Development and Characterization of Bioplastic Synthesized from Ginger and Green Tea for Packaging Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Bioplastic
2.3. Characterization
2.3.1. Soil Burial Biodegradation Test
2.3.2. Mechanical Test
2.3.3. FTIR Analysis
2.3.4. SEM Analysis
2.3.5. Thermal Analysis
3. Results and Discussion
3.1. Mechanical Properties Analysis
3.2. FTIR Analysis
3.3. Surface Morphology Analysis
3.4. Thermal Properties Analysis
3.4.1. TGA Analysis
3.4.2. DSC Analysis
3.5. Soil Burial Biodegradation Analysis
3.6. Comparative Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sit, M.; Ling, J.; Jiang, C.; Zhang, Z.; Khalfallah, M.; Ioos, F.; Grossmann, E.; Dhakal, H.N. Influence of accelerated weathering on the properties of flax reinforced PLA biocomposites. Results Mater. 2022, 16, 100333. [Google Scholar] [CrossRef]
- Xu, C.; Möttönen, V.; Suvanto, S.; Kilpeläinen, P.; Brännström, H.; Turunen, O.; Kumar, A. Preparation and characterisation of biocomposites containing thermomechanical pulp fibres, poly (lactic acid) and poly(butylene-adipate-terephthalate) or poly (hydroxyalkanoates) for 3D and 4D printing. Addit. Manuf. 2022, 59, 103166. [Google Scholar]
- Xu, C.; Möttönen, V.; Suvanto, S.; Kilpeläinen, P.; Brännström, H.; Turunen, O.; Kumar, A. Utilization of logging residue powder as a bio-based reinforcement for injection molded poly(lactic acid) biocom-posites. Ind. Crops Prod. 2022, 187, 115370. [Google Scholar] [CrossRef]
- In-Na, P.; Byrne, F.; Caldwell, G.S.; Lee, J.G. Techno-economic analysis of living biocomposites for carbon capture from breweries. Algal Res. 2022, 66, 102781. [Google Scholar] [CrossRef]
- Brief, L. Opportunities in Natural Fiber Composites; Lucintel: Irving, TX, USA, 2011. [Google Scholar]
- Pradhan, S. Optimization and Characterization of Bioplastic Produced by Bacillus cereus SE1. Ph.D. Thesis, National Institute of Technology, Rourkela, India, 2014. [Google Scholar]
- Fabunmi, O.; Tabil, L.G., Jr.; Panigrahi, S.; Chang, P.R. Developing Biodegradable Plastics from starch. In Proceedings of the ASABE/CSBE North Central Intersectional Conference, Fargo, ND, USA, 12–13 October 2007. [Google Scholar]
- Chen, W.-H.; Chen, Q.-W.; Chen, Q.; Cui, C.; Duan, S.; Kang, Y.; Liu, Y.; Liu, Y.; Muhammad, W.; Shao, S.; et al. Biomedical polymers: Synthesis, properties, and applications. Sci. China Chem. 2022, 65, 1010–1075. [Google Scholar] [CrossRef]
- Kanmani, P.; Rhim, J.W. Properties and Characterization of Bio Nanocomposite Films Prepared with Various Biopolymers and ZnO Nanoparticles. Sci. Direct 2014, 106, 190–199. [Google Scholar]
- Wang, J.-W.; Chen, Q.-W.; Luo, G.-F.; Han, Z.-Y.; Song, W.-F.; Yang, J.; Chen, W.-H.; Zhang, X.-Z. A Self-Driven Bioreactor Based on Bacterium–Metal–Organic Framework Biohybrids for Boosting Chemotherapy via Cyclic Lactate Catabolism. ACS Nano 2021, 15, 17870–17884. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.-F.; Chen, W.-H.; Zeng, X.; Zhang, X.-Z. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem. Soc. Rev. 2021, 50, 945–985. [Google Scholar] [CrossRef] [PubMed]
- Krepsztul, J.W.; Rydzkowski, T.; Borowski, G.; Szczypiński, M.; Klepka, T.; Thakur, V.K. Recent Progress in Biodegrada-ble Polymers and Nanocomposites Based Packaging Materials for Sustainable Environment. Int. J. Polym. Anal. Charact. 2018, 23, 383–395. [Google Scholar] [CrossRef]
