Composite Forms in the REE2O3–ZrO2–TiO2 System for Minor Actinides (Am, Cm) and REE Immobilization
Abstract
:1. Introduction
2. Separation of HLW for Groups of Radionuclides Isolation
2.1. ZrO2–TiO2 System
2.2. Nd2O3–ZrO2 System
2.3. Nd2O3–TiO2 System
3. Crystal–Chemical Features of Rare Earth Zirconates and Titanates
4. Actinide Wasteforms in the REE2O3 (Nd2O3)–ZrO2–TiO2 System
4.1. Samples of the Composition (REE)2(Zr,Ti)2O7 with a Pyrochlore Structure
4.2. Samples of the Composition (REE)4(Zr,Ti)9O24 with a Pyrochlore Structure
5. On the Pseudo-Ternary Nature of the Nd2O3–ZrO2–TiO2 System
6. Behavior of the Matrices with a REE–Actinide Fraction in Hot Aqueous Solutions
7. Behavior of the Matrices with a REE–Actinide Fraction Under Irradiation
8. On the Synthesis of Matrices in the REE2O3 (Nd2O3)–TiO2–ZrO2 System
9. Discussion
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Acronyms and Glossary
Å | angstrom, 10−10 m |
Al-P | alumina–phosphate |
B-Si | borosilicate |
DIAMEX | diamide extraction, French process for MA separations |
dpa | displacement per atom |
GW | gigaWatt, 109 |
GW(e) | gigaWatt of electricity |
GW × h | gigaWatt × hour |
HLW | high-level nuclear waste |
ICCM | induction cold crucible melter |
keV | thousand electron volt |
LRW | liquid radioactive waste |
LWR | light water reactor, generic description for thermal reactors with H2O coolant |
MA | minor actinide |
MeV | million electron Volt |
μm | micrometer |
MNUP | mixed nitride U-Pu fuel |
MOX | mixed oxide, usually referring to (U,Pu)O2 fuels |
nm | nanometer |
ppm | part per million, or 10−4 wt.% |
PUREX | plutonium and uranium refining by extraction process used in commercial-scale SNF reprocessing |
PWR | pressurized water reactor, a variety of light water reactor |
REEs | rare earth elements |
REMIX | mixed oxide fuel from unseparated U and Pu isotopes |
SEM/EDS | scanning electron microscope equipped with an energy dispersive system |
SNF | spent nuclear fuel, irradiated fuel, also referred to as used nuclear fuel |
Synroc | synthetic rock, a crystalline wasteform composed of mineral-like phases |
TODGA | N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide for REE–MA fraction extraction |
TRUEX | trans-uranium extraction, USA process for MA separation |
TW | terawatt, 1012 |
TW × h | terawatt × hour |
XRD | X-ray diffraction analysis |
References
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A., 3rd; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global Estimates of Mortality Associated with Long-Term Exposure to Outdoor Fine Particulate Matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef] [PubMed]
- Accelerating Decarbonization in the United States: Technology, Policy, and Societal Dimensions; The National Academies Press: Washington, DC, USA, 2024; p. 822.
- State of Global Air 2024; Health Effects Institute: Boston, MA, USA, 2024; p. 35.
- IEA. Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach 2023 Update; International Energy Agency (IEA): Paris, France, 2023; p. 224. [Google Scholar]
- IAEA. Energy, Electricity and Nuclear Power Estimates for the Period up to 2050; International Atomic Energy Agency (IAEA): Vi-enna, Austria, 2023; p. 137. [Google Scholar]
- NEA. Meeting Climate Change Targets. The Role of Nuclear Energy; NEA No. 7628; OECD/NEA Publishing: Paris, France, 2022; p. 49. [Google Scholar]
- IEA. Electricity 2024. Analysis and Forecast to 2026; International Energy Agency (IEA): Paris, France, 2024; p. 168. [Google Scholar]
- Ojovan, M.I. Vitrification as a Key Solution for Immobilisation Within Nuclear Waste Management. Arab. J. Sci. Eng. 2024, 1–9. [Google Scholar] [CrossRef]
- IEA. World Energy Investment; International Energy Agency (IEA): Paris, France, 2024; p. 215. [Google Scholar]
- NEA. Transition towards a Sustainable Nuclear Fuel Cycle; OECD/NEA Publishing: Paris, France, 2013; p. 67. [Google Scholar]
- Adamov, E.O.; Asmolov, V.G.; Bolshov, L.A.; Ivanov, V.K. Two-Component Nuclear Power. Bull. Russ. Acad. Sci. 2021, 91, 450–458. (In Russian) [Google Scholar]
- Adamov, E.O.; Kaplienko, A.V.; Orlov, V.V.; Smirnov, V.S.; Lopatkin, A.V.; Lemekhov, V.V.; Moiseev, A.V. Brest Lead-Cooled Fast Reactor: From Concept to Technological Implementation. At. Energy 2021, 129, 179–187. [Google Scholar] [CrossRef]
- Kolupaev, D.N.; Apalkov, G.A. Development and Tasks of Radiochemical Technologies: History and Modern Challenges. Radiochemistry 2023, 65, 132–140. [Google Scholar] [CrossRef]
- Holdsworth, A.F.; Eccles, H.; Sharrad, C.A.; George, K. Spent Nuclear Fuel—Waste or Resource? The Potential of Strategic Materials Recovery during Recycle for Sustainability and Advanced Waste Management. Waste 2023, 1, 249–263. [Google Scholar] [CrossRef]
- Yudintsev, S.V. Isolation of Separated Waste of Nuclear Industry. Radiochemistry 2021, 63, 527–555. [Google Scholar] [CrossRef]
- Wang, L.; Liang, T. Ceramics for High Level Radioactive Waste Solidification. J. Adv. Ceram. 2012, 1, 194–203. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Merits and Viability of Different Nuclear Fuel Cycles and Technology Options and the Waste Aspects of Advanced Nuclear Reactors; The National Academies Press: Washington, DC, USA, 2023; p. 314. [Google Scholar]
- IAEA. Scientific and Technical Basis for the Geological Disposal of Radioactive Wastes; International Atomic Energy Agency (IAEA): Vienna, Austria, 2003; p. 80. [Google Scholar]
- Ahn, J.; Apted, M.J. (Eds.) Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste; Wood-Head Publishing Limited: Cambridge, UK, 2010; p. 777. [Google Scholar]
- IAEA. Disposal of Radioactive Waste; IAEA Safety Standards Series No. SSR 5; International Atomic Energy Agency (IAEA): Vienna, Austria, 2011; p. 62. [Google Scholar]
- Evans, N.D.M. Geological Disposal of Radioactive Waste: Underpinning Science and Technology. Miner. Mag. 2012, 76, 2865–2871. [Google Scholar] [CrossRef]
- Ewing, R.C.; Whittleston, R.A.; Yardley, B.W. Geological Disposal of Nuclear Waste: A Primer. Elements 2016, 12, 233–237. [Google Scholar] [CrossRef]
- NEA. Management and Disposal of High-Level Radioactive Waste: Global Progress and Solutions; OECD/NEA Publishing: Paris, France, 2020; p. 45. [Google Scholar]
- NEA. Strategies and Considerations for the Back End of the Fuel Cycle; OECD/NEA Publishing: Paris, France, 2021; p. 67. [Google Scholar]
- Lutze, W.; Ewing, R.C. (Eds.) Radioactive Waste Forms for the Future; Elsevier: New York, NY, USA, 1988; p. 778. [Google Scholar]
- Donald, I.W.; Metcalfe, B.L.; Taylor, R.N.J. The Immobilization of High Level Radioactive Wastes Using Ceramics and Glasses. J. Mater. Sci. 1997, 32, 5851–5887. [Google Scholar] [CrossRef]
- Caurant, D.; Loiseau, P.; Majérus, O.; Aubin-Chevaldonnet, V.; Bardez, I.; Quintas, A. Glasses, Glass-Ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Wastes; Nova Science Publishers: New York, NY, USA, 2009; p. 445. [Google Scholar]
