Impacts of Structure-Directing Agents on the Synthesis of Cu3Mo2O9 for Flexible Lignin-Based Supercapacitor Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Characterization of Cu3Mo2O9@DNA and Cu3Mo2O9@CTAB
2.3. Fabrication of Al/lig-Cu3Mo2O9 Composite Electrodes
2.4. Asymmetric Solid-State Supercapacitor Assembly
3. Results and Discussion
3.1. X-ray Diffraction (XRD) Spectra and Raman Spectroscopy
3.2. Scanning Electron Microscopy (SEM)
3.3. Energy-Dispersive X-ray Spectroscopy (EDS)
3.4. X-ray Photoelectron Spectroscopy (XPS)
3.5. Electrochemical Performance
3.6. Role of the Structure-Directing Agents in Formation and Charge-Storage Mechanisms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simeonidis, K.; Mourdikoudis, S.; Kaprara, E.; Mitrakas, M.; Polavarapu, L. Inorganic engineered nanoparticles in drinking water treatment: A critical review. Environ. Sci. Water Res. Technol. 2016, 2, 43–70. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, V.; Gusain, D.; Sharma, Y.C. Critical review on the toxicity of some widely used engineered nanoparticles. Ind. Eng. Chem. Res. 2015, 54, 6209–6233. [Google Scholar] [CrossRef]
- Duan, H.; Wang, D.; Li, Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792. [Google Scholar] [CrossRef] [PubMed]
- Adil, S.F.; Assal, M.E.; Khan, M.; Al-Warthan, A.; Siddiqui, M.R.H.; Liz-Marzán, L.M. Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry. Dalton Trans. 2015, 44, 9709–9717. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Greener synthesis of lignin nanoparticles and their applications. Green Chem. 2020, 22, 612–636. [Google Scholar] [CrossRef]
- Jha, S.; Mehta, S.; Chen, Y.; Ma, L.; Renner, P.; Parkinson, D.Y.; Liang, H. Design and synthesis of lignin-based flexible supercapacitors. ACS Sustain. Chem. Eng. 2019, 8, 498–511. [Google Scholar] [CrossRef]
- Jha, S.; Mehta, S.; Chen, Y.; Renner, P.; Sankar, S.S.; Parkinson, D.; Kundu, S.; Liang, H. NiWO4 nanoparticle decorated lignin as electrodes for asymmetric flexible supercapacitors. J. Mater. Chem. C 2020, 8, 3418–3430. [Google Scholar] [CrossRef]
- Mehta, S.; Jha, S.; Liang, H. Lignocellulose materials for supercapacitor and battery electrodes: A review. Renew. Sustain. Energy Rev. 2020, 134, 110345. [Google Scholar] [CrossRef]
- Mehta, S.G. Bio-Inspired Materials for Energy Storage Applications. 2019. Available online: https://hdl.handle.net/1969.1/195921 (accessed on 15 December 2022).
- Mehta, S.; Jha, S.; Stewart, W.; Liang, H. Microwave Synthesis of Plant-Based Supercapacitor Electrodes for Flexible Electronics. In Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition, Virtual Online, 1–5 November 2021. [Google Scholar]
- Mehta, S.; Jha, S.; Huang, D.; Arole, K.; Liang, H. Microwave Synthesis of MnO2-Lignin Composite Electrodes for Supercapacitors. J. Compos. Sci. 2021, 5, 216. [Google Scholar] [CrossRef]
- Jha, S.; Mehta, S.; Chen, Y.; Likhari, R.; Stewart, W.; Parkinson, D.; Liang, H. Design and synthesis of high performance flexible and green supercapacitors made of manganese-dioxide-decorated alkali lignin. Energy Storage 2020, 2, e184. [Google Scholar] [CrossRef]
- Jha, S.; Mehta, S.; Chen, E.; Sankar, S.S.; Kundu, S.; Liang, H. Bimetallic tungstate nanoparticle-decorated-lignin electrodes for flexible supercapacitors. Mater. Adv. 2020, 1, 2124–2135. [Google Scholar] [CrossRef]
- Song, Z.; Miao, L.; Lv, Y.; Gan, L.; Liu, M. Versatile carbon superstructures for energy storage. J. Mater. Chem A 2023. [Google Scholar] [CrossRef]