- Liang, J.-L.; Luo, G.-F.; Chen, W.-H.; Zhang, X.-Z. Recent Advances in Engineered Materials for Immuno-therapy-Involved Combination Cancer Therapy. Adv. Mater. 2021, 33, 2007630. [Google Scholar] [CrossRef] [PubMed]
- Stepto, R.F.T. Understanding the processing of thermoplastic starch. Macromol. Symp. 2006, 245, 571–577. [Google Scholar] [CrossRef]
- Delville, J.; Joly, C.; Dole, P.; Bliard, C. Influence of photocrosslinking on the retrogradation of wheat starch based films. Carbohydr. Polym. 2003, 53, 373–381. [Google Scholar] [CrossRef]
- Khoramnejadian, S.; Zavareh, J.J.; Khoramnejadian, S. Effect of potato starch on thermal and mechanical properties on low-density polyethylene. Curr. World Environ. 2013, 8, 215–220. [Google Scholar] [CrossRef]
- Behera, L.; Mohanta, M.; Thirugnanam, A. Intensification of yam-starch based biode-gradable bioplastic film with bentonite for food packaging application. Environ. Technol. Innov. 2022, 25, 102180. [Google Scholar] [CrossRef]
- Ismaila, N.A.; Tahirb, S.M.; Yahyac, N. Synthesis and Characterization of Biodegradable Starch-based Bioplastics. Mater. Sci. Forum 2016, 846, 673–678. [Google Scholar] [CrossRef]
- Los, M.D.; Cornejo-Villegas, A.; Rincón-Londoño, N. The effect of Ca2þ ions on the pasting, morphological, structural, vibrational, and mechanical properties of corn starch water system. J. Cereal Sci. 2018, 79, 174–182. [Google Scholar]
- Omoregie, H. Chemical Properties of Starch and Its Application in the Food Industry. In Chemical Properties of Starch, March; Intech Open: London, UK, 2020. [Google Scholar]
- Moro, T.M.A.; Ascheri, J.L.R.; Ortiz, J.A.R.; Carvalho, C.W.P.; Meléndez-Arévalo, A. Bioplastics of Native Starches Reinforced with Passion Fruit Peel. Food Bioprocess Technol. 2017, 10, 1798–1808. [Google Scholar] [CrossRef]
- Santana, R.F.; Bonomo, R.C.F.; Gandolfi, O.R.R.; Rodrigues, L.B.; Santos, L.S.; Pires, A.C.D.S.; de Oliveira, C.P.; Fontan, R.D.C.I.; Veloso, C.M. Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol. J. Food Sci. Technol. 2018, 55, 278–286. [Google Scholar] [CrossRef]
- Karimah, A.; Ridho, M.R.; Munawar, S.S.; Adi, D.S.; Ismadi; Damayanti, R.; Subiyanto, B.; Fatriasari, W.; Fudholi, A. A review on natural fibers for development of eco-friendly bio-composite: Characteristics, and utilizations. J. Mater. Res. Technol. 2021, 13, 2442–2458. [Google Scholar] [CrossRef]
- Raggio, B.S.; Asaria, J. Filler Rhinoplasty. [Updated 2022 May 1]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Jang, W.Y.; Shin, B.Y.; Lee, T.J.; Narayan, R. Thermal properties and morphology of biodegradable PLA/starch compatibilized blends. J. Ind. Eng. Chem. 2007, 1, 457–464. [Google Scholar]
- Lee, S.Y.; Kang, I.A.; Doh, G.H.; Yoon, H.G.; Park, B.D.; Wu, Q. Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: Effect of filler content and coupling treatment. J. Thermoplast. Compos. Mater. 2008, 21, 209–223. [Google Scholar] [CrossRef]
- Shibata, M.; Ozawa, K.; Teramoto, N.; Yosomiya, R.; Takeishi, H. Biocomposites made from short abaca fiber and biode-gradable polyesters. Macromol. Mater. Eng. 2003, 288, 35–43. [Google Scholar] [CrossRef]