- Donald, I.W. Waste Immobilisation in Glass and Ceramic Based Hosts; Wiley: Hoboken, NJ, USA, 2010; p. 507. [Google Scholar]
- Vienna, J.D. Nuclear Waste Vitrification in the United States: Recent Developments and Future Options. Int. J. Appl. Glas. Sci. 2010, 1, 309–321. [Google Scholar] [CrossRef]
- Jantzen, C.M. Development of glass matrices for high level radioactive waste. In Handbook of Advanced Radioactive Waste Conditioning Technologies; Ojovan, M.I., Ed.; Woodhead Publishing Ltd: Cambridge, UK, 2011; pp. 230–292. [Google Scholar]
- Remizov, M.B.; Kozlov, P.V.; Logunov, M.V.; Koltyshev, V.K.; Korchenkin, K.K. Conceptual and Technical Solutions for the Creation of Vitrification Units for Current and Accumulated Liquid HLW at PA Mayak. Iss. Radiat. Saf. 2014, 3, 17–25. (In Russian) [Google Scholar]
- Vernaz, É.; Bruezière, J. History of Nuclear Waste Glass in France. Procedia Mater. Sci. 2014, 7, 3–9. [Google Scholar] [CrossRef]
- Harrison, M.T. Vitrification of High Level Waste in the UK. Procedia Mater. Sci. 2014, 7, 10–15. [Google Scholar] [CrossRef]
- Vienna, J.D.; Collins, E.D.; Crum, J.V.; Ebert, W.L.; Frank, S.M.; Garn, T.G.; Gombert, D.; Jones, R.; Jubin, R.T.; Maio, V.C.; et al. Closed Fuel Cycle Waste Treatment Strategy; Idaho National Laboratory: Idaho Falls, ID, USA, 2015; p. 146. [Google Scholar]
- Goel, A.; McCloy, J.S.; Pokorny, R.; Kruger, A.A. Challenges with Vitrification of Hanford High-Level Waste (HLW) to Borosilicate Glass—An Overview. J. Non-Crys. Solids 2019, 4, 100033. [Google Scholar] [CrossRef]
- Thorpe, C.L.; Neeway, J.J.; Pearce, C.I.; Hand, R.J.; Fisher, A.J.; Walling, S.A.; Hyatt, N.C.; Kruger, A.A.; Schweiger, M.; Kosson, D.S.; et al. Forty Years of Durability Assessment of Nuclear Waste Glass by Standard Methods. Mater. Degrad. 2021, 5, 61. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Yudintsev, S.V. Glass, Ceramic, and Glass-Crystalline Matrices for HLW Immobilisation. Open Ceram. 2023, 14, 100355. [Google Scholar] [CrossRef]
- Choppin, G.; Liljenzin, J.-O.; Rydberg, J.; Ekberg, C. The Nuclear Fuel Cycle. In Radiochemistry and Nuclear Chemistry, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 685–751. [Google Scholar]
- National Research Council. National Research Council Waste Forms Technology and Performance; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Petrov, V.A.; Ojovan, M.I.; Yudintsev, S.V. Material Aspect of Sustainable Nuclear Waste Management. Sustainability 2023, 15, 11934. [Google Scholar] [CrossRef]
- IAEA. Implications of Partitioning and Transmutation in Radioactive Waste Management; International Atomic Energy Agency (IAEA): Vienna, Austria, 2004; p. 126. [Google Scholar]
- Kopyrin, A.A.; Karelin, A.I.; Karelin, V.A. Technology of Production and Radiochemical Processing of Nuclear Fuel; Atomenergo-izdat: Moscow, Russia, 2006; p. 576. (In Russian) [Google Scholar]
- CEA. Treatment and Recycling of Spent Nuclear Fuel; Commissariat à L’énergie Atomique (CEA): Paris, France, 2008; p. 175. [Google Scholar]
- IAEA. Assessment of Partitioning Processes for Transmutation of Actinides; International Atomic Energy Agency (IAEA): Vienna, Austria, 2010; p. 96. [Google Scholar]
- NEA. National Program in Chemical Partitioning; OECD/NEA Publishing: Paris, France, 2010; p. 119. [Google Scholar]
- Nash, K.L.; Madic, C.; Mathur, J.N.; Lacquement, J. Actinide Separation Science and Technology. In The Chemistry of the Actinide and Transactinide Elements; Morss, L.R., Edelstein, N.M., Fuger, J., Eds.; Springer: Dordrecht, The Netherlands, 2010; Chapter 24; pp. 2622–2798. [Google Scholar]
- Baron, P.; Cornet, S.M.; Collins, E.D.; DeAngelis, G.; Del Cul, G.; Fedorov, Y.; Glatz, J.P.; Ignatiev, V.; Inoue, T.; Khaperskaya, A.; et al. A Review of Separation Processes Proposed for Advanced Fuel Cycles Based on Technology Readiness Level Assessments. Prog. Nucl. Energy 2019, 117, 24. [Google Scholar] [CrossRef]
- IAEA. Impact of High Burnup Uranium Oxide and Mixed Uranium-Plutonium Oxide Water Reactor Fuel on Spent Fuel Management; International Atomic Energy Agency (IAEA): Vienna, Austria, 2011; p. 82. [Google Scholar]
- Bruno, J.; Ewing, R.C. Spent Nuclear Fuel. Elements 2006, 2, 343–349. [Google Scholar] [CrossRef]
- Ewing, R.C.; Weber, W.J. Actinide Wasteforms and Radiation Effects. In The Chemistry of the Actinide and Transactinide Elements; Morss, L.R., Edelstein, N.M., Fuger, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; Chapter 35; pp. 3813–3889. [Google Scholar]
- Walker, C.T.; Rondinella, V.V.; Papaioannou, D.; Winckel, S.V.; Goll, W.; Manzel, R. On the oxydation state of UO2 nuclear fuel at a burn-up of around 100 MWd/kg HM. J. Nucl. Mater. 2005, 345, 192–205. [Google Scholar] [CrossRef]
- Collins, E.D.; Jubin, R.T.; DelCul, G.D.; Spencer, B.B.; Renier, J.P. Advanced Fuel Cycle Treatment, Recycling, and Disposal of Nuclear Waste. In Proceedings of the International Conference “Global 2009”, Paris, France, 6–11 September 2009; pp. 2595–2602. [Google Scholar]
- Yudintsev, S.V.; Ojovan, M.I.; Malkovsky, V.I. Thermal Effects and Glass Crystallization in Composite Matrices for Immobilization of the Rare-Earth Element–Minor Actinide Fraction of High-Level Radioactive Waste. J. Compos. Sci. 2024, 8, 70. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. 1976, A32, 751–766. [Google Scholar] [CrossRef]
- Troitzsch, U.; Ellis, D.J. High-PT Study of Solid Solutions in the System ZrO2-TiO2: The Stability of Shrilankite. Eur. J. Mineral. 2004, 16, 577–584. [Google Scholar] [CrossRef]
- Fabrichnaya, O.; Savinykh, G.; Schreiber, G.; Seifert, H.J. Phase Relations in the ZrO2-Nd2O3-Y2O3 System: Experimental Study and Advanced Thermodynamic Modeling. J. Phase Equilibria Diffus. 2011, 32, 284–297. [Google Scholar] [CrossRef]
- Gorsky, V.V. Inert Mass Nuclear Fuel (IMF). Nucl. Tech. Abroad. 2000, 10, 3–8. (In Russian) [Google Scholar]
- NEA. Potential Benefits and Impacts on Advanced Nuclear Fuel Cycles with Actinides Partitioning and Transmutation; OECD/NEA Publishing: Paris, France, 2011; p. 73. [Google Scholar]
- NEA. State-of-the-Art Report on Innovative Fuels for Advanced Nuclear System; OECD/NEA Publishing: Paris, France, 2014; p. 214. [Google Scholar]
- Gong, W.; Zhang, R. Phase Relationship in the TiO2–Nd2O3 Pseudo-Binary System. J. Alloys Compd. 2012, 548, 216–221. [Google Scholar] [CrossRef]
- Gong, W.; Zhang, R. Thermodynamic Investigation of the TiO2–La2O3 Pseudo-Binary System. Thermochim. Acta 2012, 534, 28–32. [Google Scholar] [CrossRef]
- Yudintsev, S.V. Lanthanide Titanates as Promising Matrices for Immobilization of Actinide Wastes. Dokl. Earth Sci. 2015, 460, 130–136. [Google Scholar] [CrossRef]
- Gong, W.; Liu, Y.; Luo, Z. Heat Capacity of Samarium Titanates and Phase Equilibria of Sm2O3-TiO2 System. J. Alloys Compd. 2021, 860, 158429. [Google Scholar] [CrossRef]