- Mansuer, M.; Miao, L.; Qin, Y.; Song, Z.; Zhu, D.; Duan, H.; Lv, Y.; Li, L.; Liu, M.; Gan, L. Trapping precursor-level functionalities in hierarchically porous carbons prepared by a pre-stabilization route for superior supercapacitors. Chin. Chem. Lett. 2023, 34, 107304. [Google Scholar] [CrossRef]
- Liu, H.; Xu, T.; Liu, K.; Zhang, M.; Liu, W.; Li, H.; Du, H.; Si, C. Lignin-based electrodes for energy storage application. Ind. Crops Prod. 2021, 165, 113425. [Google Scholar] [CrossRef]
- Park, J.H.; Rana, H.H.; Lee, J.Y.; Park, H.S. Renewable flexible supercapacitors based on all-lignin-based hydrogel electrolytes and nanofiber electrodes. J. Mater. Chem. A 2019, 7, 16962–16968. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, J.; Lin, Z.; Lin, H.; Lu, H.; Wang, Y.; Huang, W. Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance. Electrochim. Acta 2015, 176, 1136–1142. [Google Scholar] [CrossRef]
- Zhang, X.; Glüsen, A.; Garcia-Valls, R. Porous lignosulfonate membranes for direct methanol fuel cells. J. Membr. Sci. 2006, 276, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Juikar, S.J.; Vigneshwaran, N. Extraction of nanolignin from coconut fibers by controlled microbial hydrolysis. Ind. Crops Prod. 2017, 109, 420–425. [Google Scholar] [CrossRef]
- Ma, W.; Chen, S.; Yang, S.; Chen, W.; Weng, W.; Cheng, Y.; Zhu, M. Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon 2017, 113, 151–158. [Google Scholar] [CrossRef]
- Shen, L.; Yu, L.; Wu, H.B.; Yu, X.-Y.; Zhang, X.; Lou, X.W.D. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 2015, 6, 6694. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zheng, S.; Wang, L.; Tang, H.; Xue, H.; Wang, G.; Pang, H. Fabrication of metal molybdate micro/nanomaterials for electrochemical energy storage. Small 2017, 13, 1700917. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Zhang, J.; Lv, Y.; Gan, L.; Liu, M. Dendrite-Free Engineering toward Efficient Zinc Storage: Recent Progress and Future Perspectives. Chem. A Eur. J. 2023, e202203973. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Wang, D.; Liu, B.; Wang, Y.; Liu, Y.; Wang, L.; Li, H.; Huang, H.; Li, Q.; Wang, T. Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. ACS Appl. Mater. Interfaces 2013, 5, 12905–12910. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Yang, Y.; Fang, X.; Arif, M.; Chen, X.; Yan, D. 2D cocrystallized metal–organic nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting. ACS Sustain. Chem. Eng. 2019, 7, 18085–18092. [Google Scholar] [CrossRef]
- Veerasubramani, G.K.; Krishnamoorthy, K.; Sivaprakasam, R.; Kim, S.J. Sonochemical synthesis, characterization, and electrochemical properties of MnMoO4 nanorods for supercapacitor applications. Mater. Chem. Phys. 2014, 147, 836–842. [Google Scholar] [CrossRef]
- Guo, D.; Zhang, H.; Yu, X.; Zhang, M.; Zhang, P.; Li, Q.; Wang, T. Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors. J. Mater. Chem. A 2013, 1, 7247–7254. [Google Scholar] [CrossRef]
- Seevakan, K.; Manikandan, A.; Devendran, P.; Slimani, Y.; Baykal, A.; Alagesan, T. Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode. Ceram. Int. 2018, 44, 20075–20083. [Google Scholar] [CrossRef]
- Gao, Y.-P.; Huang, K.-J.; Zhang, C.-X.; Song, S.-S.; Wu, X. High-performance symmetric supercapacitor based on flower-like zinc molybdate. J. Alloys Compd. 2018, 731, 1151–1158. [Google Scholar] [CrossRef]
- Xia, J.; Liu, W.; Teng, Y.; Wang, Q.S.; Zhao, L.; Ruan, M.M. Highly monodisperse Cu3Mo2O9 micropompons with excellent performance in photocatalysis, photocurrent response and lithium storage. RSC Adv. 2015, 5, 12015–12024. [Google Scholar] [CrossRef]
