinforced hybrid composites. Adv. Compos. Hybrid Mater. 2018, 1, 530–540. [Google Scholar] [CrossRef]
- Naito, K. Flexural Properties of Carbon/Glass Hybrid Thermoplastic Epoxy Composite Rods Under Static and Fatigue Loadings. Appl. Compos. Mater. 2021, 28, 753–766. [Google Scholar] [CrossRef]
- Adam, H. Carbon fibre in automotive applications. Mater. Des. 1997, 18, 349–355. [Google Scholar] [CrossRef]
- Kalantari, M.; Dong, C.; Davies, I.J. Numerical investigation of the hybridisation mechanism in fibre reinforced hybrid composites subjected to flexural load. Compos. Part B Eng. 2016, 102, 100–111. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, W.; Gong, Z.; Li, W. Flexural Progressive Failure of Carbon/Glass Interlayer and Intralayer Hybrid Composites. Materials 2018, 11, 619. [Google Scholar] [CrossRef]
- Ribeiro, F.; Sena-Cruz, J.; Vassilopoulos, A.P. Tension-tension fatigue behavior of hybrid glass/carbon and carbon/carbon composites. Int. J. Fatigue 2021, 146, 106143. [Google Scholar] [CrossRef]
- Naito, K. Static and fatigue tensile properties of carbon/glass hybrid fiber-reinforced epoxy composites. Sci. Rep. 2022, 12, 6298. [Google Scholar] [CrossRef] [PubMed]
- Swolfs, Y.; Gorbatikh, L.; Verpoest, I. Fibre hybridisation in polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2014, 67, 181–200. [Google Scholar] [CrossRef]
- Qingtao, W.; Weili, W.; Wei, L. Compression Properties of Interlayer and Intralayer Carbon/Glass Hybrid Composites. Polymers 2018, 10, 343. [Google Scholar] [CrossRef]
- Wu, W.W.; Wei, Q.L. Comparison of tensile and compressive properties of carbon/glass interlayer and intralayer hybrid composites. Materials 2018, 11, 1105. [Google Scholar] [CrossRef]
- Ikbal, H.; Wang, Q.; Azzam, A.; Li, W. GF/CF hybrid laminates made through intra-tow hybridization for automobile applications.(Report). Fibers Polym. 2016, 17, 1505. [Google Scholar] [CrossRef]
- Dong, C. Uncertainties in flexural strength of carbon/glass fibre reinforced hybrid epoxy composites. Compos. Part B Eng. 2016, 98, 176–181. [Google Scholar] [CrossRef]
- Swolfs, Y.; Verpoest, I.; Gorbatikh, L. Maximising the hybrid effect in unidirectional hybrid composites. Mater. Des. 2016, 93, 39–45. [Google Scholar] [CrossRef]
- Kar, N.K.; Barjasteh, E.; Hu, Y.; Nutt, S.R. Bending fatigue of hybrid composite rods. Compos. Part A Appl. Sci. Manuf. 2011, 42, 328–336. [Google Scholar] [CrossRef]
- Ray, D.; Comer, A.J.; Rosca, I.; Obande, W.; Clancy, G.; Stanley, W. Core-shell rubber nanoparticle toughened carbon fibre/epoxy composites. In Proceedings of the 16th European Conference on Composite Materials, ECCM 2014, Seville, Spain, 22–26 June 2014. [Google Scholar]
- Puglia, D.; Kenny, J.M. Cure Kinetics of Epoxy/Rubber Polymer Blends. In Handbook of Epoxy Blends; Parameswaranpillai, J., Hameed, N., Pionteck, J., Woo, E.M., Eds.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Kim, D.S.; Kim, S.C. Rubber modified epoxy resin. I: Cure kinetics and chemorheology. Polym. Eng. Sci. 1994, 34, 625–631. [Google Scholar] [CrossRef]
- Sinclair, J.W. Effects of Cure Temperature on Epoxy Resin Properties. J. Adhes. 1992, 38, 219–234. [Google Scholar] [CrossRef]
- Bard, S.; Demleitner, M.; Weber, R.; Zeiler, R.; Altstädt, V. Effect of Curing Agent on the Compressive Behavior at Elevated Test Temperature of Carbon Fiber-Reinforced Epoxy Composites. Polymers 2019, 11, 943. [Google Scholar] [CrossRef] [PubMed]
- Felice, R.; Antonio, N.; Fausto, T.; Pierpaolo, C. Marine Application of Fiber Reinforced Composites: A Review. J. Mar. Sci. Eng. 2020, 8, 26. [Google Scholar] [CrossRef]
- Leon, M.; Kim, B.; Helga Nørgaard, P.; Justine, B.; Malcolm, M.; Bent, F.S. Materials for wind turbine blades: An overview. Materials 2017, 10, 1285. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Iwashita, K.; Sasaki, T.; Hamaguchi, Y. Tensile fatigue behaviour of FRP and hybrid FRP sheets. Compos. Part B Eng. 2010, 41, 396–402. [Google Scholar] [CrossRef]
- Liu, B.; Xu, A.; Bao, L. Preparation of carbon fiber-reinforced thermoplastics with high fiber volume fraction and high heat-resistant properties. J. Thermoplast. Compos. Mater. 2015, 30, 724–737. [Google Scholar] [CrossRef]
- Carolan, D.; Ivankovic, A.; Kinloch, A.J.; Sprenger, S.; Taylor, A.C. Toughened carbon fibre-reinforced polymer composites with nanoparticle-modified epoxy matrices. J. Mater. Sci. 2017, 52, 1767–1788. [Google Scholar] [CrossRef]