- Huda, M.S.; Drzal, L.T.; Misra, M.; Mohanty, A.K. Wood-fiber-reinforced poly (lactic acid) composites: Evaluation of the physicomechanical and morphological properties. J. Appl. Polym. Sci. 2006, 102, 4856–4869. [Google Scholar] [CrossRef]
- Huda, M.S.; Drzal, L.T.; Misra, M.; Mohanty, A.K.; Williams, K.; Mielewski, D.F. A study on biocomposites from recycled newspaper fiber and poly (lactic acid). Ind. Eng. Chem. Res. 2005, 44, 5593–5601. [Google Scholar] [CrossRef]
- Placket, D.; Andersen, T.L.; Pedersen, W.B.; Nielsen, L. Biodegradable composites based on L-polylactide and jute fibers. Compos. Sci. Technol. 2003, 63, 1287–1296. [Google Scholar] [CrossRef]
- Shibata, M.; Oyamada, S.; Kobayashi, S.-I.; Yaginuma, D. Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric. J. Appl. Polym. Sci. 2004, 92, 3857–3863. [Google Scholar] [CrossRef]
- Mathew, A.P.; Oksman, K.; Sain, M. Mechanical properties of biodegradable composites from polylactic acid (PLA) and microcrystalline cellulose (MCC). J. Appl. Polym. Sci. 2005, 97, 10–20. [Google Scholar] [CrossRef]
- Liu, W.; Misra, M.; Askeland, P.; Drzal, L.; Mohanty, A.K. ‘Green’ composites from soy based plastic and pineapple leaf fiber: Fabrication and properties evaluation. Polymer 2005, 46, 2710–2721. [Google Scholar] [CrossRef]
- Ardente, F.; Beccali, M.; Cellura, M.; Mistretta, M. Building energy performance: A LCA case study of kenaf-fibers insulation board. Energy Build. 2008, 40, 1–10. [Google Scholar] [CrossRef]
- Oksman, K.; Skrifvars, M.; Selin, J.F. Natural fibers as reinforcement in polylactic acid (PLA) composites. Compos. Sci. 2003, 63, 1317–1324. [Google Scholar] [CrossRef]
- Álvarez, V.; Ruscekaite, R.A.; Vazquez, A. Mechanical properties and water absorption behavior of composites made from a biodegradable matrix and alkaline-treated sisal fibers. J. Compos. Mater. 2003, 37, 1575–1588. [Google Scholar] [CrossRef]
- Avella, M.; Buzarovska, A.; Errico, M.E.; Gentile, G.; Grozdanovaeco, A. Eco challenges of bio-based polymer composites. Materials 2009, 2, 911–925. [Google Scholar] [CrossRef]
- Hakeem, K.R.; Rashid, M.J.U. Biomass and Bioenergy Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Wang, H.; Sun, X.Z.; Seib, P. Strengthening blends of poly(lactic acid) and starch with methylene diphenyldiisocyanate. J. Appl. Polym. Sci. 2001, 82, 1761–1767. [Google Scholar] [CrossRef]
- Teixeira, E.M.; Da Róz, A.L.; Carvalho, A.J.F.; Curvelo, A.A.S. The effect of glycerol/sugar/water and sugar/water mixtures on the plasticization of thermoplastic cassava starch. Carbohydr. Polym. 2007, 69, 619–624. [Google Scholar] [CrossRef]
- Babu, R.P.; Connor, K.O.; Seeram, R. Current progress on biobased polymers and their future trends. Prog.Biomater. 2013, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Khazir, S.; Shetty, S. Biobased polymers in the world. Int. J. Life Sci. Biotechnol. Pharma. Res. 2014, 3, 35–43. [Google Scholar]
- Fakhoury, F.M.; Martelli, S.M.; Bertan, L.C.; Yamashita, F.; Mei, L.H.I.; Queiroz, F.P.C. Edible flms made from blends of manioc starchand gelatin—Infuence of diferent types of plasticizer and different levels of macromolecules on their properties. LWT Food Sci. Technol. 2012, 49, 149–154. [Google Scholar] [CrossRef]