- Yesuraj, J.; Elumalai, V.; Bhagavathiachari, M.; Samuel, A.S.; Elaiyappillai, E.; Johnson, P.M. A facile sonochemical assisted synthesis of α-MnMoO4/PANI nanocomposite electrode for supercapacitor applications. J. Electroanal. Chem. 2017, 797, 78–88. [Google Scholar] [CrossRef]
- Ray, S.K.; Hur, J. A review on monoclinic metal molybdate photocatalyst for environmental remediation. J. Ind. Eng. Chem. 2021, 101, 28–50. [Google Scholar] [CrossRef]
- Cha, S.M.; Chandra Sekhar, S.; Bhimanaboina, R.; Yu, J.S. Achieving a high areal capacity with a binder-free copper molybdate nanocone array-based positive electrode for hybrid supercapacitors. Inorg. Chem. 2018, 57, 8440–8450. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, B.; Ravi, G.; Yuvakkumar, R.; Ganesh, V.; Guduru, R.K. Synthesis of polyoxometalates, copper molybdate (Cu3Mo2O9) nanopowders, for energy storage applications. Mater. Sci. Semicond. Process. 2019, 93, 164–172. [Google Scholar] [CrossRef]
- Harichandran, G.; Radha, S.; Yesuraj, J.; Muthuraaman, B. Facile Synthesis and Characterization of Cu3(MoO4)2(OH)2 Nanorods for High Performance Supercapacitor Electrode Application. ChemistrySelect 2020, 5, 11037–11047. [Google Scholar] [CrossRef]
- Ali, N.U.H.L.; Manoharan, S.; Pazhamalai, P.; Kim, S.-J. CuMoO4 nanostructures: A novel bifunctional material for supercapacitor and sensor applications. J. Energy Storage 2022, 52, 104784. [Google Scholar] [CrossRef]
- Kumaravel, S.; Karthick, K.; Sankar, S.S.; Karmakar, A.; Kundu, S. Shape-selective rhodium nano-huddles on DNA for high efficiency hydrogen evolution reaction in acidic medium. J. Mater. Chem. C 2021, 9, 1709–1720. [Google Scholar] [CrossRef]
- Karthick, K.; Anantharaj, S.; Karthik, P.E.; Subramanian, B.; Kundu, S. Self-assembled molecular hybrids of CoS-DNA for enhanced water oxidation with low cobalt content. Inorg. Chem. 2017, 56, 6734–6745. [Google Scholar] [CrossRef]
- Xia, J.; Liu, W.; Teng, Y.; Zhao, L.; Wang, Q.S.; Ruan, M.M. Construction of Cu3Mo2O9 nanoplates with excellent lithium storage properties based on a pH-dependent dimensional change. Dalton Trans. 2015, 44, 13450–13454. [Google Scholar] [CrossRef]
- Chu, W.; Wang, H.; Guo, Y.; Zhang, L.; Han, Z.; Li, Q.; Fan, S. Catalyst-free growth of quasi-aligned nanorods of single crystal Cu3Mo2O9 and their catalytic properties. Inorg. Chem. 2009, 48, 1243–1249. [Google Scholar] [CrossRef]
- Wen, W.; Li, C.; Sun, Y.; Tang, Y.; Fang, L. Cu3Mo2O9: An ultralow-firing microwave dielectric ceramic with good temperature stability and chemical compatibility with aluminum. J. Electron. Mater. 2018, 47, 1003–1008. [Google Scholar] [CrossRef]
- Tan, W.; Luan, J. Investigation into the synthesis conditions of CuMoO4 by an in situ method and its photocatalytic properties under visible light irradiation. RSC Adv. 2020, 10, 9745–9759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.-C.; Feng, F.; Yang, S.-H.; Gu, Y.-R.; Xue, H.-G.; Guo, S.-P. Promising electrochemical performance of Cu3Mo2O9 nanorods for lithium-ion batteries. J. Mater. Sci. 2017, 52, 12380–12389. [Google Scholar] [CrossRef]
- Buhrmester, T.; Leyzerovich, N.; Bramnik, K.; Ehrenberg, H.; Fuess, H. Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M = Cu, Zn). MRS Online Proc. Libr. 2004, 127, 76–84. [Google Scholar] [CrossRef]
- Ban, S.; Zhang, J.; Zhang, L.; Tsay, K.; Song, D.; Zou, X. Charging and discharging electrochemical supercapacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent. Electrochim. Acta 2013, 90, 542–549. [Google Scholar] [CrossRef]