- Yang, K.; Lei, P.; Yao, T.; Gong, B.; Wang, Y.; Li, M.; Wang, J.; Lian, J. A Systematic Study of Lanthanide Titanates (A2Ti2O7) Chemical Durability: Corrosion Mechanisms and Control Parameters. Corros. Sci. 2021, 185, 109394. [Google Scholar] [CrossRef]
- Shoup, S.S.; Bamberger, C.E.; Tyree, J.L.; Anovitz, L.M. Lanthanide-Containing Zirconotitanate Solid Solutions. J. Solid State Chem. 1996, 127, 231–239. [Google Scholar] [CrossRef]
- Ewing, R.C.; Weber, W.J.; Lian, J. Nuclear Waste Disposal—Pyrochlore (A2B2O7): Nuclear Wasteform for the Immobilization of Plutonium and “Minor” Actinides. J. Appl. Phys. 2004, 95, 5949–5971. [Google Scholar] [CrossRef]
- Harvey, E.J.; Whittle, K.R.; Lumpkin, G.R.; Smith, R.I.; Redfern, S.A. Solid Solubilities of (La,Nd)2(Zr,Ti)2O7 Phases Deduced by Neutron Diffraction. J. Solid State Chem. 2005, 178, 800–810. [Google Scholar] [CrossRef]
- Laverov, N.P.; Yudintsev, S.V.; Livshits, T.S.; Stefanovsky, S.V.; Lukinykh, A.N.; Ewing, R.C. Synthetic Minerals with the Pyrochlore and Garnet Structures for Immobilization of Actinide-Containing Wastes. Geochem. Int. 2010, 48, 1–14. [Google Scholar] [CrossRef]
- Aughterson, R.D.; Lumpkin, G.R.; Ionescu, M.; Reyes, M.d.L.; Gault, B.; Whittle, K.R.; Smith, K.L.; Cairney, J.M. Ion-Irradiation Resistance of the Orthorhombic Ln2TiO5 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) Series. J. Nucl. Mater. 2015, 467, 683–691. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Nickolsky, M.S.; Stefanovsky, O.I.; Nikonov, B.S. Crystal-Chemical Considerations in the Choice of Matrices for REE-Actinides. Dokl. Earth Sci. 2022, 504, 403–409. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Stefanovsky, S.V.; Nikonov, B.S.; Nikol’skii, M.S.; Livshits, T.S. Potential Matrices for Immobilization of the Rare Earth-Actinide Fraction of High-Level Waste in the REE2Zr2O7-REE2Ti2O7 System. Radiochemistry 2015, 57, 187–199. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Nikolskii, M.S.; Nikonov, B.S.; Malkovskii, V.I. Matrices for Isolation of Actinide Wastes in a Deep Well Repository. Dokl. Earth Sci. 2018, 480, 631–636. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Malkovsky, V.I.; Nikolsky, M.S.; Nikonov, B.S. Interaction of Actinide Matrices with Brine. Dokl. Earth Sci. 2019, 485, 303–307. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Nickolsky, M.S.; Stefanovskaya, O.I.; Nikonov, B.S. Crystal Chemistry of Titanates and Zirconates of Rare Earths—Possible Matrices for Actinide Isolation. Radiochemistry 2022, 64, 667–679. [Google Scholar] [CrossRef]
- Škapin, S.; Kolar, D.; Suvorov, D. Phase Equilibria and Solid Solution Relationships in the La2O3-TiO2-ZrO2 System. Solid State Sci. 1999, 1, 245–255. [Google Scholar] [CrossRef]
- Schaedler, T.A.; Fabrichnaya, O.; Levi, C.G. Phase Equilibria in the TiO2-YO1.5-ZrO2 System. J. Eur. Ceram. Soc. 2008, 28, 2509–2520. [Google Scholar] [CrossRef]
- Fuentes, A.F.; O’Quinn, E.C.; Montemayor, S.M.; Zhou, H.; Lang, M.; Ewing, R.C. Pyrochlore-type Lanthanide Titanates and Zirconates: Synthesis, Structural Peculiarities, and Properties. Appl. Phys. Rev. 2024, 11, 021337. [Google Scholar] [CrossRef]
- Shoup, S.L.S. Synthesis and Characterization of Novel Lanthanide- and Actinide-Containing Titanates and Zircono-Titanates: Relevance to Nuclear Waste Disposal. Ph.D. Thesis, The University of Tennessee, Knoxville, TN, USA, 1995; p. 131. [Google Scholar]
- Yudintsev, S.V.; Aleksandrova, E.V.; Livshits, T.S.; Mal’kovskii, V.I.; Bychkova, Y.V.; Tagirov, B.R. Crystalline Matrices for Immobilization of Actinides: Corrosion Resistance in Water. Dokl. Earth Sci. 2014, 458, 1281–1284. [Google Scholar] [CrossRef]
- Melnikova, E.M.; Kalenova, M.Y.; Shchepin, A.S.; Yudintsev, S.V. Durability of Matrices for the Rare-Earth–Actinide Fraction of High-Level Radioactive Waste in Water. Dokl. Earth Sci. 2022, 507, S461–S467. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Stefanovsky, S.V.; Kalenova, M.Y.; Nikonov, B.S.; Nikolsky, M.S.; Ananyev, A.V.; Shchepin, A.S. Matrices for the Immobilization of Rare Earth-Actinide Fraction Waste, Obtained by Induction Melting in a Cold Crucible. Radiochemistry 2015, 57, 321–333. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Nickolsky, M.S.; Stefanovskaya, O.I.; Nikonov, B.S.; Ulanova, A.S. Electron Backscattered Diffraction in the Study of Matrices for High-Level Wastes. Dokl. Earth Sci. 2022, 507, 1148–1153. [Google Scholar] [CrossRef]
- Pilania, R.K.; Dube, C.L. Matrices for Radioactive Waste Immobilization: A Review. Front. Mater. 2023, 10, 1236470. [Google Scholar] [CrossRef]
- Stefanovsky, S.V.; Yudintsev, S.V.; Nikonov, B.S.; Mironov, A.S. Phase Composition of Uranium- and Cerium-Containing Titanate and Zirconate Ceramics Based on Cubic Phases with a Fluorite-Type Structure. Persp. Mat. 2004, 3, 55–62. (In Russian) [Google Scholar]
- Lumpkin, G.R. Ceramic Waste Forms for Actinides. Elements 2006, 2, 365–372. [Google Scholar] [CrossRef]
- Stefanovsky, S.V.; Yudintsev, S.V. Titanates, Zirconates, Aluminates and Ferrites as Waste Forms for Actinide Immobilization. Russ. Chem. Rev. 2016, 85, 962–994. [Google Scholar] [CrossRef]
- Lumpkin, G.R. Ceramic host phases for nuclear waste remediation. In Experimental and Theoretical Approaches to Actinide Chemistry, 1st ed.; Gibson, J.K., de Jong, W.A., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 333–377. [Google Scholar]
- Muller, I.; Weber, W.J. Plutonium in Crystalline Ceramics and Glasses. MRS Bull. 2001, 26, 698–706. [Google Scholar] [CrossRef]
- Weber, W.J.; Navrotsky, A.; Stefanovsky, S.; Vance, E.R.; Vernaz, E. Materials Science of High-Level Nuclear Waste Immobilization. Mat. Res. Soc. Bulletin 2009, 34, 46–53. [Google Scholar] [CrossRef]
- Kamizono, H.; Hayakawa, I.; Muraoka, S. Durability of Zirconium-Containing Ceramic Wasteforms in Water. J. Am. Ceram. Soc. 1991, 74, 863–864. [Google Scholar] [CrossRef]
- Hayakawa, I.; Kamizono, H. Durability of a La2Zr2O7 Wasteform in Water. J. Mater. Sci. 1993, 28, 513–517. [Google Scholar] [CrossRef]
- Yang, K.; Wang, Y.; Lei, P.; Yao, T.; Zhao, D.; Lian, J. Chemical Durability and Surface Alteration of Lanthanide Zirconates (A2Zr2O7: A = La-Yb). J. Eur. Ceram. Soc. 2021, 41, 6018–6028. [Google Scholar] [CrossRef]
- Weber, W.J.; Ewing, R.C. Radiation Effects in Crystalline Oxide Host Phases for the Immobilization of Actinides. MRS Proc. 2002, 713, 31. [Google Scholar] [CrossRef]
- Burakov, B.E.; Ojovan, M.I.; Lee, W.E. Crystalline Materials for Actinide Immobilisation; Imperial College Press: London, UK, 2011; p. 197. [Google Scholar]
- Laverov, N.P.; Yudintsev, S.V.; Velichkin, V.I.; Lukinykh, A.N.; Tomilin, S.V.; Lizin, A.A.; Stefanovskii, S.V. Effect of Amorphization on Isolation Properties of Actinide Pyrochlore Matrix. Radiochemistry 2009, 51, 529–536. [Google Scholar] [CrossRef]