- Thomas, R.; Yumei, D.; Yuelong, H.; Le, Y.; Moldenaers, P.; Weimin, Y.; Czigany, T.; Thomas, S. Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 2008, 49, 278–294. [Google Scholar] [CrossRef]
- Mohammadi, R.; Ahmadi Najafabadi, M.; Saghafi, H.; Saeedifar, M.; Zarouchas, D. A quantitative assessment of the damage mechanisms of CFRP laminates interleaved by PA66 electrospun nanofibers using acoustic emission. Compos. Struct. 2021, 258, 113395. [Google Scholar] [CrossRef]
- Quan, D.; Yue, D.; Ma, Y.; Zhao, G.; Alderliesten, R. On the mix-mode fracture of carbon fibre/epoxy composites interleaved with various thermoplastic veils. Compos. Commun. 2022, 33, 101230. [Google Scholar] [CrossRef]
- Shekar, C.; Singaravel, B.; Deva Prasad, S.; Venkateshwarlu, N.; Srikanth, B. Mode-I fracture toughness of glass/carbon fiber reinforced epoxy matrix polymer composite. Mater. Today: Proc. 2021, 41, 833–837. [Google Scholar] [CrossRef]
- Hojo, M.; Matsuda, S.; Tanaka, M.; Ochiai, S.; Murakami, A. Mode I delamination fatigue properties of interlayer-toughened CF/epoxy laminates. Compos. Sci. Technol. 2006, 66, 665–675. [Google Scholar] [CrossRef]
- Zhou, H.; Du, X.; Liu, H.-Y.; Zhou, H.; Zhang, Y.; Mai, Y.-W. Delamination toughening of carbon fiber/epoxy laminates by hierarchical carbon nanotube-short carbon fiber interleaves. Compos. Sci. Technol. 2017, 140, 46–53. [Google Scholar] [CrossRef]
- Song, Y.; Zheng, N.; Dong, X.; Gao, J. Flexible carboxylated CNT/PA66 nanofibrous mat interleaved carbon fiber/epoxy laminates with improved interlaminar fracture toughness and flexural properties. Ind. Eng. Chem. Res. 2020, 59, 1151–1158. [Google Scholar] [CrossRef]
- Zheng, N.; Huang, Y.; Liu, H.-Y.; Gao, J.; Mai, Y.-W. Improvement of interlaminar fracture toughness in carbon fiber/epoxy composites with carbon nanotubes/polysulfone interleaves. Compos. Sci. Technol. 2017, 140, 8–15. [Google Scholar] [CrossRef]
- Pozegic, T.R.; King, S.G.; Fotouhi, M.; Stolojan, V.; Silva, S.R.P.; Hamerton, I. Delivering interlaminar reinforcement in composites through electrospun nanofibres. Adv. Manuf. Polym. Compos. Sci. 2019, 5, 155–171. [Google Scholar] [CrossRef]
- Cristina, M.; Miren, B.; Nieves, M.; Ana, P.-M.; Jon, M.; Jorge, G.; Jose Manuel, L.; Estíbaliz, A.; Jose Luis, V. Effect of Different Types of Electrospun Polyamide 6 Nanofibres on the Mechanical Properties of Carbon Fibre/Epoxy Composites. Polymers 2018, 10, 1190. [Google Scholar] [CrossRef]
- Ahmadloo, E.; Gharehaghaji, A.A.; Latifi, M.; Saghafi, H.; Mohammadi, N. Effect of PA66 nanofiber yarn on tensile fracture toughness of reinforced epoxy nanocomposite. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 233, 2033–2043. [Google Scholar] [CrossRef]
- Del Saz-Orozco, B.; Ray, D.; Stanley Walter, F. Effect of thermoplastic veils on interlaminar fracture toughness of a glass fiber/vinyl ester composite. Polym. Compos. 2015, 38, 2501–2508. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, Y.; Duan, G.; Mei, C.; Greiner, A.; Agarwal, S. Electrospun nanofiber reinforced composites: A review. Polym. Chem. 2018, 9, 2685–2720. [Google Scholar] [CrossRef]
- Arinstein, A.A. Electrospun Polymer Nanofibers. A Physicist’s Point of View. Singapore: Jenny Stanford Publishing; Pan Stanford Publishing: Singapore, 2018. [Google Scholar]
- Alam, P.; Mamalis, D.; Robert, C.; Floreani, C.; Ó Brádaigh, C.M. The fatigue of carbon fibre reinforced plastics—A review. Composites. Part B Eng. 2019, 166, 555–579. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, J. Experimental and analytical study on residual stiffness/strength of CFRP tendons under cyclic loading. Materials 2020, 13, 5653. [Google Scholar] [CrossRef] [PubMed]
- DorMohammdi, S.; Godines, C.; Abdi, F.; Huang, D.; Repupilli, M.; Minnetyan, L. Damage-tolerant composite design principles for aircraft components under fatigue service loading using multi-scale progressive failure analysis. J. Compos. Mater. 2017, 51, 2181–2202. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Wang, Y.-Q.; Gao, H.; Li, R.; Bao, Y. A progressive damage model for predicting damage evolution of laminated composites subjected to three-point bending. Compos. Sci. Technol. 2017, 151, 85–93. [Google Scholar] [CrossRef]
- ASTM D7264/D7264M-07; Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2015.
