Advancing Faba Bean Protein Purification Using Membrane Technology: Current State and Future Perspectives
Abstract
:1. Introduction
2. Plant-Based Diet Trend
3. Faba Bean Market
3.1. Faba Bean in Food
3.2. Faba Bean in Livestock Feed
4. Faba Bean Composition
4.1. Nutrient Composition
4.2. Antinutriet Composition
5. Faba Bean Protein Isolate
6. Faba Bean Processing Methods
7. Emerging Technology for Elimination of Antinutritional Compounds
8. Added-Value Products from Faba Bean and Future Application
9. Membrane Technology for Purification of Plant-Based Protein Isolate
9.1. Advantages of Membrane-Based Separation in Plant-Based Protein Purification
9.2. Diverse Applications of Ultrafiltration in Protein Processing
10. Challenges of Membrane Technology in Purification of Plant-Based Proteins
11. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mistry, K.; Sardar, S.D.; Alim, H.; Patel, N.; Thakur, M.; Jabbarova, D.; Ali, A. Plant Based Proteins: Sustainable Alternatives. Plant Sci. Today 2022, 9, 820–828. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Potkule, J.; Verma, R.; Punia, S.; Mahapatra, A.; Belwal, T.; Dahuja, A.; Joshi, S.; Berwal, M.K.; et al. Advances in the Plant Protein Extraction: Mechanism and Recommendations. Food Hydrocoll. 2021, 115, 106595. [Google Scholar] [CrossRef]
- Bilek, S.E. Plant Based Protein Sources and Extraction. Curr. Investig. Agric. Curr. Res. 2018, 2, 169–171. [Google Scholar] [CrossRef]
- Dugardin, C.; Cudennec, B.; Tourret, M.; Caron, J.; Guérin-Deremaux, L.; Behra-Miellet, J.; Lefranc-Millot, C.; Ravallec, R. Explorative Screening of Bioactivities Generated by Plant-Based Proteins after In Vitro Static Gastrointestinal Digestion. Nutrients 2020, 12, 3746. [Google Scholar] [CrossRef] [PubMed]
- Gençdağ, E.; Görgüç, A.; Yılmaz, F.M. Recent Advances in the Recovery Techniques of Plant-Based Proteins from Agro-Industrial By-Products. Food Rev. Int. 2021, 37, 447–468. [Google Scholar] [CrossRef]
- Munialo, C.D.; Stewart, D.; Campbell, L.; Euston, S.R. Extraction, Characterisation and Functional Applications of Sustainable Alternative Protein Sources for Future Foods: A Review. Futur. Foods 2022, 6, 100152. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Punia, S.; Dhakane-Lad, J.; Dhumal, S.; Changan, S.; Senapathy, M.; Berwal, M.K.; Sampathrajan, V.; Sayed, A.A.S.; et al. Plant-Based Proteins and Their Multifaceted Industrial Applications. Lebensm.-Wiss. Technol. 2022, 154, 112620. [Google Scholar] [CrossRef]
- Hussain, M.; Qayum, A.; Xiuxiu, Z.; Liu, L.; Hussain, K.; Yue, P.; Yue, S.; Koko, M.Y.; Hussain, A.; Li, X. Potato Protein: An Emerging Source of High Quality and Allergy Free Protein, and Its Possible Future Based Products. Food Res. Int. 2021, 148, 110583. [Google Scholar] [CrossRef]
- Rahate, K.A.; Madhumita, M.; Prabhakar, P.K. Nutritional Composition, Anti-Nutritional Factors, Pretreatments-Cum-Processing Impact and Food Formulation Potential of Faba Bean (Vicia faba L.): A Comprehensive Review. Lebensm.-Wiss. Technol. 2021, 138, 110796. [Google Scholar] [CrossRef]
- Liu, C.; Pei, R.; Heinonen, M. Faba Bean Protein: A Promising Plant-Based Emulsifier for Improving Physical and Oxidative Stabilities of Oil-in-Water Emulsions. Food Chem. 2022, 369, 130879. [Google Scholar] [CrossRef]
- Dhull, S.B.; Kidwai, M.K.; Noor, R.; Chawla, P.; Rose, P.K. A Review of Nutritional Profile and Processing of Faba Bean (Vicia faba L.). Legum. Sci. 2022, 4, e129. [Google Scholar] [CrossRef]
- Purves, R.W.; Khazaei, H.; Vandenberg, A. Quantification of Vicine and Convicine in Faba Bean Seeds Using Hydrophilic Interaction Liquid Chromatography. Food Chem. 2018, 240, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Khazaei, H.; Purves, R.W.; Song, M.; Stonehouse, R.; Bett, K.E.; Stoddard, F.L.; Vandenberg, A. Development and Validation of a Robust, Breeder-Friendly Molecular Marker for the vc—Locus in Faba Bean. Mol. Breed. 2017, 37, 140. [Google Scholar] [CrossRef]
- Boukid, F.; Castellari, M. How Can Processing Technologies Boost the Application of Faba Bean (Vicia faba L.) Proteins in Food Production? eFood 2022, 3, e18. [Google Scholar] [CrossRef]
- Khazaei, H.; Purves, R.W.; Hughes, J.; Link, W.; O’Sullivan, D.M.; Schulman, A.H.; Björnsdotter, E.; Geu-Flores, F.; Nadzieja, M.; Andersen, S.U.; et al. Eliminating Vicine and Convicine, the Main Anti-Nutritional Factors Restricting Faba Bean Usage. Trends Food Sci. Technol. 2019, 91, 549–556. [Google Scholar] [CrossRef]
- Chen, J.; Yu, B.; Cong, H.; Shen, Y. Recent Development and Application of Membrane Chromatography. Anal. Bioanal. Chem. 2022, 415, 45–65. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Chi, Q.; Sun, L.; Liu, Y. Protein Extraction from Microalgae Residue and Nutritional Assessment. Bioprocess Biosyst. Eng. 2022, 45, 1879–1888. [Google Scholar] [CrossRef] [PubMed]