- Krishnamurthy, A.; Amritkumar, P. Synthesis and characterization of eco-friendly bioplastic from low-cost plant resources. SN Appl. Sci. 2019, 1, 1432. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Arshadi, M.; Javi, F.; Lawrence, P.; Davachi, S.M.; Abbaspourrad, A. Green and facile preparation of hydrophobic bioplastics from tea waste. J. Clean. Prod. 2020, 276, 123353. [Google Scholar] [CrossRef]
- Morvaridzadeh, M.; Sadeghi, E.; Agah, S.; Fazelian, S.; Rahimlou, M.; Kern, F.G.; Heshmati, S.; Omidi, A.; Persad, E.; Heshmati, J. Effect of ginger (Zingiberofficinale) supplementation on oxidative stress pa-rameters: A systematic review and meta-analysis. J. Food Biochem. 2021, 45, e13612. [Google Scholar] [CrossRef] [PubMed]
- Gurung, A.; Khatiwada, B.; Kayastha, B.; Parsekar, S.; Mistry, S.K.; Yadav, U.N. Effectiveness of ZingiberOffici-nale(ginger) compared with non-steroidal anti-inflammatory drugs and complementary therapy in primary dysmenorrhoea: A systematic review. Clin. Epidemiol. Glob. Health 2022, 18, 101152. [Google Scholar] [CrossRef]
- Osae, R.; Essilfie, G.; Alolga, R.N.; Bonah, E.; Ma, H.; Zhou, C. Drying of ginger slices—Evaluation of quality attributes, energy consumption, and kinetics study. J. Food Process. Eng. 2020, 43, e13348. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, D.; Zhang, Y.; Lu, Y.; Huang, S.; Gong, G.; Li, L. Ultrasonic assisted far infrared drying charac-teristics and energy consumption of ginger slices. Ultrason. Sonochemistry 2023, 92, 106287. [Google Scholar] [CrossRef]
- Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H.B. Bioactive Compounds and Bioactivities of Ginger (Zingiberoffic-inale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianfredi, V.; Nucci, D.; Abalsamo, A.; Acito, M.; Villarini, M.; Moretti, M.; Realdon, S. Green tea consumption and risk of breast cancer and recurrence—A systematic review and meta-analysis of observational studies. Nutrients 2018, 10, 1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, H.; Moses, O.; Lee, L.; Easa, A.M. Quality characteristics of Green Tea’s Infusion as influenced by Brands and Types of Brewing Water. Heliyon 2022, 9, e12638. [Google Scholar] [CrossRef]
- Yang, T.; Li, H.; Hu, X.; Li, J.; Hu, J.; Liu, R.; Deng, Z. Effects of fertilizing with N, P, Se, and Zn on regulating the element and func-tional component contents and antioxidant activity of tea leaves planted in red soil. J. Agric. Food Chem. 2014, 62, 3823–3830. [Google Scholar] [CrossRef]
- Liu, H.; Zhuang, S.; Gu, Y.; Shen, Y.; Zhang, W.; Ma, L.; Xiao, G.; Wang, Q.; Zhong, Y. Effect of storage time on the volatile compounds and taste quality of Meixian green tea. LWT 2023, 173, 114320. [Google Scholar] [CrossRef]
- Wang, H.; Hua, J.; Yu, Q.; Li, J.; Wang, J.; Deng, Y.; Yuan, H.; Jiang, Y. Widely targeted metabolomic analysis reveals dynamic changes in non-volatile and volatile metabolites during green tea processing. Food Chem. 2021, 363, 130131. [Google Scholar] [CrossRef]
- Ye, Y.; He, J.; He, Z.; Zhang, N.; Liu, X.; Zhou, J.; Cheng, S.; Cai, J. Evaluation of the brewing characteristics, digestion profiles, and neuro-protective effects of two typical Se-enriched green teas. Foods 2022, 11, 2159. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Hossain, N.; Badrudduza, M.D.; Rana, M.M. Development and characterization of natural sourced bioplastic for food packaging applications. Heliyon 2023, 9, e13538. [Google Scholar] [CrossRef]