- Pöml, P.; Geisler, T.; Cobos-Sabaté, J.; Wiss, T.; Raison, P.; Schmid-Beurmann, P.; Deschanels, X.; Jégou, C.; Heimink, J.; Putnis, A. The Mechanism of the Hydrothermal Alteration of Cerium- and Plutonium-Doped Zirconolite. J. Nucl. Mater. 2011, 410, 10–23. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Lizin, A.A.; Livshits, T.S.; Stefanovsky, S.V.; Tomilin, S.V.; Ewing, R.C. Ion-Beam Irradiation and Cm-Doping Investigations of Radiation Damage in the Crystalline Nuclear Waste Forms for Actinides. J. Mat. Res. 2015, 30, 1516–1528. [Google Scholar] [CrossRef]
- Shoup, S.S.; Bamberger, C.E.; Haverlock, T.J.; Peterson, J.R. Aqueous Leachability of Lanthanide and Plutonium Titanates. J. Nucl. Mater. 1997, 240, 112–117. [Google Scholar] [CrossRef]
- Kuznetsov, I.V.; Zobkova, A.Y.; Kalenova, M.Y.; Shchepin, A.S.; Budin, O.N.; Stepanov, V.A.; Melnikova, I.M.; Stefanovskaya, O.I.; Klemazov, K.V. A Study of the Mechanical and Thermophysical Properties of Crystal Matrices for the Immobilization of High-Level Wastes. Fine Chem. Technol. 2024, 19, 149–162. [Google Scholar] [CrossRef]
- NEA. Minor Actinide Burning in Thermal Reactors; OECD/NEA Publishing: Paris, France, 2013; p. 78. [Google Scholar]
- Weber, W.J.; Ewing, R.C.; Catlow, C.R.A.; de la Rubia, T.D.; Hobbs, L.W.; Kinoshita, C.; Matzke, H.; Motta, A.T.; Nastasi, M.; Salje, E.K.H.; et al. Radiation Effects in Crystalline Ceramics for the Immobilization of High-Level Nuclear Waste and Plutonium. J. Mater. Res. 1998, 13, 1434–1484. [Google Scholar] [CrossRef]
- Ewing, R.C. The Nuclear Fuel Cycle Versus the Carbon Cycle. Can. Miner. 2005, 43, 2099–2116. [Google Scholar] [CrossRef]
- Lumpkin, G.R.; Pruneda, M.; Rios, S.; Smith, K.L.; Trachenko, K.; Whittle, K.R.; Zaluzec, N.J. Nature of the Chemical Bond and Prediction of Radiation Tolerance in Pyrochlore and Defect Fluorite Compounds. J. Solid State Chem. 2007, 180, 1512–1518. [Google Scholar] [CrossRef]
- Smith, K.L.; Blackford, M.G.; Lumpkin, G.R.; Whittle, K.; Zaluzec, N.J. Radiation Tolerance of A2B2O7 Compounds at the Cubic-Monoclinic Boundary. Micros. Microan. 2006, 12, 1094–1095. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Livshits, T.S.; Zhang, J.; Ewing, R.C. The Behavior of Rare-Earth Pyrochlores and Perovskites Under Ion Irradiation. Doklady Earth Sci. 2015, 461, 247–253. [Google Scholar] [CrossRef]
- Whittle, K.R.; Lumpkin, G.R.; Blackford, M.G. Ion-Beam Irradiation of Lanthanum Compounds in the Systems La2O3-Al2O3 and La2O3-TiO2. J. Solid State Chem. 2010, 183, 2416–2420. [Google Scholar] [CrossRef]
- Park, S.; Lang, M.; Tracy, C.L.; Zhang, J.; Zhang, F.; Trautmann, C.; Rodriguez, M.D.; Kluth, P.; Ewing, R.C. Response of Gd2Ti2O7 and La2Ti2O7 to Swift-Heavy Ion Irradiation and Annealing. Acta Mater. 2015, 93, 1–11. [Google Scholar] [CrossRef]
- Aughterson, R.D. The Characterisation and Ion-Irradiation Tolerance of the Complex Ceramic Oxides Ln2TiO5 (Ln = Lanthanides). Ph.D. Thesis, The University of Sydney. Centre for Microscopy and Microanalysis, Sydney, Australia, 2018; p. 168. [Google Scholar]
- Park, S.; Tracy, C.L.; Zhang, F.; Palomares, R.I.; Park, C.; Trautmann, C.; Lang, M.; Mao, W.L.; Ewing, R.C. Swift-Heavy Ion Irradiation Response and Annealing Behavior of A2TiO5 (A = Nd, Gd, and Yb). J. Solid State Chem. 2018, 258, 108–116. [Google Scholar] [CrossRef]
- Aughterson, R. The In Situ 1 MeV Kr—Irradiation Study of Amorphisation Resistance for the Ln2TiO5 (Ln = Lanthanides and Yttrium) Series: A review. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interactions Mater. Atoms 2023, 538, 144–156. [Google Scholar] [CrossRef]
- Yudintsev, S.V. Behavior of Host Materials with Surrogates of the Rare Earth–Actinide Fraction under Ion Irradiation. Radiochemistry 2018, 60, 316–322. [Google Scholar] [CrossRef]
- Hench, L.; Clark, D.; Campbell, J. High Level Waste Immobilization Forms. Nucl. Chem. Waste Manag. 1984, 5, 149–173. [Google Scholar] [CrossRef]
- Jantzen, C.M.; Ojovan, M.I. On Selection of Matrix (Wasteform) Material for Higher Activity Nuclear Waste Immobilization (Review). Russ. J. Inorg. Chem. 2019, 64, 1611–1624. [Google Scholar] [CrossRef]
- Ringwood, A.E.; Kesson, S.E.; Ware, N.G.; Hibberson, W.O.; Major, A. The SYNROC Process: A Geochemical Approach to Nuclear Waste Immobilization. Geochem. J. 1979, 13, 141–165. [Google Scholar] [CrossRef]
- Gregg, D.J.; Farzana, R.; Dayal, P.; Holmes, R.; Triani, G. Synroc Technology: Perspectives and Current Status (Review). J. Am. Ceram. Soc. 2020, 103, 5424–5441. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Petrov, V.A.; Yudintsev, S.V. Glass Crystalline Materials as Advanced Nuclear Wasteforms. Sustainability 2021, 13, 4117. [Google Scholar] [CrossRef]
- NEA. Fuels and Materials for Transmutation; OECD/NEA Publishing: Paris, France, 2005; p. 240. [Google Scholar]
- Lebreton, F.; Prieur, D.; Horlait, D.; Delahaye, T.; Jankowiak, A.; Léorier, C.; Jorion, F.; Gavilan, E.; Desmoulière, F. Recent Progress on Minor-Actinide-Bearing Oxide Fuel Fabrication at CEA Marcoule. J. Nucl. Mater. 2013, 438, 99–107. [Google Scholar] [CrossRef]
- Carmack, W.J.; Braase, L.A.; Wigeland, R.A.; Todosow, M. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development. Nucl. Eng. Des. 2017, 313, 177–184. [Google Scholar] [CrossRef]
- Poluektov, P.P.; Sukhanov, L.P.; Matyunin, Y.I. Scientific Approaches and Technical Solutions in the Field of Handling Liquid High-Level Waste. Russ. Chem. J. 2005, 49, 29–41. (In Russian) [Google Scholar]
- Stefanovsky, S.V.; Yudintsev, S.V.; Vinokurov, S.E.; Myasoedov, B.F. Chemical-Technological and Mineralogical-Geochemical Aspects of the Radioactive Waste Management. Geochem. Int. 2016, 54, 1136–1155. [Google Scholar] [CrossRef]
- Amoroso, J.; Marra, J.C.; Tang, M.; Lin, Y.; Chen, F.; Su, D.; Brinkman, K.S. Melt Processed Multiphase Ceramic Waste Forms for Nuclear Waste Immobilization. J. Nucl. Mater. 2014, 454, 12–21. [Google Scholar] [CrossRef]
- Crum, J.; Maio, V.; McCloy, J.; Scott, C.; Riley, B.; Benefiel, B.; Vienna, J.; Archibald, K.; Rodriguez, C.; Rutledge, V.; et al. Cold Crucible Induction Melter Studies for Making Glass Ceramic Wasteforms: A Feasibility Assessment. J. Nucl. Mater. 2014, 444, 481–492. [Google Scholar] [CrossRef]
- Amoroso, J.W.; Marra, J.; Dandeneau, C.S.; Brinkman, K.; Xu, Y.; Tang, M.; Maio, V.; Webb, S.M.; Chiu, W.K. Cold Crucible Induction Melter Test for Crystalline Ceramic Waste Form Fabrication: A Feasibility Assessment. J. Nucl. Mater. 2017, 486, 283–297. [Google Scholar] [CrossRef]
- CEA. Nuclear Waste Conditioning; Commissariat à L’énergie Atomique (CEA): Paris, France, 2009; p. 150. [Google Scholar]
- Steinberg, M.; Wotzka, G.; Manowitz, B. Neutron Burning of Long-lived Fission Products for Waste Disposal; Technical Report BNL-8558 Brookhaven National Laboratory: Upton, New York, USA, 1964. [Google Scholar]
- Schmidt, E. Nuclear Transmutation of Radioactive Waste: A Review of the State of the Art; Commission of the European Communities, Joint Research Centre: Ispra, Italy, 1985; p. 29. Available online: https://www.oecd-nea.org/upload/docs/application/pdf/2020-07/neacrp-a-1988-0911.pdf (accessed on 28 November 2024).