- Geoffroy, T.R.; Bernier, M.E.; Thibodeau, J.; Francezon, N.; Beaulieu, L.; Mikhaylin, S.; Langevin, M.E.; Lutin, F.; Bazinet, L. Semi-Industrial Scale-up of EDUF Technology for the Electroseparation of Bioactive Cationic Peptides: Impact of Process Parameters and Cell Configurations on Eco-Efficiency. J. Memb. Sci. 2022, 641, 119856. [Google Scholar] [CrossRef]
- Schoenbeck, I.; Graf, A.M.; Leuthold, M.; Pastor, A.; Beutel, S.; Scheper, T. Purification of High Value Proteins from Particle Containing Potato Fruit Juice via Direct Capture Membrane Adsorption Chromatography. J. Biotechnol. 2013, 168, 693–700. [Google Scholar] [CrossRef]
- French, D. Advances in Clinical Mass Spectrometry, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 79. [Google Scholar] [CrossRef]
- Nikolov, Z.L.; Woodard, S.L. Downstream Processing of Recombinant Proteins from Transgenic Feedstock. Curr. Opin. Biotechnol. 2004, 15, 479–486. [Google Scholar] [CrossRef]
- Liang, T.; Lu, H.; Ma, J.; Sun, L.; Wang, J. Progress on Membrane Technology for Separating Bioactive Peptides. J. Food Eng. 2023, 340, 111321. [Google Scholar] [CrossRef]
- Gifuni, I.; Lavenant, L.; Pruvost, J.; Masse, A. Recovery of Microalgal Protein by Three-Steps Membrane Filtration: Advancements and Feasibility. Algal Res. 2020, 51, 102082. [Google Scholar] [CrossRef]
- Saxena, A.; Tripathi, B.P.; Kumar, M.; Shahi, V.K. Membrane-Based Techniques for the Separation and Purification of Proteins: An Overview. Adv. Colloid Interface Sci. 2009, 145, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Marson, G.V.; Belleville, M.P.; Lacour, S.; Hubinger, M.D. Membrane Fractionation of Protein Hydrolysates from By-Products: Recovery of Valuable Compounds from Spent Yeasts. Membranes 2021, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Zaky, A.A.; Abd El-Aty, A.M.; Ma, A.; Jia, Y. An Overview on Antioxidant Peptides from Rice Bran Proteins: Extraction, Identification, and Applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 1350–1362. [Google Scholar] [CrossRef] [PubMed]
- Blais, H.N.; Schroën, K.; Tobin, J.T. A Review of Multistage Membrane Filtration Approaches for Enhanced Efficiency during Concentration and Fractionation of Milk and Whey. Int. J. Dairy Technol. 2022, 75, 749–760. [Google Scholar] [CrossRef]
- Ozturk, G.; Liang, N.; Bhattacharya, M.; Robinson, R.C.; Shankar, S.; Huang, Y.-P.; Paviani, B.; Taha, A.Y.; Barile, D. Glycoproteomic and Lipidomic Characterization of Industrially Produced Whey Protein Phospholipid Concentrate with Emphasis on Antimicrobial Xanthine Oxidase, Oxylipins and Small Milk Fat Globules. Dairy 2022, 3, 277–302. [Google Scholar] [CrossRef]
- Sun, Y.; Yi, F.; Li, R.H.; Min, X.; Qin, H.; Cheng, S.Q.; Liu, Y. Inorganic–Organic Hybrid Membrane Based on Pillararene-Intercalated MXene Nanosheets for Efficient Water Purification. Angew. Chemie—Int. Ed. 2022, 61, e202200482. [Google Scholar] [CrossRef]
- Ratnaningsih, E.; Reynard, R.; Khoiruddin, K.; Wenten, I.G.; Boopathy, R. Recent Advancements of UF-Based Separation for Selective Enrichment of Proteins and Bioactive Peptides—A Review. Appl. Sci. 2021, 11, 1078. [Google Scholar] [CrossRef]
- Sá, A.G.A.; Laurindo, J.B.; Moreno, Y.M.F.; Carciofi, B.A.M. Influence of Emerging Technologies on the Utilization of Plant Proteins. Front. Nutr. 2022, 9, 809058. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Boczkaj, G.; Gontarek, E.; Cassano, A.; Fíla, V. Membrane Technologies Assisting Plant-Based and Agro-Food by-Products Processing: A Comprehensive Review. Trends Food Sci. Technol. 2020, 95, 219–232. [Google Scholar] [CrossRef]
- Duc, G.; Link, W.; Marget, P.; Redden, R.; Stoddard, F.; Torres, A.; Cubero, J. Genetic Adjustment to Changing Climates: Faba bean. In Crop Adaptation to Climate Change; Wiley: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Van Meerbeek, K.; Svenning, J.-C. Causing Confusion in the Debate about the Transition toward a More Plant-Based Diet. Proc. Natl. Acad. Sci. USA 2018, 115, E1701–E1702. [Google Scholar] [CrossRef] [PubMed]
- Satija, A.; Bhupathiraju, S.N.; Rimm, E.B.; Spiegelman, D.; Chiuve, S.E.; Borgi, L.; Willett, W.C.; Manson, J.A.E.; Sun, Q.; Hu, F.B. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies. PLoS Med. 2016, 13, e1002039. [Google Scholar] [CrossRef] [PubMed]
- Satija, A.; Bhupathiraju, S.N.; Spiegelman, D.; Chiuve, S.E.; Manson, J.A.E.; Willett, W.; Rexrode, K.M.; Rimm, E.B.; Hu, F.B. Healthful and Unhealthful Plant-Based Diets and the Risk of Coronary Heart Disease in U.S. Adults. J. Am. Coll. Cardiol. 2017, 70, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Graça, J.; Oliveira, A.; Calheiros, M.M. Meat, beyond the Plate. Data-Driven Hypotheses for Understanding Consumer Willingness to Adopt a More Plant-Based Diet. Appetite 2015, 90, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Jallinoja, P.; Niva, M.; Latvala, T. Future of Sustainable Eating? Examining the Potential for Expanding Bean Eating in a Meat-Eating Culture. Futures 2016, 83, 4–14. [Google Scholar] [CrossRef]
- Nonnecke, I.L. Faba Bean. The Canadian Encyclopedia. Available online: https://www.thecanadianencyclopedia.ca/en/article/faba-bean (accessed on 1 November 2023).