- Ye, Y.; Yan, W.; Peng, L.; He, J.; Zhang, N.; Zhou, J.; Cheng, S.; Cai, J. Minerals and bioactive components profiling in Se-enriched green tea and thePearson correlation with Se. LWT 2023, 175, 114470. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, G.; Aluko, O.O.; Mo, Z.; Mao, J.; Zhang, H.; Liu, X.; Ma, M.; Wang, Q.; Liu, H. Bitter and astringent substances in green tea: Composition, human perception mechanisms, evaluation methods and factors influencing their formation. Food Res. Int. 2022, 157, 111262. [Google Scholar] [CrossRef] [PubMed]
- Hossain, N.; Chowdhury, M.A.; Noman, T.I.; Rana, M.; Ali, H.; Alruwais, R.S.; Alam, S.; Alamry, K.A.; Aljabri, M.D.; Rahman, M.M. Synthesis and Characterization of Eco-Friendly Bio-Composite from Fenugreek as a Natural Resource. Polymers 2022, 14, 5141. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Badrudduza, M.D.; Hossain, N.; Rana, M. Development and characterization of natural sourced bioplastic synthesized from tamarind seeds, berry seeds and licorice root. Appl. Surf. Sci. Adv. 2022, 11, 100313. [Google Scholar] [CrossRef]
- Sadeghi, A.; Razavi, S.M.A.; Shahrampour, D. Fabrication and characterization of biodegradable active films with modified morphology based on polycaprolactone-polylactic acid-green tea extract. Int. J. Biol. Macromol. 2022, 205, 341–356. [Google Scholar] [CrossRef]
- Yang, J.; Dong, X.; Wang, J.; Ching, Y.C.; Liu, J.; Li, C.; Baikeli, Y.; Li, Z.; Al-Hada, N.M.; Xu, S. Synthesis and properties of bioplastics from corn starch and citric acid-epoxidized soybean oil oligomers. J. Mater. Res. Technol. 2022, 20, 373–380. [Google Scholar] [CrossRef]
- Jim´enez-Rosado, M.; Rubio-Valle, J.F.; Perez-Puyana, V.; Guerrero, A.; Romero, A. Use of heat treatment for the development of protein-based bioplastics. Sustain. Chem. Pharm. 2020, 18, 100341. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S. Phenolic compounds of green tea: Health benefits and technological application in food. Asian Pac. J. Trop. Biomed. 2016, 6, 709–719. [Google Scholar] [CrossRef] [Green Version]
- Anesini, C.; Ferraro, G.E.; Filip, R. Total Polyphenol Content and Antioxidant Capacity of Commercially Available Tea (Camellia sinensis) in Argentina. J. Agric. Food Chem. 2008, 56, 9225–9229. [Google Scholar] [CrossRef]
- Abdullah, H.D.; Chalimah, S.; Primadona1, I.; Hanantyo, M.H.G. Physical and chemical properties of corn, cassava, and potato starchs. IOP Conf. Ser. Earth Environ. Sci. 2018, 160, 012003. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Jiao, D.; Xu, J. Using Fourier Transform Infrared Spectroscopy to Study Effects of Magnetic Field Treatment on Wheat (Triticum aestivum L.) Seedlings. J. Spectrosc. 2015, 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.R.; Chowdhury, M.A.; Kowser, M.A. Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch. Sci. Direct 2019, 5, e02009. [Google Scholar] [CrossRef] [Green Version]
- Sultan, N.F.K.; Johari, W. The Development of Banana Peel/Corn Starch Bioplastic Film: A Preliminary Study. Bioremediation Sci. Technol. Res. 2017, 5, 12–17. [Google Scholar] [CrossRef]
- Nordin, N.; Othman, S.H.; Kadir Basha, R.; Abdul Rashid, S. Mechanical and thermal properties of starch films reinforced with micro cellulose fibers. Food Res. 2018, 2, 555–563. [Google Scholar] [CrossRef]