- Claiborne, H.C. Neutron-Induced Transmutation of High-level Radioactive Waste; Technical report ORNL-TM-3964 for Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1972. [Google Scholar]
- Foster, D.G. Review of PNL Study on Transmutation Processing of High Level Waste; Technical report LA-UR 74-74 for Los Alamos National Laboratory: Santa Fe, NM, USA, 1974. [Google Scholar]
- National Research Council. Nuclear Wastes. Technologies for Separations and Transmutation; The National Academies Press: Washington, DC, USA, 1996; p. 571. [Google Scholar]
- NEA. Accelerator-Driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles; A Comparative Study; OECD/NEA Publishing: Paris, France, 2020; p. 350. [Google Scholar]
- Adamov, E.O.; Mochalov, Y.S.; Rachkov, V.I.; Khomyakov, Y.S.; Shadrin, A.Y.; Kashcheev, V.A. Reprocessing of Spent Nuclear Fuel and Recycling of Nuclear Materials in Two-Component Nuclear Power. Atom. Ener. 2021, 130, 28–34. [Google Scholar]
- Ivanov, V.K.; Chekin, S.Y.; Lopatkin, A.V.; Menyajlo, A.N.; Maksioutov, M.A.; Tumanov, K.A.; Kashcheeva, P.V.; Lovachev, S.S. Assessment of Radiological Hazard of Radioactive Waste Using Effective or Organ Doses: How This May Affect Final Waste Disposal. Health Phys. 2021, 122, 402–408. [Google Scholar] [CrossRef]
- Ivanov, V.K.; Lopatkin, A.V.; Spirin, E.V.; Solomatin, V.M. Radiation (Radiological) Equivalence of Radioactive Waste and Natural Uranium Raw Materials: Technology for Ensuring the Safety of Current and Future Generations. Nucl. Radiat. Saf. 2023, 2, 31–41. (In Russian) [Google Scholar]
- Konings, R.; Kloosterman, J. A View of Strategies for Transmutation of Actinides. Prog. Nucl. Energy 2001, 38, 331–334. [Google Scholar] [CrossRef]
- Berthou, V.; Degueldre, C.; Magill, J. Transmutation Characteristics in Thermal and Fast Neutron Spectra: Application to Americium. J. Nucl. Mater. 2003, 320, 156–162. [Google Scholar] [CrossRef]
- NEA. Physics and Safety of Transmutation Systems. A Status Report; OECD/NEA Publishing: Paris, France, 2006; p. 120. [Google Scholar]
- Westlén, D. Reducing Radiotoxicity in the Long Run. Prog. Nucl. Energy 2007, 49, 597–605. [Google Scholar] [CrossRef]
- Salvatores, M.; Palmiotti, G. Radioactive Waste Partitioning and Transmutation Within Advanced Fuel Cycles: Achievements and Challenges. Prog. Part. Nucl. Phys. 2010, 66, 144–166. [Google Scholar] [CrossRef]
- Nuclear Back-end and Transmutation Technology for Waste Disposal; Springer Nature: Dordrecht, The Netherlands, 2015.
- Romanello, V.; Salvatores, M.; Schwenk-Ferrero, A.; Gabrielli, F.; Maschek, W.; Vezzoni, B. Comparative Study of Fast Critical Burner Reactors and Subcritical Accelerator Driven Systems and the Impact on Transuranics Inventory in a Regional Fuel Cycle. Nucl. Eng. and Design 2011, 241, 433–443. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Lee, W.E.; Kalmykov, S.N. (Eds.) An Introduction to Nuclear Waste Immobilisation, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019; p. 497. [Google Scholar]
- Kudryavtsev, E.G.; Sharafutdinov, R.B.; Kuryndin, A.V.; Shapovalov, A.S. On the Issue of Achievability of Radiation (Radiological) Equivalence of Radioactive Waste and Natural Uranium. Nucl. Rad. Safety 2022, 4, 73–83. (In Russian) [Google Scholar]
- Linge, I.I.; Utkin, S.S. Deep Disposal of Radioactive Waste in the Context of the Radioequivalent Approach. Nucl. Rad. Safety 2023, 42–56. (In Russian) [Google Scholar] [CrossRef]
- Korobeynikov, V.V.; Kolesov, V.V.; Karazhelevskaya, Y.E.; Terekhova, A.M. Studies of the Possibility of Americium Burning and Transmutation in a Reactor with Am-Fuel. Bulletin of Universities. Nucl. Pwr. Eng. 2019, 2, 153–163. (In Russian) [Google Scholar]
- Korobeynikov, V.V.; Kolesov, V.V.; Ignatiev, I.A. Calculation Modeling of Minor Actinide Burning in a BN-600-Type Reactor with Fuel Without Uranium and Plutonium. Nucl. Pwr. Eng. 2022, 3, 134–145. (In Russian) [Google Scholar]
- Dekusar, V.M.; Moseev, A.L.; Gurskaya, O.S. Forecast of Minor Actinide Production in the 21st Century; Joint Scientific Center “RF—IPPE”: Obninsk, Russia, 2023; p. 17. (In Russian) [Google Scholar]
- Seltborg, P. Source Efficiency and High-energy Neutronics in Accelerator-driven Systems. Ph.D. Thesis, Department of Nuclear and Reactor Physics, Royal Institute of Technology, Stockholm, Sweden, 2005; p. 223. [Google Scholar]
- NEA. A European Roadmap for Developing Accelerator Driven Systems for Nuclear Waste Incineration; OECD/NEA Publishing: Paris, France, 2001; p. 145. [Google Scholar]
- Bevelacqua, J. Speculative High-Level Nuclear Waste Processing Methods. Qeios 2023. [Google Scholar] [CrossRef]
- Ignatiev, V.; Feynberg, O.; Gnidoi, I.; Merzlyakov, A.; Surenkov, A.; Uglov, V.; Zagnitko, A.; Subbotin, V.; Sannikov, I.; Toropov, A.; et al. Molten Salt Actinide Recycler and Transforming System Without and with Th–U Support: Fuel Cycle Flexibility and Key Material Properties. Ann. Nucl. Energy 2014, 64, 408–420. [Google Scholar] [CrossRef]
- Serp, J.; Allibert, M.; Beneš, O.; Delpech, S.; Feynberg, O.; Ghetta, V.; Heuer, D.; Holcomb, D.; Ignatiev, V.; Kloosterman, J.L.; et al. The Molten Salt Reactor (MSR) in Generation IV: Overview and Perspectives. Prog. Nucl. Energy 2014, 77, 308–319. [Google Scholar] [CrossRef]
- IAEA. Status of Molten Salt Reactor Technology; International Atomic Energy Agency (IAEA): Vienna, Austria, 2023; p. 315. [Google Scholar]
- Westlén, D. Why Faster is Better—On Minor Actinide Transmutation in Hard Neutron Spectra. Ph.D. Thesis, School of Engineering Sciences, Stockholm, Sweden, 2007; p. 144. [Google Scholar]
- NEA. Uranium 2022: Resources, Production and Demand; OECD/NEA Publishing: Paris, France, 2023; p. 561. [Google Scholar]
- Poluektov, V.V.; Petrov, V.A.; Ojovan, M.I.; Yudintsev, S.V. Uranium Retention in Silica-Rich Natural Glasses: Nuclear Waste Disposal Aspect. Ceramics 2023, 6, 1152–1163. [Google Scholar] [CrossRef]
- IAEA. Status and Trends in Spent Fuel and Radioactive Waste Management; International Atomic Energy Agency (IAEA): Vienna, Austria, 2022; p. 88. [Google Scholar]
- Poinssot, C.; Rostaing, C.; Baron, P.; Warin, D.; Boullis, B. Main Results of the French Program on Partitioning of Minor Actinides, a Significant Improvement Towards Nuclear Waste Reduction. Procedia Chem. 2012, 7, 358–366. [Google Scholar] [CrossRef]
- Logunov, M.V.; Voroshilov, Y.A.; Babain, V.A.; Skobtsov, A.S. Experience in Development, Industrial Operation and Optimization of Complex Extraction-Precipitation Technology for Fractionation of Liquid High-Level Waste at the Mayak Production Association. Radiochem. 2020, 62, 700–722. [Google Scholar] [CrossRef]
- WNA. World Nuclear Performance Report 2024; World Nuclear Association: London, UK, 2024; p. 60. [Google Scholar]
- REA. Results of the Activities of the Electric Power Division of the State Corporation “Rosatom”; REA: Moscow, Russia, 2022; p. 46. Available online: https://report.rosatom.ru/go/2022/rea_2022.pdf (accessed on 28 November 2024). (In Russian)
- Crichlow, H. Solving the Nuclear Waste Problem in 2021—A New Deep Geological Waste Repository System. 2021, p. 32. Available online: https://www.researchgate.net/publication/357056999 (accessed on 28 November 2024).