- Singh, A.K.; Bharati, R.C.; Manibhushan, N.C.; Pedpati, A. An Assessment of Faba Bean (Vicia faba L.) Current Status and Future Prospect. African J. Agric. Res. 2013, 8, 6634–6641. [Google Scholar] [CrossRef]
- Market Research Survey. Faba Bean Protein Market Outlook (2022–2023), Fact 4929MR, Food and Beverage. Available online: https://www.factmr.com/report/4929/faba-bean-protein-market (accessed on 1 November 2023).
- IMARC Group. Fava Beans Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2023–2028; IMARC Group: Noida, India, 2023. [Google Scholar]
- Tyler, R.; Wang, N.; Han, J. Composition, Nutritional Value, Functionality, Processing, and Novel Food Uses of Pulses and Pulse Ingredients. Cereal Chem. 2017, 94, 1. [Google Scholar] [CrossRef]
- IMARC Group. Pulses Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2018; IMARC Group: Noida, India, 2018. [Google Scholar]
- Multari, S.; Stewart, D.; Russell, W.R. Potential of Fava Bean as Future Protein Supply to Partially Replace Meat Intake in the Human Diet. Compr. Rev. Food Sci. Food Saf. 2015, 14, 511–522. [Google Scholar] [CrossRef]
- Karaca, A.C.; Low, N.; Nickerson, M. Emulsifying Properties of Chickpea, Faba Bean, Lentil and Pea Proteins Produced by Isoelectric Precipitation and Salt Extraction. Food Res. Int. 2011, 44, 2742–2750. [Google Scholar] [CrossRef]
- Raikos, V.; Neacsu, M.; Russell, W.; Duthie, G. Comparative Study of the Functional Properties of Lupin, Green Pea, Fava Bean, Hemp, and Buckwheat Flours as Affected by PH. Food Sci. Nutr. 2014, 2, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Giménez, M.A.; Drago, S.R.; De Greef, D.; Gonzalez, R.J.; Lobo, M.O.; Samman, N.C. Rheological, Functional and Nutritional Properties of Wheat/Broad Bean (Vicia faba) Flour Blends for Pasta Formulation. Food Chem. 2012, 134, 200–206. [Google Scholar] [CrossRef]
- Crépon, K.; Marget, P.; Peyronnet, C.; Carrouée, B.; Arese, P.; Duc, G. Nutritional Value of Faba Bean (Vicia faba L.) Seeds for Feed and Food. F. Crop. Res. 2010, 115, 329–339. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Losito, I.; Facchini, L.; Katina, K.; Palmisano, F.; Gobbetti, M.; Coda, R. Degradation of Vicine, Convicine and Their Aglycones during Fermentation of Faba Bean Flour. Sci. Rep. 2016, 6, 32452. [Google Scholar] [CrossRef] [PubMed]
- Duc, G. Faba Bean (Vicia faba L.). F. Crop. Res. 1997, 53, 99–109. [Google Scholar] [CrossRef]
- Ma, G.; Jin, Y.; Piao, J.; Kok, F.; Guusje, B.; Jacobsen, E. Phytate, Calcium, Iron, and Zinc Contents and Their Molar Ratios in Foods Commonly Consumed in China. J. Agric. Food Chem. 2005, 53, 10285–10290. [Google Scholar] [CrossRef] [PubMed]
- Duc, G.; Marget, P.; Esnault, R.; Le Guen, J.; Bastianelli, D. Genetic Variability for Feeding Value of Faba Bean Seeds (Vicia faba): Comparative Chemical Composition of Isogenics Involving Zero-Tannin and Zero-Vicine Genes. J. Agric. Sci. 1999, 133, 185–196. [Google Scholar] [CrossRef]
- Sauvant, D.; Tran, G.; Perez, J.M. Ables de Composition et de Valeur Nutritive des Matières Premières Destinées Aux Animaux D’élevage, 2nd ed.; Inra: Paris, France, 2004. [Google Scholar]
- Gueguen, J. Legume seed protein extraction, processing, and end product characteristics. Plant Food Hum. Nutr. 1983, 32, 267–303. [Google Scholar] [CrossRef]
- Martineau-Côté, D.; Achouri, A.; Karboune, S.; L’Hocine, L. Faba Bean: An Untapped Source of Quality Plant Proteins and Bioactives. Nutrients 2022, 14, 1541. [Google Scholar] [CrossRef]
- Sharan, S.; Zanghelini, G.; Zotzel, J.; Bonerz, D.; Aschoff, J.; Saint-Eve, A.; Maillard, M.N. Fava Bean (Vicia faba L.) for Food Applications: From Seed to Ingredient Processing and Its Effect on Functional Properties, Antinutritional Factors, Flavor, and Color. Compr. Rev. Food Sci. Food Saf. 2021, 20, 401–428. [Google Scholar] [CrossRef]
- Husband, F.A.; Wilde, P.J.; Clark, D.C.; Rawel, H.M.; Muschiolik, G. Foaming Properties of Modified Faba Bean Protein Isolates. Top. Catal. 1994, 8, 455–468. [Google Scholar] [CrossRef]
- Vioque, J.; Alaiz, M.; Girón-Calle, J. Nutritional and Functional Properties of Vicia faba Protein Isolates and Related Fractions. Food Chem. 2012, 132, 67–72. [Google Scholar] [CrossRef] [PubMed]
- GEA. Solutions for Vegetable Protein Manufacturing; GEA: Skanderborg, Denmark, 2022; pp. 4–15. [Google Scholar]
- Martínez-Velasco, A.; Lobato-Calleros, C.; Hernández-Rodríguez, B.E.; Román-Guerrero, A.; Alvarez-Ramirez, J.; Vernon-Carter, E.J. High Intensity Ultrasound Treatment of Faba Bean (Vicia faba L.) Protein: Effect on Surface Properties, Foaming Ability and Structural Changes. Ultrason. Sonochem. 2018, 44, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.W.; Xie, W.H. Effect of Different Processing Methods on Certain Antinutritional Factors and Protein Digestibility in Green and White Faba Bean (Vicia faba L.). CYTA—J. Food 2013, 11, 43–49. [Google Scholar] [CrossRef]