- Marichelvam, M.K.; Manimaran, P.; Sanjay, M.R.; Siengchin, S.; Geetha, M.; Kandakodeeswaran, K.; Boonyasopon, P.; Gorbatyuk, S. Extraction and development of starch-based bioplastics from Prosopis Juliflora Plant: Eco-friendly and sustainability aspects. Curr. Res. Green Sustain. Chem. 2022, 5, 100296. [Google Scholar] [CrossRef]
- Boey, J.Y.; Lee, C.K.; Tay, G.S. Factors Affecting Mechanical Properties of Reinforced Bioplastics: A Review. Polymers 2022, 14, 3737. [Google Scholar] [CrossRef] [PubMed]
- Arzt, E.; Quan, H.; McMeeking, R.M.; Hensel, R. Functional surface microstructures inspired by nature—From adhesion and wetting principles to sustainable new devices. Prog. Mater. Sci. 2021, 120, 100823. [Google Scholar] [CrossRef]
- Chowdhury, M.; Hossain, N.; Noman, T.I.; Hasan, A.; Shafiul, A.; Abul, K.M. Biodegradable, physical and microbial analysis of tamarind seed starch infused eco-friendly bioplastics by different percentage of Arjuna powder. Results Eng. 2022, 13, 100387. [Google Scholar] [CrossRef]
- Bourgi, R.; Hardan, L.; Rivera-Gonzaga, A.; Cuevas-Suárez, C.E. Effect of warm-air stream for solvent evaporation on bond strength of adhesive systems: A systematic review and meta-analysis of in vitro studies. Int. J. Adhes. Adhes. 2021, 105, 102794. [Google Scholar] [CrossRef]
- Maragoni, L.; Carraro, P.A.; Quaresimin, M. Effect of voids on the crack formation in a [45/−45/0]s laminate under cyclic axial tension. Compos. Part A Appl. Sci. Manuf. 2016, 91, 493–500. [Google Scholar] [CrossRef]
- Shanmathy, M.; Mohanta, M.; Thirugnanam, A. Development of biodegradable bioplastic films from Taro starch reinforced with bentonite. Carbohydr. Polym. Technol. Appl. 2021, 2, 100173. [Google Scholar] [CrossRef]
- Hohimer, C.; Aliheidari, N.; Mo, C.; Ameli, A. Mechanical Behavior of 3D Printed Multiwalled Carbon Nano-tube/Thermoplastic Polyurethane Nanocomposites. Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies. In Proceedings of the ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Snowbird, UT, USA, 18–20 September 2017. [Google Scholar]
- Huang, F.-Y. Thermal properties and thermal degradation of cellulose tri-stearate (CTs). Polymers 2012, 4, 1012–1024. [Google Scholar] [CrossRef] [Green Version]
- Fortunati, E.; Pugliaa, D.; Luzia, F.; Santulli, C.; Kenny, J.M.; Torrea, L. Binary PVAbionanocomposites containing cellulose nanocrystals extracted from different natural sources. Carbohydr. Polym. 2013, 97, 825–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melikoğlu, A.Y.; Bilek, S.E.; Cesur, S. Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydr. Polym. 2019, 215, 330–337. [Google Scholar] [CrossRef]
- Nigam, S.; Das, A.K.; Patidar, M.K. Valorization of Parthenium hysterophorus weed for cellulose ex-traction and its application forbioplastic preparation. J. Environ. Chem. Eng. 2021, 9, 105424. [Google Scholar] [CrossRef]
- de Oliveira, C.S.; Bisinella, R.Z.B.; Bet, C.D.; Beninca, C.; Demiate, I.M.; Schnitzler, E. Physicochemical, Thermal, Structural and Pasting Properties of Unconventional Starches from Ginger (Zingiberofficinale) and White Yam (Dioscorea sp.). Braz. Arch. Biol. Technol. 2019, 62. Available online: https://www.scielo.br/j/babt/a/Mn7qBDZNkfbt3gyhBBq5fPt/?lang=en (accessed on 29 January 2023). [CrossRef]
