Straightforward Determination of the Average Electron-Hole Distance in Charge-Transfer State Organic Photovoltaic Donor/Acceptor Composites from Out-of-Phase Electron Spin Echo Data
Abstract
:1. Introduction
2. Theory
2.1. The Out-of-Phase Dipolar Modulation Signal and the Mellin Integral Transformation
2.2. Testing the Procedure of the Average Distance Calculation on Model Distance Distributions
3. Experimental Section
4. Results and Discussion
4.1. Calculation of the Average Electron-Hole Distance for CTS in Real Donor/Acceptor Composites
4.2. Expression for the Error of the Average Electron-Hole Distance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, B.C.; Fréchet, J.M.J. Polymer-Fullerene Composite Solar Cells. Angew. Chem. Int. Ed. 2008, 47, 58–77. [Google Scholar] [CrossRef]
- Deibel, C.; Dyakonov, V. Polymer-fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 2010, 73, 096401. [Google Scholar] [CrossRef]
- Kobeleva, E.S.; Uvarov, M.N.; Kravets, N.V.; Kulikova, A.V.; Zinovyev, V.A.; Gurova, O.A.; Sysoev, V.I.; Kondranova, A.M.; Kazantsev, M.S.; Degtyarenko, K.M.; et al. Ternary Composite of Polymer, Fullerene and Fluorinated Multi-Walled Carbon Nanotubes as the Active Layer of Organic Solar Cells. J. Compos. Sci. 2023, 8, 3. [Google Scholar] [CrossRef]
- Fukuda, K.; Yu, K.; Someya, T. The Future of Flexible Organic Solar Cells. Adv. Energy Mater. 2020, 10, 2000765. [Google Scholar] [CrossRef]
- Li, Y.; Huang, W.; Zhao, D.; Wang, L.; Jiao, Z.; Huang, Q.; Wang, P.; Sun, M.; Yuan, G. Recent Progress in Organic Solar Cells: A Review on Materials from Acceptor to Donor. Molecules 2022, 27, 1800. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jeong, D.; Kim, C.; Lee, C.; Kang, H.; Woo, H.Y.; Kim, B.J. Eco-Friendly Polymer Solar Cells: Advances in Green-Solvent Processing and Material Design. ACS Nano 2020, 14, 14493–14527. [Google Scholar] [CrossRef]
- Helgesen, M.; Søndergaard, R.; Krebs, F.C. Advanced materials and processes for polymer solar cell devices. J. Mater. Chem. 2010, 20, 36–60. [Google Scholar] [CrossRef]
- Jørgensen, M.; Norrman, K.; Gevorgyan, S.A.; Tromholt, T.; Andreasen, B.; Krebs, F.C. Stability of Polymer Solar Cells. Adv. Mater. 2012, 24, 580–612. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153–161. [Google Scholar] [CrossRef]
- Mumyatov, A.V.; Troshin, P.A. A Review on Fullerene Derivatives with Reduced Electron Affinity as Acceptor Materials for Organic Solar Cells. Energies 2023, 16, 1924. [Google Scholar] [CrossRef]
- Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A.K.Y.; Marder, S.R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003. [Google Scholar] [CrossRef]
- Hou, J.; Inganäs, O.; Friend, R.H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Heeger, A.J. 25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation. Adv. Mater. 2014, 26, 10–28. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Sun, S.; Xu, R.; Liu, F.; Miao, X.; Ran, G.; Liu, K.; Yi, Y.; Zhang, W.; Zhu, X. Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells. Nat. Energy 2024, 9, 975–986. [Google Scholar] [CrossRef]
- Tamai, Y. Charge generation in organic solar cells: Journey toward 20% power conversion efficiency: Special Issue: Emerging Investigators. Aggregate 2022, 3, e280. [Google Scholar] [CrossRef]
- Deibel, C.; Strobel, T.; Dyakonov, V. Role of the Charge Transfer State in Organic Donor-Acceptor Solar Cells. Adv. Mater. 2010, 22, 4097–4111. [Google Scholar] [CrossRef] [PubMed]
- Burke, T.M.; Sweetnam, S.; Vandewal, K.; McGehee, M.D. Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells. Adv. Energy Mater. 2015, 5, 1500123. [Google Scholar] [CrossRef]