- Stone, A.K.; Karalash, A.; Tyler, R.T.; Warkentin, T.D.; Nickerson, M.T. Functional Attributes of Pea Protein Isolates Prepared Using Different Extraction Methods and Cultivars. Food Res. Int. 2015, 76 Pt 1, 31–38. [Google Scholar] [CrossRef]
- Alonso, R.; Aguirre, A.; Marzo, F. Effects of Extrusion and Traditional Processing Methods on Antinutrients and In Vitro Digestibility of Protein and Starch in Faba and Kidney Beans. Food Chem. 2000, 68, 159–165. [Google Scholar] [CrossRef]
- Kabata, A.; Henry, C.; Moges, D.; Kebebu, A.; Whiting, S.; Regassa, N.; Tyler, R. Determinants and Constraints of Pulse Production and Consumption among Farming Households of Ethiopia. J. Food Res. 2016, 6, 41. [Google Scholar] [CrossRef]
- Vidal-Valverde, C.; Frias, J.; Sotomayor, C.; Diaz-Pollan, C.; Fernandez, M.; Urbano, G. Nutrients and Antinutritional Factors in Faba Beans as Affected by Processing. Z. Für Leb. Forsch. A 1998, 207, 140–145. [Google Scholar] [CrossRef]
- van der Poel, A.F.B.; Gravendeel, S.; Boer, H. Effect of Different Processing Methods on Tannin Content and In Vitro Protein Digestibility of Faba Bean (Vicia faba L.). Anim. Feed Sci. Technol. 1991, 33, 49–58. [Google Scholar] [CrossRef]
- Jamalian, J.; Ghorbani, M. Extraction of Favism-Inducing Agents from Whole Seeds of Faba Bean (Vicia faba L Var Major). J. Sci. Food Agric. 2005, 85, 1055–1060. [Google Scholar] [CrossRef]
- Lessire, F.; Froidmont, E.; Shortall, J.; Hornick, J.L.; Dufrasne, I. The Effect of Concentrate Allocation on Traffic and Milk Production of Pasture-Based Cows Milked by an Automatic Milking System. Animal 2017, 11, 2061–2069. [Google Scholar] [CrossRef]
- Zanotto, S.; Khazaei, H.; Elessawy, F.M.; Vandenberg, A.; Purves, R.W. Do Faba Bean Genotypes Carrying Different Zero-Tannin Genes (Zt1 and Zt2) Differ in Phenolic Profiles? J. Agric. Food Chem. 2020, 68, 7530–7540. [Google Scholar] [CrossRef]
- Verni, M.; Wang, C.; Montemurro, M.; De Angelis, M.; Katina, K.; Rizzello, C.G.; Coda, R. Exploring the Microbiota of Faba Bean: Functional Characterization of Lactic Acid Bacteria. Front. Microbiol. 2017, 8, 2461. [Google Scholar] [CrossRef] [PubMed]
- Pulkkinen, M.; Zhou, X.; Lampi, A.M.; Piironen, V. Determination and Stability of Divicine and Isouramil Produced by Enzymatic Hydrolysis of Vicine and Convicine of Faba Bean. Food Chem. 2016, 212, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.M.A.; Hassan, A.B.; Osman, G.A.M.; Mohammed, N.; Rushdi, M.A.H.; Diab, E.E.; Babiker, E.E. Effects of Gamma Irradiation and/or Cooking on Nutritional Quality of Faba Bean (Vicia faba L.) Cultivars Seeds. J. Food Sci. Technol. 2014, 51, 1554–1560. [Google Scholar] [CrossRef] [PubMed]
- Chaieb, N.; González, J.L.; López-Mesas, M.; Bouslama, M.; Valiente, M. Polyphenols Content and Antioxidant Capacity of Thirteen Faba Bean (Vicia faba L.) Genotypes Cultivated in Tunisia. Food Res. Int. 2011, 44, 970–977. [Google Scholar] [CrossRef]
- Rosa-Sibakov, N.; Heiniö, R.L.; Cassan, D.; Holopainen-Mantila, U.; Micard, V.; Lantto, R.; Sozer, N. Effect of Bioprocessing and Fractionation on the Structural, Textural and Sensory Properties of Gluten-Free Faba Bean Pasta. LWT—Food Sci. Technol. 2016, 67, 27–36. [Google Scholar] [CrossRef]
- Liu, C.; Damodaran, S.; Heinonen, M. Effects of Microbial Transglutaminase Treatment on Physiochemical Properties and Emulsifying Functionality of Faba Bean Protein Isolate. Lebensm.-Wiss. Technol. 2019, 99, 396–403. [Google Scholar] [CrossRef]
- Pietrzak, W.; Kawa-Rygielska, J.; Król, B.; Lennartsson, P.R.; Taherzadeh, M.J. Ethanol, Feed Components and Fungal Biomass Production from Field Bean (Vicia faba Var. Equina) Seeds in an Integrated Process. Bioresour. Technol. 2016, 216, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Qasim, M.; Darwish, N.N.; Mhiyo, S.; Darwish, N.A.; Hilal, N. The Use of Ultrasound to Mitigate Membrane Fouling in Desalination and Water Treatment. Desalination 2018, 443, 143–164. [Google Scholar] [CrossRef]
- Buyel, J.F.; Twyman, R.M.; Fischer, R. Extraction and Downstream Processing of Plant-Derived Recombinant Proteins. Biotechnol. Adv. 2015, 33, 902–913. [Google Scholar] [CrossRef] [PubMed]
- Herneke, A.; Lendel, C.; Johansson, D.; Newson, W.; Hedenqvist, M.; Karkehabadi, S.; Jonsson, D.; Langton, M. Protein Nanofibrils for Sustainable Food-Characterization and Comparison of Fibrils from a Broad Range of Plant Protein Isolates. ACS Food Sci. Technol. 2021, 1, 854–864. [Google Scholar] [CrossRef]