- Crichlow, H. Looking Very Deep for Disposal; Nuclear Engineering International: London, UK, 2023; pp. 40–43. Available online: www.neimagazine.com (accessed on 29 November 2024).
- Rybalchenko, A.I.; Kurochkin, V.M.; Ershov, B.G.; Zakharova, E.V.; Kosareva, I.M.; Zubkov, A.A. 50 Years of Deep Disposal of Liquid Radioactive Waste—Practical and Scientific Results. Geoecology 2014, 1, 86–90. (In Russian) [Google Scholar]
- Ershov, B.G.; Gordeev, A.V.; Kosareva, I.M. Modern Problems of Safe Disposal of Liquid Radioactive Waste in Geological Formations: Radiation-Chemical Transformations and Gas Formation. Radiochemistry 2014, 56, 545–553. [Google Scholar] [CrossRef]
- Glinskii, M.L.; Pozdniakov, S.P.; Chertkov, L.G.; Zubkov, A.A.; Danilov, V.V.; Bakshevskaia, V.A.; Samartsev, V.N. Regional Flow and Transport Simulation of Liquid Radioactive Waste Disposal at the Siberian Chemical Combine for Long- and Superlong-Term Postinjection Periods. Radiochemistry 2014, 56, 649–656. [Google Scholar] [CrossRef]
- Tsebakovskaya, N.S.; Utkin, S.S.; Kapyrin, I.V.; Medyancev, N.V.; Shamina, A.V. Review of Foreign Practices of SNF and RW Disposal; Komtekhprint Publishing House: Moscow, Russia, 2015; p. 208. (In Russian) [Google Scholar]
- Abalkina, I.L.; Bolshov, L.A.; Kapyrin, I.V.; Linge, I.I.; Savelyeva, E.A.; Svitelman, V.S.; Utkin, S.S. Justification of Long-term Safety of SNF and RW Disposal for 10,000 Years or More: Methodology and Current State; IBRAE RAS: Moscow, Russia, 2019; p. 40. (In Russian) [Google Scholar]
- Arentsen, M.; Van Est, R. (Eds.) Future of Radioactive Waste Governance. Lessons from Europe; Springer Nature: Wiesbaden, Germany, 2023; p. 345. [Google Scholar]
- Kochkin, B.T.; Linge, I.I. (Eds.) Disposal of Radioactive Waste at the Yeniseisky Site in Krasnoyarsk Krai: History of Site Selection and Current State of Research; Nauka: Moscow, Russia, 2024; p. 368. (In Russian) [Google Scholar]
- NEA. The Safety Case for Deep Geological Disposal of Radioactive Waste: 2013 State of the Art; OECD/NEA Publishing: Paris, France, 2014; p. 450. [Google Scholar]
- El-Showk, S. Final Resting Place. Science 2022, 375, 806–810. [Google Scholar] [CrossRef] [PubMed]
- Ringwood, A.E. Disposal of High-Level Nuclear Wastes: A Geological Perspective. Miner. Mag. 1985, 49, 159–176. [Google Scholar] [CrossRef]
- Gibb, F.G.F. A New Scheme for the Very Deep Geological Disposal of High-Level Radioactive Waste. J. Geol. Soc. 2000, 157, 27–36. [Google Scholar] [CrossRef]
- Beswick, A.J.; Gibb, F.G.F.; Travis, K.P. Deep Borehole Disposal of Nuclear Waste: Engineering Challenges. Proc. Inst. Civ. Eng.-Energy 2014, 167, 47–66. [Google Scholar] [CrossRef]
- Crichlow, H. Method of Disposing of Nuclear Waste in Underground Rock Formations. U.S. Patent 5,850,614, 15 December 1998. [Google Scholar]
- Crichlow, H. Method for Temporary or Permanent Disposal of Nuclear Waste Using Multilateral and Horizontal Boreholes in Deep Isolated Geologic Basins. U.S. Patent 6,238,138, 29 May 2001. [Google Scholar]
- Muller, R.A.; Finsterle, S.; Grimsich, J.; Baltzer, R.; Muller, E.A.; Rector, J.W.; Payer, J.; Apps, J. Disposal of High-Level Nuclear Waste in Deep Horizontal Drillholes. Energies 2019, 12, 2052. [Google Scholar] [CrossRef]
- Sun, X.Y.; Han, L.H.; Li, X.X.; Hu, B.L.; Luo, W.; Liu, L. Transmutation of MAs and LLFPs with a Lead-Cooled Fast Reactor. Sci. Rep. 2023, 13, 1693. [Google Scholar] [CrossRef] [PubMed]
- Frieß, F.; Liebert, W. Inert-Matrix Fuel for Transmutation: Selected Mid- and long-term Effects on Reprocessing, Fuel Fabrication and Inventory Sent to Final Disposal. Prog. Nucl. Energy 2022, 145, 104106. [Google Scholar] [CrossRef]
- Baetsle, L.H. Burning of Actinides: A Complementary Waste Management Option? IAEA Bull. 1992, 3, 32–34. [Google Scholar]
- Westfall, R.M. Critical Masses for the Even-Neutron-Numbered Transuranium Actinides. Nucl. Sci. Eng. 1981, 79, 237–239. [Google Scholar] [CrossRef]
- Korobeynikov, V.V.; Kolesov, V.V.; Ignatiev, I.A. Computational Simulation of Minor Actinide Burning in a BN-600 Reactor with Fuel Without Uranium and Plutonium. Nucl. Energy Technol. 2023, 9, 59–64. [Google Scholar] [CrossRef]
- Lumpkin, G.R. Alplha-Decay Damage and Aqueous Durability of Actinide Host Phases in Natural Systems. J. Nucl. Mat. 2001, 289, 136–166. [Google Scholar] [CrossRef]
- Omel’yanenko, B.I.; Livshits, T.S.; Yudintsev, S.V.; Nikonov, B.S. Natural and Artificial Minerals as Matrices for Immobilization of Actinides. Geol. Ore Deposits 2007, 49, 173–193. [Google Scholar] [CrossRef]
- Lumpkin, G.R.; Gao, Y.; Gieré, R.; Williams, C.T.; Mariano, A.N.; Geisler, T. The role of Th-U Minerals in Assessing the Performance of Nuclear Waste Forms. Miner. Mag. 2014, 78, 1071–1095. [Google Scholar] [CrossRef]