- Causa’, M.; De Jonghe-Risse, J.; Scarongella, M.; Brauer, J.C.; Buchaca-Domingo, E.; Moser, J.E.; Stingelin, N.; Banerji, N. The fate of electron-hole pairs in polymer:fullerene blends for organic photovoltaics. Nat. Commun. 2016, 7, 12556. [Google Scholar] [CrossRef] [PubMed]
- Casalegno, M.; Pastore, R.; Idé, J.; Po, R.; Raos, G. Origin of Charge Separation at Organic Photovoltaic Heterojunctions: A Mesoscale Quantum Mechanical View. J. Phys. Chem. C 2017, 121, 16693–16701. [Google Scholar] [CrossRef]
- Park, S.H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J.S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A.J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 2009, 3, 297–302. [Google Scholar] [CrossRef]
- Lukina, E.A.; Suturina, E.; Reijerse, E.; Lubitz, W.; Kulik, L.V. Spin dynamics of light-induced charge separation in composites of semiconducting polymers and PC60BM revealed using Q-band pulse EPR. Phys. Chem. Chem. Phys. 2017, 19, 22141–22152. [Google Scholar] [CrossRef] [PubMed]
- Vandewal, K. Interfacial Charge Transfer States in Condensed Phase Systems. Annu. Rev. Phys. Chem. 2016, 67, 113–133. [Google Scholar] [CrossRef] [PubMed]
- Göhler, C.; Deibel, C. The Role of Dynamic and Static Disorder for Charge-Transfer States in Organic Bulk Heterojunction Solar Cells. ACS Energy Lett. 2022, 7, 2156–2164. [Google Scholar] [CrossRef]
- Barker, A.J.; Chen, K.; Hodgkiss, J.M. Distance Distributions of Photogenerated Charge Pairs in Organic Photovoltaic Cells. J. Am. Chem. Soc. 2014, 136, 12018–12026. [Google Scholar] [CrossRef]
- Niklas, J.; Poluektov, O.G. Charge Transfer Processes in OPV Materials as Revealed by EPR Spectroscopy. Adv. Energy Mater. 2017, 7, 1602226. [Google Scholar] [CrossRef]
- Lukina, E.A.; Popov, A.A.; Uvarov, M.N.; Suturina, E.A.; Reijerse, E.J.; Kulik, L.V. Light-induced charge separation in a P3HT/PC70BM composite as studied by out-of-phase electron spin echo spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 28585–28593. [Google Scholar] [CrossRef]
- Beletskaya, E.A.; Lukina, E.A.; Uvarov, M.N.; Popov, A.A.; Kulik, L.V. Geminate recombination in organic photovoltaic blend PCDTBT/PC71BM studied by out-of-phase electron spin echo spectroscopy. J. Chem. Phys. 2020, 152, 044706. [Google Scholar] [CrossRef] [PubMed]
- Popov, A.A.; Uvarov, M.N.; Kulik, L.V. Mode of action of the third component in ternary organic photovoltaic blend PBDB-T/ITIC:PC70BM revealed by EPR spectroscopy. Synth. Met. 2021, 277, 116783. [Google Scholar] [CrossRef]
- Uvarov, M.N.; Kobeleva, E.S.; Degtyarenko, K.M.; Zinovyev, V.A.; Popov, A.A.; Mostovich, E.A.; Kulik, L.V. Fast Recombination of Charge-Transfer State in Organic Photovoltaic Composite of P3HT and Semiconducting Carbon Nanotubes Is the Reason for Its Poor Photovoltaic Performance. Int. J. Mol. Sci. 2023, 24, 4098. [Google Scholar] [CrossRef] [PubMed]
- Lukina, E.A.; Kulikova, A.V.; Uvarov, M.N.; Popov, A.A.; Liu, M.; Zhang, Y.; Kulik, L.V. Structure of the Charge-Transfer State in PM6/Y6 and PM6/Y6: YT Composites Studied by Electron Spin Echo Technique. Nanomanufacturing 2023, 3, 123–134. [Google Scholar] [CrossRef]
- Matveeva, A.G.; Nekrasov, V.M.; Maryasov, A.G. Analytical solution of the PELDOR inverse problem using the integral Mellin transform. Phys. Chem. Chem. Phys. 2017, 19, 32381–32388. [Google Scholar] [CrossRef] [PubMed]
- Matveeva, A.G.; Syryamina, V.N.; Nekrasov, V.M.; Bowman, M.K. Non-uniform sampling in pulse dipolar spectroscopy by EPR: The redistribution of noise and the optimization of data acquisition. Phys. Chem. Chem. Phys. 2021, 23, 10335–10346. [Google Scholar] [CrossRef] [PubMed]