- Łojewska, E.; Kowalczyk, T.; Olejniczak, S.; Sakowicz, T. Extraction and Purification Methods in Downstream Processing of Plant-Based Recombinant Proteins. Protein Expr. Purif. 2016, 120, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Vishwanathan, K.H.; Govindaraju, K.; Singh, V.; Subramanian, R. Production of Okara and Soy Protein Concentrates Using Membrane Technology. J. Food Sci. 2011, 76, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.S.K.; Yea, M.K.; Cheryan, M. Soy Protein Concentrates by Ultrafiltration. J. Food. Sci. 2003, 7, 2278–2283. [Google Scholar] [CrossRef]
- Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Barredo-Damas, S.; Iborra-Clar, A.; Pascual-Garrido, A.; Iborra-Clar, M.A. Fabrication and Performance of Low-Fouling UF Membranes for the Treatment of Isolated Soy Protein Solutions. Sustainability 2021, 12, 13682. [Google Scholar] [CrossRef]
- Wilken, L.R.; Nikolov, Z.L. Recovery and Purification of Plant-Made Recombinant Proteins. Biotechnol. Adv. 2012, 30, 419–433. [Google Scholar] [CrossRef]
- Di Stefano, E.; Agyei, D.; Njoku, E.N.; Udenigwe, C.C. Plant RuBisCo: An Underutilized Protein for Food Applications. JAOCS J. Am. Oil Chem. Soc. 2018, 95, 1063–1074. [Google Scholar] [CrossRef]
- Pérez-Vila, S.; Fenelon, M.A.; O’Mahony, J.A.; Gómez-Mascaraque, L.G. Extraction of Plant Protein from Green Leaves: Biomass Composition and Processing Considerations. Food Hydrocoll. 2022, 133, 107902. [Google Scholar] [CrossRef]
- Martin, A.H.; Castellani, O.; de Jong, G.A.H.; Bovetto, L.; Schmitt, C. Comparison of the Functional Properties of RuBisCO Protein Isolate Extracted from Sugar Beet Leaves with Commercial Whey Protein and Soy Protein Isolates. J. Sci. Food Agric. 2019, 99, 1568–1576. [Google Scholar] [CrossRef]
- Nikbakht Nasrabadi, M.; Sedaghat Doost, A.; Mezzenga, R. Modification Approaches of Plant-Based Proteins to Improve Their Techno-Functionality and Use in Food Products. Food Hydrocoll. 2021, 118, 106789. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, T.; Zhang, Z.; Feng, X. Extraction and Concentration of Glutathione from Yeast by Membranes. Can. J. Chem. Eng. 2022, 100, S195–S204. [Google Scholar] [CrossRef]
- Jeon, Y.J.; Byun, H.G.; Kim, S.K. Improvement of Functional Properties of Cod Frame Protein Hydrolysates Using Ultrafiltration Membranes. Process Biochem. 1999, 35, 471–478. [Google Scholar] [CrossRef]
- Eckert, E.; Han, J.; Swallow, K.; Tian, Z.; Jarpa-Parra, M.; Chen, L. Effects of Enzymatic Hydrolysis and Ultrafiltration on Physicochemical and Functional Properties of Faba Bean Protein. Cereal Chem. 2019, 96, 725–741. [Google Scholar] [CrossRef]
- Multari, S.; Neacsu, M.; Scobbie, L.; Cantlay, L.; Duncan, G.; Vaughan, N.; Stewart, D.; Russell, W.R. Nutritional and Phytochemical Content of High-Protein Crops. J. Agric. Food Chem. 2016, 64, 7800–7811. [Google Scholar] [CrossRef] [PubMed]
- Koros, W.J.; Ma, Y.; Shimidzu, T. Terminology for Membranes and Membrane Processes. J. Memb. Sci. 1996, 120, 149–159. [Google Scholar] [CrossRef]
- Vose, J.R. Production and Functionality of Starches and Protein Isolates from Legume Seeds (Field Peas and Horsebeans). Cereal Chem. 1980, 57, 406–410. [Google Scholar]
- Jeganathan, B.; Vasanthan, T.; Temelli, F. Isolation of Clean-Label Faba Bean (Vicia faba L.) Proteins: A Comparative Study of Mild Fractionation Methods against Traditional Technologies. Innov. Food Sci. Emerg. Technol. 2023, 84, 103285. [Google Scholar] [CrossRef]
- Koshchuh, W.; Povoden, G.; Thang, V.H.; Kromus, S.; Kulbe, K.D.; Novalin, S.; Krotscheck, C. Production of Leaf Protein Concentrate from Ryegrass (Lolium Perenne x Multiflorum) and Alfalfa (Medicago sativa subsp. Sativa). Comparison between Heat Coagulation/Centrifiguration and Ultrafiltration. Desalination 2004, 163, 253–259. [Google Scholar] [CrossRef]
- Albe-Slabi, S.; Mesieres, O.; Mathé, C.; Ndiaye, M.; Galet, O.; Kapel, R. Combined Effect of Extraction and Purification Conditions on Yield, Composition and Functional and Structural Properties of Lupin Proteins. Foods 2022, 11, 1646. [Google Scholar] [CrossRef]
- Hernandez-Marin, C.R.; Guadarrama-Mendoza, P.C.; Valadez-Blanco, R.; Chen, B.K.; Diosady, L.L. Alkaline Extraction and Purification of Huauzontle (Chenopodium berlandieri subsp. Nuttalliae) Seed Proteins by Ultrafiltration Membranes. In Proceedings of the International Conference on Applied Science and Advanced Technology (iCASAT 2019), Queretaro, Mexico, 27–28 November 2019. [Google Scholar] [CrossRef]
- Taherian, A.R.; Mondor, M.; Labranche, J.; Drolet, H.; Ippersiel, D.; Lamarche, F. Comparative Study of Functional Properties of Commercial and Membrane Processed Yellow Pea Protein Isolates. Food Res. Int. 2011, 44, 2505–2514. [Google Scholar] [CrossRef]