- Sieberer, S.; Nonn, S.; Schagerl, M. Fatigue behaviour of discontinuous carbon-fibre reinforced specimens and structural parts. Int. J. Fatigue 2020, 131, 105289. [Google Scholar] [CrossRef]
- Wang, Y.; Emerson, M.J.; Conradsen, K.; Dahl, A.B.; Dahl, V.A.; Maire, E.; Withers, P.J. Evolution of fibre deflection leading to kink-band formation in unidirectional glass fibre/epoxy composite under axial compression. Compos. Sci. Technol. 2021, 213, 108929. [Google Scholar] [CrossRef]
- Javaid, U.; Ling, C.; Cardiff, P. Mechanical performance of carbon-glass hybrid composite joints in quasi-static tension and tension-tension fatigue. Eng. Fail. Anal. 2020, 116, 104730. [Google Scholar] [CrossRef]
Curing Cycle | Temperature | Preheat (Seconds) | Degassing (Seconds) | Full Pressed (Seconds) | Cooling (Seconds) |
---|---|---|---|---|---|
1 | 100 °C | 30 | 30 | 540 | 0 |
2 | 130 °C | 60 | 0 | 540 | 300 |
Sample Name | Flexural Strength (MPa) | Flexural Modulus (GPa) |
---|---|---|
CF (CCCCCC) | 950.55 | 64.09 |
CFT (CTCTCTCTCTC) | 995.85 | 69.85 |
GF (GGG) | 856.27 | 43.89 |
GFT (GTGTG) | 797.18 | 41.57 |
HF (CCGG) | 495.83 | 42.40 |
HFT (CCTGG) | 547.09 | 53.99 |
Sample Name | 90% Maximum Loading (N) | 70% Maximum Loading (N) | 50% Maximum Loading (N) |
---|---|---|---|
CF (CCCCCC) | 600 | 500 | 330 |
CFT (CTCTCTCTCTC) | 700 | 550 | 390 |
GF (GGG) | 600 | 360 | 200 |
GFT (GTGTG) | 600 | 360 | 200 |
HF (CCGG) | 450 | 380 | 240 |
HFT (CCTGG) | 450 | 380 | 240 |
Load Case Scenario | 4000 Cycles | 100,000 Cycles | 100,000,000 Cycles |
---|---|---|---|
50% maximum flexural strength | 5 Hz | 5 Hz | 5 Hz |
70% maximum flexural strength | 5 Hz | 5 Hz | |
90% maximum flexural strength | 5 Hz | 5 Hz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blythe, A.; Fox, B.; Nikzad, M.; Eisenbart, B.; Chai, B.X. Stiffness Degradation under Cyclic Loading Using Three-Point Bending of Hybridised Carbon/Glass Fibres with a Polyamide 6,6 Nanofibre Interlayer. J. Compos. Sci. 2022, 6, 270. https://doi.org/10.3390/jcs6090270
Blythe A, Fox B, Nikzad M, Eisenbart B, Chai BX. Stiffness Degradation under Cyclic Loading Using Three-Point Bending of Hybridised Carbon/Glass Fibres with a Polyamide 6,6 Nanofibre Interlayer. Journal of Composites Science. 2022; 6(9):270. https://doi.org/10.3390/jcs6090270
Chicago/Turabian StyleBlythe, Ashley, Bronwyn Fox, Mostafa Nikzad, Boris Eisenbart, and Boon Xian Chai. 2022. "Stiffness Degradation under Cyclic Loading Using Three-Point Bending of Hybridised Carbon/Glass Fibres with a Polyamide 6,6 Nanofibre Interlayer" Journal of Composites Science 6, no. 9: 270. https://doi.org/10.3390/jcs6090270