Electrochemical Anodization-Induced {001} Facet Exposure in A-TiO2 for Improved DSSC Efficiency
Abstract
1. Introduction
2. Experimental Procedure
2.1. Synthesis of TiNTs/Ncs
2.2. Fabrication of DSSC
3. Results and Discussion
3.1. Self-Assembly: Morphological Transformation
3.2. Structural Properties
3.3. Surface Morphology
3.4. Electrochemical Analysis
3.5. I-V Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, G.; Yu, J.C.; Lu, G.Q.M.; Cheng, H.-M. Crystal Facet Engineering of Semiconductor Photocatalysts: Motivations, Advances and Unique Properties. Chem. Commun. 2011, 47, 6763–6783. [Google Scholar] [CrossRef]
- Jiang, X.C.; Zeng, Q.H.; Chen, C.Y.; Yu, A.B. Self-Assembly of Particles: Some Thoughts and Comments. J. Mater. Chem. 2011, 21, 16797. [Google Scholar] [CrossRef]
- Zhang, Z.; Glotzer, S.C. Self-Assembly of Patchy Particles. Nano Lett. 2004, 4, 1407–1413. [Google Scholar] [CrossRef]
- Kim, M.; Ryu, K.H.; Kim, S.B.; Gu, J.H.; Kwak, C.S.; Kim, K.H.; Han, Y.S. The Effect of Applying Lead Ion to the Surface of TiO2 on Dye-Adsorption Rate and Photovoltaic Properties of Solar Cells. J. Ind. Eng. Chem. 2024, 142, 441–448. [Google Scholar] [CrossRef]
- Chu, L.; Qin, Z.; Yang, J.; Li, X. Anatase TiO2 Nanoparticles with Exposed {001} Facets for Efficient Dye-Sensitized Solar Cells. Sci. Rep. 2015, 5, 12143. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Qi, Y.; Lun, N.; Liu, N. Large Scale Synthesis and Gas-Sensing Properties of Anatase TiO2 Three-Dimensional Hierarchical Nanostructures. Langmuir 2010, 26, 12841–12848. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, Y.; Wang, G.; Liu, L.; Yuan, C.; Yu, T.; Li, Q.; Zeng, F.; Gu, G. Enhanced Gas-Sensing Properties of the Hierarchical TiO2 Hollow Microspheres with Exposed High-Energy {001} Crystal Facets. ACS Appl. Mater. Interfaces 2015, 7, 24902–24908. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Islam, A.; Yang, X.; Qin, C.; Liu, J.; Zhang, K.; Peng, W.; Han, L. Retarding the Crystallization of PbI2 for Highly Reproducible Planar-Structured Perovskite Solar Cells via Sequential Deposition. Energy Environ. Sci. 2014, 7, 2934. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, X.; Sun, H.; Ahmad, M. 3D Anatase TiO2 Hollow Microspheres Assembled with High-Energy {001} Facets for Lithium-Ion Batteries. RSC Adv. 2012, 2, 7901. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Y.; Hou, H.; Zhang, Y.; Fang, L.; Chen, J.; Ji, X. Size-Tunable Single-Crystalline Anatase TiO2 Cubes as Anode Materials for Lithium Ion Batteries. J. Phys. Chem. C 2015, 119, 3923–3930. [Google Scholar] [CrossRef]
- Boykobilov, D.; Thakur, S.; Samiev, A.; Nasimov, A.; Turaev, K.; Nurmanov, S.; Prakash, J.; Ruzimuradov, O. Electrochemical Synthesis and Modification of Novel TiO2 Nanotubes: Chemistry and Role of Key Synthesis Parameters for Photocatalytic Applications in Energy and Environment. Inorg. Chem. Commun. 2024, 170, 113419. [Google Scholar] [CrossRef]
- Lee, M.G.; Yang, J.W.; Park, H.; Moon, C.W.; Andoshe, D.M.; Park, J.; Moon, C.K.; Lee, T.H.; Choi, K.S.; Cheon, W.S.; et al. Crystal Facet Engineering of TiO2 Nanostructures for Enhancing Photoelectrochemical Water Splitting with BiVO4 Nanodots. Nano-Micro Lett. 2022, 14, 48. [Google Scholar] [CrossRef]