- Sarv, V.; Trass, O.; Diosady, L.L. Preparation and Characterization of Camelina sativa Protein Isolates and Mucilage. JAOCS J. Am. Oil Chem. Soc. 2017, 94, 1279–1285. [Google Scholar] [CrossRef]
- Boye, J.I.; Aksay, S.; Roufik, S.; Ribéreau, S.; Mondor, M.; Farnworth, E.; Rajamohamed, S.H. Comparison of the Functional Properties of Pea, Chickpea and Lentil Protein Concentrates Processed Using Ultrafiltration and Isoelectric Precipitation Techniques. Food Res. Int. 2010, 43, 537–546. [Google Scholar] [CrossRef]
- Khan, S.; Arshad, S.; Arif, A.; Tanveer, R.; Amin, Z.S.; Abbas, S.; Maqsood, A.; Raza, M.; Munir, A.; Latif, A.; et al. Trypsin Inhibitor Isolated from Glycine max (Soya Bean) Extraction, Purification, and Characterization. Dose-Response 2022, 20, 15593258221131462. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L.; Bu, F.; Ismail, B.P. Structure—Function Guided Extraction and Scale—Up of Pea Protein Isolate Production. Food 2022, 11, 3773. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, B.; Azizi, M.H.; Abbasi, S. Antidiabetic Bio-Peptides of Soft and Hard Wheat Glutens. Food Chem. Mol. Sci. 2022, 4, 100104. [Google Scholar] [CrossRef] [PubMed]
- Sadgrove, N.J.; Simmonds, M.S.J. Topical and Nutricosmetic Products for Healthy Hair and Dermal Antiaging Using “Dual-Acting” (2 for 1) Plant-Based Peptides, Hormones, and Cannabinoids. FASEB BioAdv. 2021, 3, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Hasan, M.; Choyal, P.; Tomar, M.; Gupta, O.P.; Sasi, M.; Changan, S.; Lorenzo, J.M.; Singh, S.; Sampathrajan, V.; et al. Cottonseed Feedstock as a Source of Plant-Based Protein and Bioactive Peptides: Evidence Based on Biofunctionalities and Industrial Applications. Food Hydrocoll. 2022, 131, 107776. [Google Scholar] [CrossRef]
- Ying, X.; Agyei, D.; Udenigwe, C.; Adhikari, B.; Wang, B. Manufacturing of Plant-Based Bioactive Peptides Using Enzymatic Methods to Meet Health and Sustainability Targets of the Sustainable Development Goals. Front. Sustain. Food Syst. 2021, 5, 769028. [Google Scholar] [CrossRef]
- Mondor, M.; Plamondon, P.; Drolet, H. Valorization of Agri-Food By-Products from Plant Sources Using Pressure-Driven Membrane Processes to Recover Value-Added Compounds: Opportunities and Challenges. Food Rev. Int. 2022, 39, 5761–5785. [Google Scholar] [CrossRef]
- Sosalagere, C.; Adesegun Kehinde, B.; Sharma, P. Isolation and Functionalities of Bioactive Peptides from Fruits and Vegetables: A Reviews. Food Chem. 2022, 366, 130494. [Google Scholar] [CrossRef]
- Nuchprapha, A.; Paisansak, S.; Sangtanoo, P.; Srimongkol, P.; Saisavoey, T.; Reamtong, O.; Choowongkomon, K.; Karnchanatat, A. Two Novel ACE Inhibitory Peptides Isolated from Longan Seeds: Purification, Inhibitory Kinetics and Mechanisms. RSC Adv. 2020, 10, 12711–12720. [Google Scholar] [CrossRef]
- Dlask, O.; Václavíková, N. Electrodialysis with Ultrafiltration Membranes for Peptide Separation. Chem. Pap. 2018, 72, 261–271. [Google Scholar] [CrossRef]
- Poulin, J.F.; Amiot, J.; Bazinet, L. Simultaneous Separation of Acid and Basic Bioactive Peptides by Electrodialysis with Ultrafiltration Membrane. J. Biotechnol. 2006, 123, 314–328. [Google Scholar] [CrossRef] [PubMed]
- Poulin, J.F.; Amiot, J.; Bazinet, L. Improved Peptide Fractionation by Electrodialysis with Ultrafiltration Membrane: Influence of Ultrafiltration Membrane Stacking and Electrical Field Strength. J. Memb. Sci. 2007, 299, 83–90. [Google Scholar] [CrossRef]
- Roblet, C.; Doyen, A.; Amiot, J.; Pilon, G.; Marette, A.; Bazinet, L. Enhancement of Glucose Uptake in Muscular Cell by Soybean Charged Peptides Isolated by Electrodialysis with Ultrafiltration Membranes (EDUF): Activation of the AMPK Pathway. Food Chem. 2014, 147, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Cecile Urbain Marie, G.; Perreault, V.; Henaux, L.; Carnovale, V.; Aluko, R.E.; Marette, A.; Doyen, A.; Bazinet, L. Impact of a High Hydrostatic Pressure Pretreatment on the Separation of Bioactive Peptides from Flaxseed Protein Hydrolysates by Electrodialysis with Ultrafiltration Membranes. Sep. Purif. Technol. 2019, 211, 242–251. [Google Scholar] [CrossRef]
- Firdaous, L.; Dhulster, P.; Amiot, J.; Gaudreau, A.; Lecouturier, D.; Kapel, R.; Lutin, F.; Vézina, L.P.; Bazinet, L. Concentration and Selective Separation of Bioactive Peptides from an Alfalfa White Protein Hydrolysate by Electrodialysis with Ultrafiltration Membranes. J. Memb. Sci. 2009, 329, 60–67. [Google Scholar] [CrossRef]
