ZnO:V Nanoparticles with Enhanced Antimicrobial Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. V-ZnO Powders Synthesis
2.2. Characterization
2.3. Antibacterial Assay
2.3.1. Microbial Strains
2.3.2. Assessment of Antimicrobial Activities
3. Results and Discussion
3.1. Samples Microstructure
3.2. Samples Morphology
3.3. Antibacterial Activities
3.4. Antimicrobial Activities Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Baruah, S.; Kitsomboonloha, R.; Myint, M.T.Z. Nanoparticle Applications for Environmental Control and Remediation Nanoparticles: Synthesis Characterization and Applications; American Scientific Publishers: Valencia, CA, USA, 2009; pp. 195–216. [Google Scholar]
- Lukhele, L.P.; Mamba, B.B.; Momba, M.N.; Krause, R.W. Water disinfection using novel cyclodextrin polyurethanes containing silver nanoparticles supported on carbon nanotubes. J. Appl. Sci. 2010, 10, 65–70. [Google Scholar] [CrossRef]
- Tibayan, E.B., Jr.; Muflikhun, M.A.; Kumar, V.; Fisher, C.; Villagracia, A.C.; Nonato, G.; Santos, C. Performance evaluation of Ag/SnO2 nanocomposite materials as coating material with high capability on antibacterial activity. Ain Shams Eng. J. 2020, 11, 767–776. [Google Scholar] [CrossRef]
- Rajagopalachar, S.; Pattar, J.; Mulla, S. Synthesis and characterization of plate like high surface area MgO nanoparticles for their antibacterial activity against Bacillus cereus (MTCC 430) and Pseudomonas aeruginosa (MTCC 424) bacterias. Inorg. Chem. Commun. 2022, 144, 109907. [Google Scholar] [CrossRef]
- Park, C.; Hong, J.H.; Kim, B.Y.; An, S.; Yoon, S.S. Supersonically sprayed copper oxide titania nanowires for antibacterial activities and water purification. Appl. Surf. Sci. 2023, 611, 155513. [Google Scholar] [CrossRef]
- Alghamdi, A.I.; Ababutain, I.M.; Alonizan, N.H.; Hjiri, M.; Hammad, A.H.; Zerrad, B.; Aida, M.S. Antibacterial activity of stannate M2SnO4 (M=Co, Cu, Mg, Ni and Zn) nanoparticles prepared by hydrothermal. Appl. Nanosci. 2022, 12, 1601–1611. [Google Scholar] [CrossRef]
- El Mir, L.; El Ghoul, J.; Alaya, S.; Ben Salem, M.; Barthou, C.; von Bardeleben, H.J. Synthesis and luminescence properties of vanadium-doped nanosized zinc oxide aerogel. Phys. B Condens. Matter. 2008, 403, 1770–1774. [Google Scholar] [CrossRef]
- Kou, H.; Zhang, X.; Du, Y.; Ye, W.; Lin, S.; Wang, C. Electrochemical Synthesis of ZnO Nanoflowers and Nanosheets on Porous Si as Photoelectric Materials. Appl. Surf. Sci. 2011, 257, 4643–4649. [Google Scholar] [CrossRef]
- Wahab, R.; Ansari, S.G.; Kim, Y.S.; Dar, M.A.; Shin, H.S. Synthesis and characterization of hydrozincite and its conversion into zinc oxide nanoparticles. J. Alloys Compd. 2008, 461, 66–71. [Google Scholar] [CrossRef]
- Luque, P.A.; Soto-Robles, C.A.; Nava, O.; Gomez-Gutierrez, C.M.; Castro-Beltran, A.; Garrafa-Galvez, H.E.; Vilshis-Nestor, A.R.; Olivas, A. Green synthesis of zinc oxide nanoparticles using Citrus sinensis extract. J. Mater. Sci. Mater. Electro. 2018, 29, 9764–9770. [Google Scholar] [CrossRef]
- Hjiri, M.; Dhahri, R.; El Mir, L.; Bonavita, A.; Donato, N.; Leonardi, S.G.; Neri, G. Gas sensing properties of Al-doped ZnO for UV-activated CO detection. J. Alloys Compd. 2015, 634, 187–192. [Google Scholar] [CrossRef]