- Polyanin, P.; Manzhirov, A.V. Handbook of Integral Equations, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2008; 1144p. [Google Scholar] [CrossRef]
- Venkataramanan, L.; Habashy, T.M.; Freed, D.E.; Gruber, F.K. Continuous moment estimation of CPMG data using Mellin transform. J. Magn. Reson. 2012, 216, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Lukina, E.A.; Reijerse, E.; Lubitz, W.; Kulik, L.V. Spin-dependent recombination of the charge-transfer state in photovoltaic polymer/fullerene blends. Mol. Phys. 2019, 117, 2654–2663. [Google Scholar] [CrossRef]
- Kirk, M.L.; Shultz, D.A.; Stasiw, D.E.; Lewis, G.F.; Wang, G.; Brannen, C.L.; Sommer, R.D.; Boyle, P.D. Superexchange Contributions to Distance Dependence of Electron Transfer/Transport: Exchange and Electronic Coupling in Oligo(para-Phenylene) and Oligo(2,5-Thiophene)-Bridged Donor-Bridge-Acceptor Biradical Complexes. J. Am. Chem. Soc. 2013, 135, 17144–17154. [Google Scholar] [CrossRef] [PubMed]
Contribution of the First Gaussian Function | M1 (Exact), nm | M1 (Calculated), nm |
---|---|---|
0 | 3 | 3.00012 |
0.1 | 2.9 | 2.90062 |
0.2 | 2.8 | 2.80108 |
0.3 | 2.7 | 2.70148 |
0.4 | 2.6 | 2.60183 |
0.5 | 2.5 | 2.50213 |
0.6 | 2.4 | 2.40237 |
0.7 | 2.3 | 2.30257 |
0.8 | 2.2 | 2.20271 |
0.9 | 2.1 | 2.1028 |
1 | 2 | 2.00284 |
Width of the Gaussian Function, nm | M1 (Calculated), nm |
---|---|
0.12 | 4 |
0.2 | 4.00026 |
0.4 | 4.00039 |
0.6 | 4.00094 |
0.8 | 4.00487 |
Sample Preparation | Measurement Conditions: Temperature; DAF | M1, nm | ME1, nm |
---|---|---|---|
Drop-casting | 80 K; 0 us | 5.52275 | 0.14038 |
Drop-casting | 80 K; 1 us | 5.48512 | 0.28545 |
Drop-casting | 80 K; 5 us | 5.61639 | 0.25082 |
Spin-coating | 80 K; 0 us | 5.52959 | 0.17701 |
Spin-coating | 30 K; 0 us | 4.75013 | 0.04224 |
a, a. u. | b, a. u. | c, a. u. | d, ns | |
---|---|---|---|---|
30 K | −28.292 | 1.25477∙103 | 0.82575 | 710 |
80 K | −4.53786∙103 | 7.20244∙104 | 0.18572 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matveeva, A.G.; Syryamina, V.N.; Nekrasov, V.M.; Lukina, E.A.; Molchanov, I.A.; Sysoev, V.I.; Kulik, L.V. Straightforward Determination of the Average Electron-Hole Distance in Charge-Transfer State Organic Photovoltaic Donor/Acceptor Composites from Out-of-Phase Electron Spin Echo Data. J. Compos. Sci. 2025, 9, 51. https://doi.org/10.3390/jcs9020051
Matveeva AG, Syryamina VN, Nekrasov VM, Lukina EA, Molchanov IA, Sysoev VI, Kulik LV. Straightforward Determination of the Average Electron-Hole Distance in Charge-Transfer State Organic Photovoltaic Donor/Acceptor Composites from Out-of-Phase Electron Spin Echo Data. Journal of Composites Science. 2025; 9(2):51. https://doi.org/10.3390/jcs9020051
Chicago/Turabian StyleMatveeva, Anna G., Victoria N. Syryamina, Vyacheslav M. Nekrasov, Ekaterina A. Lukina, Ivan A. Molchanov, Vitalii I. Sysoev, and Leonid V. Kulik. 2025. "Straightforward Determination of the Average Electron-Hole Distance in Charge-Transfer State Organic Photovoltaic Donor/Acceptor Composites from Out-of-Phase Electron Spin Echo Data" Journal of Composites Science 9, no. 2: 51. https://doi.org/10.3390/jcs9020051
APA StyleMatveeva, A. G., Syryamina, V. N., Nekrasov, V. M., Lukina, E. A., Molchanov, I. A., Sysoev, V. I., & Kulik, L. V. (2025). Straightforward Determination of the Average Electron-Hole Distance in Charge-Transfer State Organic Photovoltaic Donor/Acceptor Composites from Out-of-Phase Electron Spin Echo Data. Journal of Composites Science, 9(2), 51. https://doi.org/10.3390/jcs9020051