- González-Muñoz, A.; Valle, M.; Aluko, R.E.; Bazinet, L.; Enrione, J. Production of Antihypertensive and Antidiabetic Peptide Fractions from Quinoa (Chenopodium quinoa Willd.) by Electrodialysis with Ultrafiltration Membranes. Food Sci. Hum. Wellness 2022, 11, 1650–1659. [Google Scholar] [CrossRef]
- Doyen, A.; Udenigwe, C.C.; Mitchell, P.L.; Marette, A.; Aluko, R.E.; Bazinet, L. Anti-Diabetic and Antihypertensive Activities of Two Flaxseed Protein Hydrolysate Fractions Revealed Following Their Simultaneous Separation by Electrodialysis with Ultrafiltration Membranes. Food Chem. 2014, 145, 66–76. [Google Scholar] [CrossRef]
- Pearce, F.G.; Brunke, J.E. Is Now the Time for a Rubiscuit or Ruburger? Increased Interest in Rubisco as a Food Protein. J. Exp. Bot. 2022, 74, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Ehsani, M.; Doan, H.; Lohi, A. A Comprehensive Review of Membrane Fouling and Cleaning Methods with Emphasis on Ultrasound-Assisted Fouling Control Processes. Korean J. Chem. Eng. 2021, 38, 1531–1555. [Google Scholar] [CrossRef]
- Tanudjaja, H.J.; Anantharaman, A.; Ng, A.Q.Q.; Ma, Y.; Tanis-Kanbur, M.B.; Zydney, A.L.; Chew, J.W. A Review of Membrane Fouling by Proteins in Ultrafiltration and Microfiltration. J. Water Process Eng. 2022, 50, 103294. [Google Scholar] [CrossRef]
- Lay, H.T.; Yeow, R.J.E.; Ma, Y.; Zydney, A.L.; Wang, R.; Chew, J.W. Internal Membrane Fouling by Proteins during Microfiltration. J. Memb. Sci. 2021, 637, 119589. [Google Scholar] [CrossRef]
- Zhang, C.; Bao, Q.; Wu, H.; Shao, M.; Wang, X.; Xu, Q. Impact of Polysaccharide and Protein Interactions on Membrane Fouling: Particle Deposition and Layer Formation. Chemosphere 2022, 296, 134056. [Google Scholar] [CrossRef] [PubMed]
- Ehsani, M.; Doan, H.; Lohi, A.; Zhu, N.; Abdelrasoul, A. Experimental and Statistical Study of an In-Situ Ultrasound (US)-Assisted Ultrafiltration Process: Application to Fouling Control in Skimmed Milk Filtration. J. Water Process Eng. 2022, 49, 103171. [Google Scholar] [CrossRef]
- Mondor, M.; Ali, F.; Ippersiel, D.; Lamarche, F. Impact of Ultrafiltration/Diafiltration Sequence on the Production of Soy Protein Isolate by Membrane Technologies. Innov. Food Sci. Emerg. Technol. 2010, 11, 491–497. [Google Scholar] [CrossRef]
- Celus, I.; Brijs, K.; Delcour, J.A. Enzymatic Hydrolysis of Brewers’ Spent Grain Proteins and Technofunctional Properties of the Resulting Hydrolysates. J. Agric. Food Chem. 2007, 55, 8703–8710. [Google Scholar] [CrossRef]
- Qu, W.; Ma, H.; Zhao, W.; Pan, Z. ACE-Inhibitory Peptides Production from Defatted Wheat Germ Protein by Continuous Coupling of Enzymatic Hydrolysis and Membrane Separation: Modeling and Experimental Studies. Chem. Eng. J. 2013, 226, 139–145. [Google Scholar] [CrossRef]
- Ehsani, M.; Kalugin, D.; Doan, H.; Lohi, A. Bio-Sourced and Biodegradable Membranes. Appl. Sci. 2022, 12, 12837. [Google Scholar] [CrossRef]
- Leberknight, J.; Wielenga, B.; Lee-Jewett, A.; Menkhaus, T.J. Recovery of High Value Protein from a Corn Ethanol Process by Ultrafiltration and an Exploration of the Associated Membrane Fouling. J. Memb. Sci. 2011, 366, 405–412. [Google Scholar] [CrossRef]
- Zhang, W.; Ding, L.; Grimi, N.; Jaffrin, M.Y.; Tang, B. A Rotating Disk Ultrafiltration Process for Recycling Alfalfa Wastewater. Sep. Purif. Technol. 2017, 188, 476–484. [Google Scholar] [CrossRef]
- Jung, B. Preparation of Hydrophilic Polyacrylonitrile Blend Membranes for Ultrafiltration. J. Memb. Sci. 2004, 229, 129–136. [Google Scholar] [CrossRef]
- Asatekin, A.; Kang, S.; Elimelech, M.; Mayes, A.M. Anti-Fouling Ultrafiltration Membranes Containing Polyacrylonitrile-Graft-Poly(Ethylene Oxide) Comb Copolymer Additives. J. Memb. Sci. 2007, 298, 136–146. [Google Scholar] [CrossRef]
- Ma, W.; Rajabzadeh, S.; Shaikh, A.R.; Kakihana, Y.; Sun, Y. Effect of Type of Poly (Ethylene Glycol) (PEG) Based Amphiphilic Copolymer on Antifouling Properties of Copolymer/Poly (Vinylidene Fl Uoride) (PVDF) Blend Membranes. J. Memb. Sci. 2016, 514, 429–439. [Google Scholar] [CrossRef]
- Park, J.Y.; Acar, M.H.; Akthakul, A.; Kuhlman, W.; Mayes, A.M. Polysulfone-Graft-Poly(Ethylene Glycol) Graft Copolymers for Surface Modification of Polysulfone Membranes. Biomaterials 2006, 27, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.H.; Kim, H.W.; Nam, S.Y.; Park, H.B. Fouling-Tolerant Polysulfone-Poly(Ethylene Oxide) Random Copolymer Ultrafiltration Membranes. J. Memb. Sci. 2011, 379, 296–306. [Google Scholar] [CrossRef]
- Kadel, S.; Pellerin, G.; Thibodeau, J.; Perreault, V.; Lainé, C.; Bazinet, L. How Molecular Weight Cut-Offs and Physicochemical Properties of Polyether Sulfone Membranes Affect Peptide Migration and Selectivity during Electrodialysis with Filtration Membranes. Membranes 2019, 9, 153. [Google Scholar] [CrossRef]