- Peng, Y.; Wang, Q.; Shi, J.; Chen, Y.; Zhang, X. Optimization and release evaluation for tea polyphenols and chitosan composite films with regulation of glycerol and Tween. Food Sci. Technol. 2019, 40, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Sachdeva, A.; Vashist, S.; Chopra, R.; Puri, D. Antimicrobial activity of activepackaging film to prevent bread spoilage. Int. J. Food Sci. Nutr. 2017, 2, 29–37. [Google Scholar]
- Pathak, V.M.; Navneet. Review on the current status of polymer degradation: Amicrobial approach. Bioresour. Bioprocess. 2017, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Li, S.; Wu, Y.; Song, J.; Chen, S.; Li, X.; Sun, H. Preparation and char-acterization of natural corn starch-based composite films reinforced by eggshell powder. CyTA J. Food 2018, 16, 1045–1054. [Google Scholar] [CrossRef]
- Kim, S.-y.; Choi, A.-j.; Park, J.-E.; Jang, Y.-s.; Lee, M.-h. Antibacterial Activity and Biocom-patibility with the Concentration of Ginger Fraction in Biodegradable Gelatin Methacryloyl (GelMA) Hydrogel Coating for Medical Implants. Polymers 2022, 14, 5317. [Google Scholar] [CrossRef] [PubMed]
- Chethana, M.; Prashantha, K.; Siddaramaiah. Studies on thermal behavior, moisture absorption, and biodegrada-bility of ginger spent incorporated polyurethane green composites. J. Appl. Polym. Sci. 2014, 132, 10. [Google Scholar]
- Kanagesan, K.; Abdulla, R.; Derman, E.; Sabullah, M.K.; Govindan, N.; Gansau, J.A. A sustainable approach to green algal bioplastics production from brown seaweeds of Sabah, Malaysia. J. King Saud Univ. Sci. 2022, 34, 102268. [Google Scholar] [CrossRef]
- Guzman-Puyol, S.; Hierrezuelo, J.; Benítez, J.J.; Tedeschi, G.; Porras-Vázquez, J.M.; Heredia, A.; Athanassiou, A.; Romero, D.; Heredia-Guerrero, J.A. Transparent, UV-blocking, and high barrier cellulose-based bioplastics with naringin as active food packaging ma-terials. Int. J. Biol. Macromol. 2022, 209, 1985–1994. [Google Scholar] [CrossRef]
- Nigam, S.; Das, A.K.; Patidar, M.K. Synthesis, characterization and biodegradation of bioplastic films produced from Parthenium hysterophorus by incorporating a plasticizer (PEG600). Environ. Chall. 2021, 5, 100280. [Google Scholar] [CrossRef]
- García-Depraect, O.; Lebrero, R.; Rodriguez-Vega, S.; Bordel, S.; Santos-Beneit, F.; Martínez-Mendoza, L.J.; Börner, R.A.; Börner, T.; Muñoz, R. Biodegradation of bioplastics under aerobic and anaerobic aqueous conditions: Kinetics, carbon fate and particle size effect. Bioresour. Technol. 2022, 344, 126265. [Google Scholar] [CrossRef]
Ingredient | Weight | Percent (%) |
---|---|---|
Corn Starch | 60 gm | 11.50 |
Distilled water | 360 mL | 69.30 |
White Vinegar | 40 mL | 7.70 |
Glycerol | 40 gm | 7.70 |
Ginger/Green Tea | 20 gm | 3.80 |
Sl. No. | Samples | Load (kgf) | Young’s Modulus (N/mm2) | Elongation (in mm) | Stress (N/mm2) | Strain (%) |
---|---|---|---|---|---|---|
1 | Ginger Tea | 2.9 | 2.946 | 7.46 | 2.582 | 37.30 |
2 | Green Tea | 2.7 | 2.138 | 8.50 | 2.678 | 42.50 |
Sl. No. | Functional Group | Wave Number Literature (cm−1) | Ginger Tea | Green Tea |
---|---|---|---|---|
1 | O–H stretching | 3600–3300 [50] | 3313.47 | 3307.92 |
2 | C–H stretching | 2800–3000 [67] | 2929.87 | 2929.87 |
2860.43 | 2860.43 | |||
3 | C=O band | 1743 [68] | 1743.65 | 1743.65 |