- Hjiri, M.; El Mir, L.; Leonardi, S.G.; Pistone, A.; Mavilia, L.; Neri, G. Al-doped ZnO for highly sensitive CO gas sensors. Sens. Actuators B 2014, 196, 413–420. [Google Scholar] [CrossRef]
- El Mir, L.; Ghribi, F.; Hajiri, M.; Ben Ayadi, Z.; Djessas, K.; Cubukcu, M.; von Bardeleben, H.J. Multifunctional ZnO:V thin films deposited by rf-magnetron sputtering from aerogel nanopowder target material. Thin Solid Film. 2011, 519, 5787–5791. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Y.H.; Zhu, L. Surface engineering of ZnO nanoparticles with diethylenetriamine for efficient red quantum-dot light-emitting diodes. iScience 2022, 25, 105111. [Google Scholar] [CrossRef] [PubMed]
- Farzinfar, B.; Qaderi, F. Synergistic degradation of aqueous p-nitrophenol using DBD plasma combined with ZnO photocatalyst. Process Saf. Environ. Prot. 2022, 168, 907–917. [Google Scholar] [CrossRef]
- Danial, E.N.; Hjiri, M.; Abdel-Wahab, M.S.; Alonizan, N.H.; El Mir, L.; Aida, M.S. Antibacterial activity of In-doped ZnO nanoparticles. Inorg. Chem. Commun. 2020, 122, 108281. [Google Scholar] [CrossRef]
- Umavathi, S.; Subash, M.; Gopinath, K.; Alarifi, S.; Nicoletti, M.; Govindarajan, M. Facile synthesis and characterization of ZnO nanoparticles using Abutilon indicum leaf extract: An eco-friendly nano-drug on human microbial pathogens. J. Drug Deliv. Sci. Technol. 2021, 66, 102917. [Google Scholar] [CrossRef]
- Suresh, J.; Pradheesh, G.; Alexramani, V.; Sundrarajan, M.; Hong, S.I. Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Adv. Nat. Sci. J. Nanosci. Nanotechnol. 2018, 9, 015008. [Google Scholar] [CrossRef]
- Rafiee, B.; Ghani, S.; Sadeghi, D.; Ahsani, M. Green synthesis of Zinc Oxide Nanoparticles Using Eucalyptus Mellidora Leaf Extract and Evaluation of its Antimicrobial Effects. J. Babol. Univ. Med. Sci. 2018, 20, 28–35. [Google Scholar]
- Chemingui, H.; Missaoui, T.; Mzali, J.C.; Yildiz, T.; Konyar, M.; Smiri, M.; Saidi, N.; Hafiane, A.; Yatmaz, H. Facile green synthesis of zinc oxide nanoparticles (ZnO NPs): Antibacterial and photocatalytic activities. Mater. Res. Express. 2019, 6, 1050b4. [Google Scholar] [CrossRef]
- Nanto, H.; Minami, T.; Takata, S. Zinc-oxide thin-film ammonia gas sensors with high sensitivity and excellent selectivity. J. Appl. Phys. 1986, 60, 482–484. [Google Scholar] [CrossRef]
- Klingshirn, C. The Luminescence of ZnO under High One- and Two-Quantum Excitation. Phys. Stat. Solidi B 1975, 71, 547–556. [Google Scholar] [CrossRef]
- Mao, H.; Zhang, B.; Nie, Y.; Tang, X.; Yang, S.; Zhou, S. Enhanced antibacterial activity of V-doped ZnO@SiO2 composites. Appl. Surf. Sci. 2021, 546, 149127. [Google Scholar] [CrossRef]
- Ali, M.M.; Haque Md. Kabir, J.H.; Abdul Kaiyum, M.; Rahman, M.S. Nano synthesis of ZnO–TiO2 composites by sol-gel method and evaluation of their antibacterial, optical and photocatalytic activities. Res. Mater. 2021, 11, 100199. [Google Scholar] [CrossRef]
- Vijayalakshmi, K.; Sivaraj, D. Enhanced antibacterial activity of Cr doped ZnO nanorods synthesized using microwave processing. RSC Adv. 2015, 5, 68461. [Google Scholar] [CrossRef]
- Deepu, T.; Jyothi, A.; Vattappalam, S.C.; Simon, A.; Dennis, T. Antibacterial activity of pure and cadmium doped ZnO thin film. Indo Am. J. Pharm. Sci. 2014, 4, 1612–1616. [Google Scholar]