- Chaturvedi, T.; Sini, L.; Hulkko, S. Extraction, Isolation, and Purification of Value-Added Chemicals from Lignocellulosic Biomass. Processes 2022, 10, 1752. [Google Scholar] [CrossRef]
- Liu, S.; Li, Z.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Recent Advances on Protein Separation and Purification Methods. Adv. Colloid Interface Sci. 2020, 284, 102254. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Fujita, H.; Matoba, N.; Takenaka, Y.; Yamamoto, T.; Yamauchi, R.; Tsuruki, H.; Takahata, K. Bioactive Peptides Derived from Food Proteins Preventing Lifestyle-Related Diseases. BioFactors 2000, 12, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Kadel, S.; Daigle, G.; Thibodeau, J.; Perreault, V.; Pellerin, G.; Lainé, C.; Bazinet, L. How Physicochemical Properties of Filtration Membranes Impact Peptide Migration and Selectivity during Electrodialysis with Filtration Membranes: Development of Predictive Statistical Models and Understanding of Mechanisms Involved. J. Memb. Sci. 2021, 619, 118175. [Google Scholar] [CrossRef]
- Suwal, S.; Amiot, J.; Beaulieu, L.; Bazinet, L. Effect of Pulsed Electric Field and Polarity Reversal on Peptide/Amino Acid Migration, Selectivity and Fouling Mitigation. J. Memb. Sci. 2016, 510, 405–416. [Google Scholar] [CrossRef]
- Langevin, M.E.; Roblet, C.; Moresoli, C.; Ramassamy, C.; Bazinet, L. Comparative Application of Pressure- and Electrically-Driven Membrane Processes for Isolation of Bioactive Peptides from Soy Protein Hydrolysate. J. Memb. Sci. 2012, 403–404, 15–24. [Google Scholar] [CrossRef]
- Emin, C.; Kurnia, E.; Katalia, I.; Ulbricht, M. Polyarylsulfone-Based Blend Ultrafiltration Membranes with Combined Size and Charge Selectivity for Protein Separation. Sep. Purif. Technol. 2018, 193, 127–138. [Google Scholar] [CrossRef]
- Yang, M.; Hadi, P.; Yin, X.; Yu, J.; Huang, X.; Ma, H.; Walker, H.; Hsiao, B.S. Antifouling Nanocellulose Membranes: How Subtle Adjustment of Surface Charge Lead to Self-Cleaning Property. J. Memb. Sci. 2021, 618, 118739. [Google Scholar] [CrossRef]
- Ishak, N.F.; Hashim, N.A.; Othman, M.H.D. Antifouling Properties of Hollow Fibre Alumina Membrane Incorporated with Graphene Oxide Frameworks. J. Environ. Chem. Eng. 2020, 8, 104059. [Google Scholar] [CrossRef]
- Raviya, M.R.; Gauswami, M.V.; Raval, H.D. A Novel Polysulfone/Iron-Nickel Oxide Nanocomposite Membrane for Removal of Heavy Metal and Protein from Water. Water Environ. Res. 2020, 92, 1990–1998. [Google Scholar] [CrossRef]
- Rahmati, A.; Mozafari, I. Ultrafiltration Mixed Matrix Nanocomposite Membranes Fabricated Using Functionalized MWCNT/Nanoclay/Polyvinylidene Fluoride for BSA Separation. Iran. Polym. J. 2022, 31, 573–585. [Google Scholar] [CrossRef]
Duc et al. [53] Mean a | Sauvant et al. [54] Mean (SD) | |
---|---|---|
High-tannin faba beans | ||
Crude protein (g/kg) | 310 | 294 (25) |
Starch (g/kg) | 412 | 443 (31) |
Crude fiber (g/kg) | 99 | 91 (13) |
Sugars (g/kg) | 38 | 35 (9) |
Fat (g/kg) | 19 | 15 (4) |
TIA (UTI/mg) b | 2.9 | |
Condensed tannins (g/kg) | 6.6 | |
Vicine + Convicine (g/kg) | 8.3 | |
Lysine (g/kg) | 20.3 | 19.2 |
Methionine (g/kg) | 2.7 | 2.1 |
Cysteine (g/kg) | 3.9 | 3.7 |
Tryptophane (g/kg) | 2.7 | 2.4 |
Low-tannin faba beans | ||
Crude protein (g/kg) | 319 | 311 (26) |
Starch (g/kg) | 427 | 433 (27) |
Crude fiber (g/kg) | 88 | 87 (10) |
Sugars (g/kg) | 44 | 43 (8) |
Fat (g/kg) | 20 | 13 (2) |
TIA (UTI/mg) b | 2.9 | |
Condensed tannins (g/kg) | 0.1 | |
Vicine + Convicine (g/kg) | 7.6 | |
Lysine (g/kg) | 19.5 | 20 |
Methionine (g/kg) | 2.6 | 2.2 |
Cysteine (g/kg) | 3.6 | 3.9 |
Tryptophane (g/kg) | 2.7 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehsani, M.; Westphalen, H.; Doan, H.; Lohi, A.; Abdelrasoul, A. Advancing Faba Bean Protein Purification Using Membrane Technology: Current State and Future Perspectives. J. Compos. Sci. 2024, 8, 15. https://doi.org/10.3390/jcs8010015
Ehsani M, Westphalen H, Doan H, Lohi A, Abdelrasoul A. Advancing Faba Bean Protein Purification Using Membrane Technology: Current State and Future Perspectives. Journal of Composites Science. 2024; 8(1):15. https://doi.org/10.3390/jcs8010015
Chicago/Turabian StyleEhsani, Masoume, Heloisa Westphalen, Huu Doan, Ali Lohi, and Amira Abdelrasoul. 2024. "Advancing Faba Bean Protein Purification Using Membrane Technology: Current State and Future Perspectives" Journal of Composites Science 8, no. 1: 15. https://doi.org/10.3390/jcs8010015
APA StyleEhsani, M., Westphalen, H., Doan, H., Lohi, A., & Abdelrasoul, A. (2024). Advancing Faba Bean Protein Purification Using Membrane Technology: Current State and Future Perspectives. Journal of Composites Science, 8(1), 15. https://doi.org/10.3390/jcs8010015