4 | OH hydroxyl groups bending | 1580–1700 [69] | 1647.21 | 1645.28 |
CH2vibration bending | ~1450 [70] | 1452.4 | 1450.47 | |
5 | C–O–C asymmetric stretching | 1149, 1151 [70] | 1151.5 | 1151.5 |
6 | C–O stretching | 1200–800 [50] | 1020.34 | 1022.27 |
C–O–C ring vibration of carbohydrate | 920, 856 [50] | 923.9 | 923.9 |
Sl. No. | Sample | First Step | Second Stage |
---|---|---|---|
2 | Ginger Tea Bioplastic | 50–220 °C | 235–385 °C |
3 | Green Tea Bioplastic | 73–229 °C | 250–396 °C |
Sl. No. | DSC Test (Sample) | Glass Transition Point Tg (°C) | Melting Point Temp Tm (°C) | Crystallization Temperature (°C) |
---|---|---|---|---|
2 | Ginger Tea bioplastic | 50 | 276 | 304 |
3 | Green Tea bioplastic | 49 | 275 | 303 |
SL. | Degradation Medium | Weight Loss (%) | Time (Days) | References |
---|---|---|---|---|
1 | Soil | 100 | 4 | [90] |
2 | Water | 100 | 25 | [91] |
3 | Soil | 70.3 | 15 | [17] |
4 | Sea water | 39 | 30 | [72] |
5 | Soil | 50 | 10 | [92] |
6 | Soil | 69.29 | 45 | [78] |
7 | Aerobic conditions in aqueous medium | 86.8 | 68 | [93] |
8 | Simulated environments | 20 | 120 | [94] |
9 | Soil | 78 | 30 | This work |
Sl. No. | Test/Analysis | Starch Bioplastic | Composite Bioplastic | Present Study | |||
---|---|---|---|---|---|---|---|
Previous Study [71] | Previous Study [80] | Previous Study [76] | Previous Study [56,74] | Ginger Tea | Green Tea | ||
1 | Tensile Strength (Mpa) | 3.55 | 3.95 | 3.86 | 1.92 | 2.9 | 2.7 |
2 | Elongation (%) | 88.1 | 62.5 | 62.7 | 10.1 | 37.3 | 42.5 |
3 | Glass Transition Temperature (Tg) | 57.2 °C | 66.8 °C | 35.3 °C | --- | 63 °C | 60 °C |
4 | Melting temperature (Tm) | 297 °C | 303 °C | 136.6 °C | --- | 276 °C | 275 °C |
5 | Thermal decomposition (50% of weight loss) °C | 291 °C | 303 °C | --- | 310 °C | 285 °C | 287 °C |
6 | Biodegradibility | 64% | 81% | 60% | 78% | 47% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowser, M.A.; Hossain, S.M.K.; Amin, M.R.; Chowdhury, M.A.; Hossain, N.; Madkhali, O.; Rahman, M.R.; Chani, M.T.S.; Asiri, A.M.; Uddin, J.; et al. Development and Characterization of Bioplastic Synthesized from Ginger and Green Tea for Packaging Applications. J. Compos. Sci. 2023, 7, 107. https://doi.org/10.3390/jcs7030107
Kowser MA, Hossain SMK, Amin MR, Chowdhury MA, Hossain N, Madkhali O, Rahman MR, Chani MTS, Asiri AM, Uddin J, et al. Development and Characterization of Bioplastic Synthesized from Ginger and Green Tea for Packaging Applications. Journal of Composites Science. 2023; 7(3):107. https://doi.org/10.3390/jcs7030107
Chicago/Turabian StyleKowser, Md. Arefin, Sikder Muhammad Khalid Hossain, Md. Ruhul Amin, Mohammad Asaduzzaman Chowdhury, Nayem Hossain, Osama Madkhali, Md. Rezaur Rahman, Muhammad Tariq Saeed Chani, Abdullah M. Asiri, Jamal Uddin, and et al. 2023. "Development and Characterization of Bioplastic Synthesized from Ginger and Green Tea for Packaging Applications" Journal of Composites Science 7, no. 3: 107. https://doi.org/10.3390/jcs7030107
APA StyleKowser, M. A., Hossain, S. M. K., Amin, M. R., Chowdhury, M. A., Hossain, N., Madkhali, O., Rahman, M. R., Chani, M. T. S., Asiri, A. M., Uddin, J., & Rahman, M. M. (2023). Development and Characterization of Bioplastic Synthesized from Ginger and Green Tea for Packaging Applications. Journal of Composites Science, 7(3), 107. https://doi.org/10.3390/jcs7030107