- Navarro-Lopez, D.E.; Garcia-Varela, R.; Ceballos-Sanchez, O.; Sanchez-Martinez, A.; Sanchez-Ante, G.; Corona-Romero, K.; Buentello-Montoya, D.A.; Elías-Zuniga, A.; Lopez-Mena, E.R. Effective antimicrobial activity of ZnO and Yb-doped ZnO nanoparticles against Staphylococcus aureus and Escherichia coli. Mater. Sci. Eng. C 2021, 123, 112004. [Google Scholar] [CrossRef]
- Iqbal, S.; Nadeem, S.; Bahadur, A.; Javed, M.; Ahmad, Z.; Ahmad, M.N.; Shoaib, M.; Liu, G.; Mohyuddin, A.; Raheel, M. The Effect of Ni-Doped ZnO NPs on the Antibacterial Activity and Degradation Rate of Polyacrylic Acid-Modified Starch Nanocomposite. JOM 2021, 73, 380–386. [Google Scholar] [CrossRef]
- Oves, M.; Arshad, M.; Khan, M.S.; Ahmed, A.S.; Azam, A.; Ismail, I.M.I. Anti-microbial activity of cobalt doped zinc oxide nanoparticles: Targeting water borne bacteria. J. Saudi Chem. Soc. 2015, 19, 581–588. [Google Scholar] [CrossRef]
- Chandrasekaran, K.; Varaprasad, K.; Venugopal, S.K.; Arun, L.; Hameed, A.S.H. Synergistic Antibacterial Effect of the Magnesium-Doped ZnO Nanoparticles with Chloramphenicol. Biol. Nano Sci. 2020, 10, 106–111. [Google Scholar] [CrossRef]
- Kayani, Z.N.; Bashir, Z.; Riaz, S.; Naseem, S.; Saddiqe, Z. Transparent boron-doped zinc oxide films for antibacterial and magnetic applications. J. Mater. Sci. Mater. Electron. 2020, 31, 11911–11926. [Google Scholar] [CrossRef]
- Singh, A.; Nenavathu, B.P.; Irfan; Mohsin, M. Facile synthesis of Te-doped ZnO nanoparticles and their morphology-dependent antibacterial studies. Chem. Pap. 2021, 75, 4317–4326. [Google Scholar] [CrossRef]
- Chen, Y.; Bagnall, D.M.; Koh, H.J.; Park, K.T.; Hiraga, K.; Zhu, Z.; Yao, T. Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization. J. Appl. Phys. 1998, 84, 3912–3918. [Google Scholar] [CrossRef]
- Dhahri, R.; Hjiri, M.; El Mir, L.; Fazio, E.; Neri, F.; Barreca, F.; Donato, N.; Bonavita, A.; Leonardi, S.G.; Neri, G. ZnO:Ca nanopowders with enhanced CO2 sensing properties. J. Phys. D Appl. Phys. 2015, 48, 255503. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-ray Diffraction, 2nd ed.; Addison-Wesley Publishing Company Inc.: Boston, MA, USA, 1978. [Google Scholar]
- Slama, R.; Ghribi, F.; Houas, A.; Barthou, C.; El Mir, L. Photocatalytic and optical properties of vanadium doped zinc oxide nanoparticles. Int. J. Nanoelectron. Mater. 2010, 3, 133–142. [Google Scholar]
- Frederickson, L.D.; Hausen, D.M. Infrared Spectra-Structure Correlation Study of Vanadium-Oxygen Compounds. Anal. Chem. 1963, 35, 818–827. [Google Scholar] [CrossRef]
- Fu, G.; Vary, P.S.; Lin, C.T. Anatase TiO2 Nanocomposites for Antimicrobial Coatings. J. Phys. Chem. B 2005, 109, 8889–8898. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 2007, 9, 479–489. [Google Scholar] [CrossRef]
- Yamamoto, O. Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 2001, 3, 643–646. [Google Scholar] [CrossRef]
- Sawai, J.; Kawada, E.; Kanou, F.; Igarashi, H.; Hashimoto, A.; Kokugan, T.; Shimizu, M. Detection of active oxygen generated from ceramic powders having antibacterial activity. J. Chem. Eng. Jpn. 1996, 29, 627–633. [Google Scholar] [CrossRef]
- Talebian, N.; Amininezhad, S.M.; Doudi, M. Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. B 2013, 120, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Liu, J.; Bao, Y.; Zhu, Z.; Wang, X.; Zhang, J. Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property. Ceram. Int. 2013, 39, 2803–2810. [Google Scholar] [CrossRef]