- Chhetri, K.; Dahal, B.; Mukhiya, T.; Tiwari, A.P.; Muthurasu, A.; Kim, T.; Kim, H.; Kim, H.Y. Integrated hybrid of graphitic carbon-encapsulated CuxO on multilayered mesoporous carbon from copper MOFs and polyaniline for asymmetric supercapacitor and oxygen reduction reactions. Carbon 2021, 179, 89–99. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, H.; Zhao, N.; Peng, H.; Ren, X.; Wang, W.; Li, H.; Chen, G.; Zhu, Y.; Jiang, X. 3D hierarchical CoWO4/Co3O4 nanowire arrays for asymmetric supercapacitors with high energy density. Chem. Eng. J. 2018, 347, 291–300. [Google Scholar] [CrossRef]
- Appiagyei, A.B.; Bonsu, J.O.; Han, J.I. Robust structural stability and performance-enhanced asymmetric supercapacitors based on CuMoO4/ZnMoO4 nanoflowers prepared via a simple and low-energy precipitation route. J. Mater. Sci. Mater. Electron. 2021, 32, 6668–6681. [Google Scholar] [CrossRef]
- Bahmani, F.; Kazemi, S.H.; Kazemi, H.; Kiani, M.A.; Yoones Feizabadi, S. Nanocomposite of copper–molybdenum–oxide nanosheets with graphene as high-performance materials for supercapacitors. J. Alloys Compd. 2019, 784, 500–512. [Google Scholar] [CrossRef]
- Yu, X.; Lu, B.; Xu, Z. Super Long-Life Supercapacitors Based on the Construction of Nanohoneycomb-Like Strongly Coupled CoMoO4–3D Graphene Hybrid Electrodes. Adv. Mater. 2014, 26, 1044–1051. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.; Feng, T.; Yao, Q.; Xie, J.; Xia, H. Fe2O3 Nanoneedles on Ultrafine Nickel Nanotube Arrays as Efficient Anode for High-Performance Asymmetric Supercapacitors. Adv. Funct. Mater. 2017, 27, 1606728. [Google Scholar] [CrossRef]
- Zhang, G.; Lou, X.W. Controlled Growth of NiCo2O4 Nanorods and Ultrathin Nanosheets on Carbon Nanofibers for High-performance Supercapacitors. Sci. Rep. 2013, 3, 1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Substrate Material | Electrode Materials | Energy Density (Wh kg−1) | Power Density (W kg−1) | Current Density | Ref. |
---|---|---|---|---|---|
Al | Lignin-Cu3Mo2O9@DNA | 40.74 | 151.9 | 0.02 A g−1 | This work |
Al | Lig-Cu3Mo2O9@CTAB | 28.25 | 149.4 | 0.02 A g−1 | This work |
Al | Lignin/MnO2 | 6 | 355 | 0.04 A g−1 | [12] |
Al | AC-lignin-MnO2 | 14.11 | 1000 | 6 mA g−1 | [6] |
Al | lig–NiWO4 | 2 | 100 | 0.13 A g−1 | [7] |
Al | lig–NiCoWO4 | 5.75 | 854.76 | 0.8 mA cm−2 | [13] |
- | AC-CuMoO4 | 31.25 | 661.76 | 1.5 mA cm−2 | [37] |
Ni Foam | Carbon Black-CuMoO4 | 10.2 | 500 | 20 A g−1 | [49] |
Ni Foam | rGO/CuMoO4 | 65.6 | 775 | 1.8 A g−1 | [50] |
Ni Foam | 3D Graphene/CuMoO4 | 21.1 | 300 | 1.43 A g−1 | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehta, S.; Kumaravel, S.; Jha, S.; Yen, M.; Kundu, S.; Liang, H. Impacts of Structure-Directing Agents on the Synthesis of Cu3Mo2O9 for Flexible Lignin-Based Supercapacitor Electrodes. J. Compos. Sci. 2023, 7, 155. https://doi.org/10.3390/jcs7040155
Mehta S, Kumaravel S, Jha S, Yen M, Kundu S, Liang H. Impacts of Structure-Directing Agents on the Synthesis of Cu3Mo2O9 for Flexible Lignin-Based Supercapacitor Electrodes. Journal of Composites Science. 2023; 7(4):155. https://doi.org/10.3390/jcs7040155
Chicago/Turabian StyleMehta, Siddhi, Sangeetha Kumaravel, Swarn Jha, Matthew Yen, Subrata Kundu, and Hong Liang. 2023. "Impacts of Structure-Directing Agents on the Synthesis of Cu3Mo2O9 for Flexible Lignin-Based Supercapacitor Electrodes" Journal of Composites Science 7, no. 4: 155. https://doi.org/10.3390/jcs7040155
APA StyleMehta, S., Kumaravel, S., Jha, S., Yen, M., Kundu, S., & Liang, H. (2023). Impacts of Structure-Directing Agents on the Synthesis of Cu3Mo2O9 for Flexible Lignin-Based Supercapacitor Electrodes. Journal of Composites Science, 7(4), 155. https://doi.org/10.3390/jcs7040155