- Zhang, S.; Teng, Z.; Wu, L.; Tan, Y.; Chen, C.; Zhou, X. Chemical Stability and Leaching Mechanism of YIG and HEG at Different pH Conditions. J. Am. Ceram. Soc. 2024, 107, 7352–7363. [Google Scholar] [CrossRef]
- Aughterson, R.D.; Lumpkin, G.R.; Smith, K.L.; Cairney, J.M. Novel Complex Ceramic Oxides, Nd2TiO5 (Nd = La, Sm, Gd, Tb, Dy, Ho, Er, and Yb), for Polyphase Nuclear Wasteforms. J. Am. Ceram. Soc. 2020, 103, 5536–5545. [Google Scholar] [CrossRef]
- Ojovan, M.I. (Ed.) Handbook of Advanced Radioactive Waste Conditioning Technologies; Woodhead Publishing Ltd.: Cambridge, UK, 2011; p. 512. [Google Scholar]
- Stefanovsky, S.V.; Yudintsev, S.V.; Giere, R.; Lumpkin, G.R. Nuclear waste forms. Geol. Soc. Lond. 2004, 236, 37–63. [Google Scholar]
- Hyatt, N.C.; Ojovan, M.I. Special Issue: Materials for Nuclear Waste Immobilization. Materials 2019, 12, 3611. [Google Scholar] [CrossRef]
- Gribble, N.R.; Short, R.; Turner, E.; Riley, A.D. The Impact of Increased Waste Loading on Vitrified HLW Quality and Durability. MRS Proc. 2009, 1193, 283. [Google Scholar] [CrossRef]
- Gribble, N.R.; Short, R.J.; Dunnett, B.F.; Steele, C.J. Increased Molybdenum Loading for Vitrified High Level Waste. MRS Proc. 2014, 1665, 253–259. [Google Scholar] [CrossRef]
- McCloy, J.S.; Schuller, S. Vitrification of Wastes: From Unwanted to Controlled Crystallization, A Review. Comptes Rendus Geosci. 2022, 354, 121–160. [Google Scholar] [CrossRef]
- Gregg, D. Industrialization of Hot Isostatic Pressing for the Treatment of ANSTOs Intermediate Level Liquid Waste. In Proceedings of the IAEA Technical Meeting on High Temperature Processing of Radioactive Waste, Vienna, Austria, 2–16 August 2024. [Google Scholar]
- Zhang, Y.; Kong, L.; Ionescu, M.; Gregg, D.J. Current Advances on Titanate Glass-Ceramic Composite Materials as Waste Forms for Actinide Immobilization: A Technical Review. J. Eur. Ceram. Soc. 2022, 42, 1852–1876. [Google Scholar] [CrossRef]
- McCloy, J.S.; Riley, B.J.; Wilkins, M.C.D.; Evarts, J.S.; Bussey, J.; Vienna, J.D.; Bingham, P.A.; Gregg, D.J.; Ojovan, M.; Schuller, S.; et al. International Perspectives on Glass Waste form Development for Low-Level and Intermediate-Level Radioactive Waste. Mater. Today 2024, 80, 594–618. [Google Scholar] [CrossRef]
- Brady, P.V.; Freeze, G.A.; Kuhlman, K.L.; Hardin, E.L.; Sassani, D.C.; MacKinnon, R.J. Deep Borehole Disposal of Nuclear Waste: US perspective. In Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, 2nd ed.; Apted, M., Ahn, J., Eds.; Woodhead Publishing Series in Energy: Sawston, UK, 2017; Chapter 4; pp. 89–112. [Google Scholar]
- IAEA. Radioactive Waste Management. Solutions for a Sustainable Future. In Proceedings of the an International Conference, Vienna, Austria, 1–5 November 2021; International Atomic Energy Agency (IAEA): Vienna, Austria, 2023; p. 475. [Google Scholar]
- IAEA. Roadmap for Implementing a Geological Disposal Programme; International Atomic Energy Agency. IAEA: Vienna, Austria, 2024; p. 83. [Google Scholar]
Element, g/t of SNF | Nuclear Fuel Burnup, GW × Day per t of SNF | ||||||
---|---|---|---|---|---|---|---|
0.5 | 20 | 33 | 40 | 51 | 60 | 70 | |
Σ Am | 0.5 | 130 | 370 | 475 | 638 | 785 | 1080 |
Σ Cm | n.d. | n.d. | 20 | N.d. | 78 | 135 | n.d. |
Σ REE | 220 | 7200 | 11,200 | ~15,000 | n.d. | ~20,000 | ~23,000 |
(Am + Cm): REE, % | 0.2 * | 1.8 * | 3.4 | 3.1 * | n.d. | 4.4 | 4.5 * |
Radionuclide or Mixture | After 1 Year | After 5 Years | After 30 Years |
---|---|---|---|
241Am | 135 | 407 | 1272 |
243Am | 105 | 105 | 105 |
Σ Am (ratio 241Am/243Am) | 240 (1.3) | 512 (3.9) | 1377 (12.1) |
242Cm | 3.8 | 0.1 | <0.01 |
244Cm | 35.3 | 30.3 | 11.6 |
245Cm | 2.2 | 2.2 | 2.2 |
243,246,247,248Cm | 0.6 | 0.6 | 0.6 |
Σ total Cm | 41.9 | 33.1 | 14.4 |
Σ MA (MA = Am and Cm) | 281.9 | 545.1 | 1391.4 |
Cm/MA, % | 14.9 | 6.1 | 1.0 |
MA/(REE * + MA), % | 1.8 | 3.5 | 8.5 |
Nos. | Reaction Scheme | T, K (o C) | Reaction Scheme | T, K (°C) |
---|---|---|---|---|
1 | P ↔ T + N2T9 | 1716 (1443) | P ↔ T + L2T9 | 1719 (1446) |
2 | P + NT3 ↔ N2T9 | 1728 (1455) | P + LT3 ↔ L2T9 | 1730 (1457) |
3 | P + NT2 ↔ NT3 | 1773 (1500) | P + LT2 ↔ LT3 | 1933 (1660) |
4 | NT3 ↔ N2T9 + NT2 | 1472 (1199) | LT3 ↔ L2T9 + LT2 | 1663 (1390) |
5 | P ↔ NT2 | 2120 (1847) | P ↔ LT2 | 2052 (1779) |
6 | absent | LT2 + LT ↔ L2T3 | 1873 (1600) | |
7 | P ↔ NT2 + NT | 1973 (1700) | P ↔ LT2 + LT | 1958 (1685) |
8 | P ↔ NT | 1993 (1720) | P ↔ LT | 1983 (1710) |
9 | P ↔ N + NT | 1774 (1501) | P ↔ L + LT | 1719 (1446) |
Phase and Its Designation | La2O3 | TiO2 | ZrO2 |
---|---|---|---|
La2Ti2O7, LT2 | 32.3 ± 0.3 | 66.2 ± 0.2 | 1.5 ± 0.3 |
31.7 ± 0.9 | 67.2 ± 1.0 | 1.1 ± 0.2 | |
La4Ti9O24, L2Ti9 | 17.7 ± 1.0 | 81.1 ± 1.1 | 2.2 + 0.3 |
16.7 ± 0.5 | 78.9 ± 0.6 | 4.4 ± 0.2 | |
ZrTiO4, ZT | <d.l. | 53.1 ± 0.4 | 46.9 ± 0.3 |
<d.l. | 41.6 ± 0.3 | 58.4 ± 0.3 | |
ZrO2, Zt | <d.l. | 13.5 ± 0.6 | 86.5 ± 0.7 |
TiO2, T | <d.l. | 88.6 ± 0.5 | 11.4 ± 0.3 |