- Laraib, S.; Shah, A.; Asim, N.; Amin, F.; Lutfullah, G.; Haider, J. Synthesis, Characterization and antibacterial activity of simple ZnO and metal doped ZnO nanoparticles. Pak. J. Pharm. Sci. 2021, 34, 1651–1658. [Google Scholar]
- Raju, P.; Deivatamil, D.; Martin Mark, J.; Jesuraj, J.P. Antibacterial and catalytic activity of Cu doped ZnO nanoparticles: Structural, optical, and morphological study. J. Iran. Chem. Soc. 2022, 19, 861–872. [Google Scholar] [CrossRef]
- Kayani, Z.N.; Bashir, H.; Riaz, S.; Naseem, S. Optical properties and antibacterial activity of V doped ZnO used in solar cells and biomedical applications. Mater. Res. Bull. 2019, 115, 121–129. [Google Scholar] [CrossRef]
- Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS. Microbiol. Lett. 2008, 279, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Padmavathy, N.; Vijayaraghavan, R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci. Technol. Adv. Mater. 2008, 9, 35004–35010. [Google Scholar] [CrossRef]
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef]
- Adams, L.K.; Lyon, D.Y.; Alvarez, P.J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water. Res. 2006, 40, 3527–3532. [Google Scholar] [CrossRef]
- Hirota, K.; Sugimoto, M.; Kato, M.; Tsukagoshi, K.; Tanigawa, T.; Sugimoto, H. Preparation of Zinc Oxide Ceramics with a Sustainable Antibacterial Activity under Dark Conditions. Ceram. Int. 2010, 36, 497–506. [Google Scholar] [CrossRef]
Samples | I-Max (Counts) | 2θ (deg) | B (FWHM) (deg) | B (FWHM) (Radian) | G (nm) | d (A) |
---|---|---|---|---|---|---|
V0ZO | 2109 | 36.16 | 0.2725 | 0.0048 | 31 | 2.4878 |
V1ZO | 2511 | 36.28 | 0.3240 | 0.0057 | 26 | 2.4792 |
V3ZO | 2430 | 36.20 | 0.3182 | 0.0056 | 27 | 2.4760 |
V5ZO | 1981 | 36.04 | 0.2917 | 0.0051 | 29 | 2.4880 |
Element | Weight % | Atomic % |
---|---|---|
O K | 21.26 | 52.2 |
V K | 2.87 | 2.21 |
Zn K | 75.87 | 45.59 |
Samples | Antimicrobial Activity (Inhibition Zone mm) | |||||
---|---|---|---|---|---|---|
Gram+ Bacteria | Gram− Bacteria | Fungi | ||||
S. aureus | B. cereus | E. coli | P. aeruginosa | C. albicans | R. glutinis | |
V0ZO | 14 | 20 | 12 | 20 | 14 | 25 |
V1ZO | 16 | 20 | 15 | 15 | 15 | 27 |
V3ZO | 15 | 20 | 15 | 22 | 16 | 20 |
V5ZO | 15 | 20 | 14 | 22 | 15 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaya, L.; Saeedi, A.M.; Alsaigh, A.A.; Almalki, M.H.K.; Alonizan, N.H.; Hjiri, M. ZnO:V Nanoparticles with Enhanced Antimicrobial Activities. J. Compos. Sci. 2023, 7, 190. https://doi.org/10.3390/jcs7050190
Alaya L, Saeedi AM, Alsaigh AA, Almalki MHK, Alonizan NH, Hjiri M. ZnO:V Nanoparticles with Enhanced Antimicrobial Activities. Journal of Composites Science. 2023; 7(5):190. https://doi.org/10.3390/jcs7050190
Chicago/Turabian StyleAlaya, Leila, Ahmad Mohammad Saeedi, Ahmad Abdulhadi Alsaigh, Meshal H. K. Almalki, Norah Hamad Alonizan, and Mokhtar Hjiri. 2023. "ZnO:V Nanoparticles with Enhanced Antimicrobial Activities" Journal of Composites Science 7, no. 5: 190. https://doi.org/10.3390/jcs7050190
APA StyleAlaya, L., Saeedi, A. M., Alsaigh, A. A., Almalki, M. H. K., Alonizan, N. H., & Hjiri, M. (2023). ZnO:V Nanoparticles with Enhanced Antimicrobial Activities. Journal of Composites Science, 7(5), 190. https://doi.org/10.3390/jcs7050190