№ | TiO2 | ZrO2 | Y2O3 | La2O3 | Ce2O3 | Pr2O3 | Nd2O3 | Sm2O3 | Eu2O3 | Gd2O3 |
---|---|---|---|---|---|---|---|---|---|---|
T0 (p) | 0 | 45.7 | 2.6 | 7.5 | 12.6 | 5.1 | 19.2 | 3.7 | 1.7 | 1.9 |
(Y0.12La0.25Ce0.41Pr0.17Nd0.62Sm0.11Eu0.05Gd0.06)Zr2.0O6.69 | ||||||||||
T15 (p) | 19.8 | 23.7 | 5.8 | 4.2 | 12.6 | 5.1 | 20.3 | 5.4 | 1.2 | 1.9 |
(Y0.23La0.12Ce0.35Pr0.14Nd0.55Sm0.14Eu0.03Gd0.05)(Ti1.21Zr0.79)O6.42 | ||||||||||
T15 (m) | 33.0 | 1.6 | 2.4 | 11.6 | 16.2 | 6.5 | 23.3 | 3.8 | 0.7 | 0.9 |
(Y0.10La0.33Ce0.46Pr0.19Nd0.65Sm0.10Eu0.02Gd0.02)(Ti1.94Zr0.06)O6.82 | ||||||||||
T18 (m) | 33.1 | 0.7 | 2.2 | 10.4 | 17.0 | 6.4 | 23.6 | 4.2 | 1.1 | 1.3 |
(Y0.09La0.31Ce0.50Pr0.19Nd0.67Sm0.12Eu0.03Gd0.03)(Ti1.97Zr0.03)O6.89 | ||||||||||
T20 (m) | 33.4 | 0 | 2.9 | 8.9 | 16.0 | 6.0 | 25.1 | 5.2 | 1.4 | 1.2 |
(Y0.12La0.26Ce0.47Pr0.17Nd0.71Sm0.14Eu0.04Gd0.03)Ti2.0O6.92 |
Oxide/Cation | Sample P1: Pyrochlore, Light–Dark | Sample P2: Pyrochlore, Center–Edge (Average) | Sample P2: Monoclinic REE Titanate |
---|---|---|---|
TiO2 | 3.7–8.4 | 4.6–14.1 (9.1) | 31.8 |
ZrO2 | 41.5–36.6 | 36.1–23.2 (30.0) | No |
La2O3 | No | 6.9–11.6 (10.2) | 25.5 |
Nd2O3 | 54.8–55.0 | No | No |
Ce2O3 | No | 11.9–12.4 (11.7) | 17.1 |
Gd2O3 | No | 38.2–35.5 (37.8) | 23.9 |
Ti4+ | 0.26–0.57 | 0.34–0.99 (0.65) | 2.01 |
Zr4+ | 1.88–1.61 | 1.72–1.06 (1.39) | No |
La3+ | No | 0.25–0.40 (0.36) | 0.79 |
Nd3+ | 1.82–1.77 | No | No |
Ce3+ | No | 0.43–0.43 (0.41) | 0.53 |
Gd3+ | No | 1.24–1.10 (1.19) | 0.67 |
Sample | TiO2 | ZrO2 | Y2O3 | La2O3 | Ce2O3 | Pr2O3 | Nd2O3 | Sm2O3 | Eu2O3 | Gd2O3 |
---|---|---|---|---|---|---|---|---|---|---|
RT-1 | 51.8 | – | – | – | – | – | 44.9 | 3.3 | – | – |
Nd3.72Sm0.26Ti9O24 | ||||||||||
IM-9 | 51.2 | 1.0 | – | – | – | – | 47.8 | – | – | – |
Nd3.94(Ti8.88 Zr0.12)O23.91 | ||||||||||
RT-2 | 51.1 | 1.4 | – | – | – | – | 47.5 | – | – | – |
Nd3.95(Ti8.86Zr0.16)O24 | ||||||||||
MLM-1 | 51.5 | 2.9 | 1.4 | 5.2 | 11.4 | 3.1 | 20.1 | 2.4 | 1.1 | 0.9 |
(Y0.17La0.44Ce0.95Pr0.26Nd1.63Sm0.19Eu0.09Gd0.07)(Ti8.83Zr0.32)O24 | ||||||||||
IM-2 | 50.5 | 3.0 | 1.9 | 4.9 | 10.9 | 3.5 | 19.8 | 3.1 | 1.2 | 1.2 |
(Y0.23La0.42Ce0.92Pr0.30Nd1.63Sm0.25Eu0.10Gd0.09)(Ti8.71Zr0.34)O24 |
Phase | Ti | Zr | Nd | O | Only Ti4+ | With Ti3+ Also | |
---|---|---|---|---|---|---|---|
Pyrochlore | 16.5 | 13.1 | 46.9 | 23.5 | Nd1.35Zr0.59Ti1.41O6.02 | Nd1.35Zr0.59Ti1.41O6.02 | |
Zirco-nolite | Center | 21.5 | 14.6 | 38.1 | 25.8 | Nd1.22Zr0.74Ti2.04O7.4 | Nd1.22Zr0.74Ti4+1.26Ti3+0.78O7 |
Edge | 23.5 | 11.8 | 38.5 | 26.2 | Nd1.20Zr0.60Ti2.20O7.4 | Nd1.20Zr0.60Ti4+1.40Ti3+0.80O7 | |
Rutile | 46.8 | 7.0 | 10.7 | 35.5 | Ti0.86Zr0.07Nd0.07O1.97 | Ti0.86Zr0.07Nd0.07O1.97 |
Nuclide (T1/2, Years) | Share, wt.% | Heat Release, W/kg | Decay and Its Probability | Emission, Particles/s | Daughter Nuclide T1/2, Years | |
---|---|---|---|---|---|---|
α-Particles | Neutrons | |||||
241Am (433) | 63.85 | 114.7 | α + SF (3.8 × 10−12) | 1.3 × 1011 | 2752 | 237Np (2.1 × 106) |
243Am * (7.3 × 103) | 25.35 | 6.4 | α + SF (3.7 × 10−11) | 7.4 × 109 | 139 | 239Pu (2.4 × 104) |
243Cm (29.1) | 0.09 | 1860.7 | α (0.9976) + β+ (0.0024) | 1.9 × 1012 | 48,690 | 239Pu (2.4 × 104) |
244Cm (18.1) | 9.78 | 2841.8 | α + SF (1.4 × 10−6) | 3.0 × 1012 | 10.9 × 106 | 240Pu (6537) |
245Cm (8.5 × 103) | 0.82 | 5.8 | α (1.0) | 6.4 × 109 | 123 | 241Pu (14.4) |
246Cm (4.76 × 103) | 0.11 | 10.2 | α + SF (2.6 × 10−4) | 1.1 × 1010 | 8.76 × 106 | 242Pu (3.8 × 105) |
Type of Radiation (Decay) | Range of Defects, m | Irradiation Dose, Gray * After 104/106 Years | Atomic Displacements per Decay (dpa) |
---|---|---|---|
α-particle | ~2 × 10−5 | 3 × 109/1010 | 130–200 |
recoil nucleus | ~3 × 10−8 | ~6 × 107/~3 × 109 | 120–2000 |
β-particle | ~10−3 | ~3 × 109/~4 × 109 | 0.1–1 |
γ-radiation | ~2 × 10−2 | ~2 × 109/~2 × 109 | <<1 |
Spontaneous decay | ~10−5 | 103–104 **/No data | 2.5 × 104–5 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yudintsev, S.V.; Ojovan, M.I.; Stefanovsky, O.I. Composite Forms in the REE2O3–ZrO2–TiO2 System for Minor Actinides (Am, Cm) and REE Immobilization. J. Compos. Sci. 2025, 9, 58. https://doi.org/10.3390/jcs9020058
Yudintsev SV, Ojovan MI, Stefanovsky OI. Composite Forms in the REE2O3–ZrO2–TiO2 System for Minor Actinides (Am, Cm) and REE Immobilization. Journal of Composites Science. 2025; 9(2):58. https://doi.org/10.3390/jcs9020058
Chicago/Turabian StyleYudintsev, Sergey V., Michael I. Ojovan, and Olga I. Stefanovsky. 2025. "Composite Forms in the REE2O3–ZrO2–TiO2 System for Minor Actinides (Am, Cm) and REE Immobilization" Journal of Composites Science 9, no. 2: 58. https://doi.org/10.3390/jcs9020058
APA StyleYudintsev, S. V., Ojovan, M. I., & Stefanovsky, O. I. (2025). Composite Forms in the REE2O3–ZrO2–TiO2 System for Minor Actinides (Am, Cm) and REE Immobilization. Journal of Composites Science, 9(2), 58. https://doi.org/10.3390/jcs9020058