- Oregan, B.; Gratzel, M. A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Grätzel, M. Photovoltaic Performance and Long-Term Stability of Dye-Sensitized Meosocopic Solar Cells. Comptes Rendus Chim. 2006, 9, 578–583. [Google Scholar] [CrossRef]
- Roy, P.; Berger, S.; Schmuki, P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem. Int. Ed. Engl. 2011, 50, 2904–2939. [Google Scholar] [CrossRef]
- Choi, J.; Song, S.; Hörantner, M.T.; Snaith, H.J.; Park, T. Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Nano 2016, 10, 6029–6036. [Google Scholar] [CrossRef]
- Choi, J.; Kwon, Y.Y.S.; Park, T. Doubly Open-Ended TiO2 Nanotube Arrays Decorated with a Few Nm-Sized TiO2 Nanoparticles for Highly Efficient Dye-Sensitized Solar Cells. J. Mater. Chem. A 2014, 2, 14380. [Google Scholar] [CrossRef]
- Xie, F.; Cherng, S.-J.; Lu, S.; Chang, Y.-H.; Sha, W.E.I.; Feng, S.-P.; Chen, C.-M.; Choy, W.C.H. Functions of Self-Assembled Ultrafine TiO2 Nanocrystals for High Efficient Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 5367–5373. [Google Scholar] [CrossRef]
- Kay, A.; Graetzel, M. Artificial Photosynthesis. 1. Photosensitization of Titania Solar Cells with Chlorophyll Derivatives and Related Natural Porphyrins. J. Phys. Chem. 1993, 97, 6272–6277. [Google Scholar] [CrossRef]
- Usami, A. Theoretical Study of Application of Multiple Scattering of Light to a Dye-Sensitized Nanocrystalline Photoelectrochemical Cell. Chem. Phys. Lett. 1997, 277, 105–108. [Google Scholar] [CrossRef]
- Huang, S.Y.; Schlichthorl, G.; Nozik, A.J.; Gratzel, M.; Frank, A.J. Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells. J. Phys. Chem. B 1997, 101, 2576–2582. [Google Scholar] [CrossRef]
- Schlichthörl, G.; Huang, S.Y.; Sprague, J.; Frank, A.J. Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy. J. Phys. Chem. B 1997, 101, 8141–8155. [Google Scholar] [CrossRef]
- Ho, S.Y.; Su, C.; Kathirvel, S.; Li, C.Y.; Li, W.R. Fabrication of TiO2 Nanotube-Nanocube Array Composite Electrode for Dye-Sensitized Solar Cells. Thin Solid Film. 2013, 529, 123–127. [Google Scholar] [CrossRef]
- Yang, H.G.; Sun, C.H.; Qiao, S.Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H.M.; Lu, G.Q. Anatase TiO2 Single Crystals with a Large Percentage of Reactive Facets. Nature 2008, 453, 638–641. [Google Scholar] [CrossRef]
- Nwanya, A.C.; Ezema, F.I.; Ejikeme, P.M. Dyed Sensitized Solar Cells: A Technically and Economically Alternative Concept to p-n Junction Photovoltaic Devices. Int. J. Phys. Sci. 2011, 6, 5190–5201. [Google Scholar] [CrossRef]
- Gordon, T.R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R.T.; Fornasiero, P.; Murray, C.B. Nonaqueous Synthesis of TiO2 Nanocrystals Using TiF 4 to Engineer Morphology, Oxygen Vacancy Concentration, and Photocatalytic Activity. J. Am. Chem. Soc. 2012, 134, 6751–6761. [Google Scholar] [CrossRef] [PubMed]
- Roy, N.; Sohn, Y.; Pradhan, D. Synergy of Low-Energy {101} and High-Energy {001} TiO2 Crystal Facets for Enhanced Photocatalysis. ACS Nano 2013, 7, 2532–2540. [Google Scholar] [CrossRef]
- Amoli, V.; Bhat, S.; Maurya, A.; Banerjee, B.; Bhaumik, A.; Sinha, A.K. Tailored Synthesis of Porous TiO2 Nanocubes and Nanoparallelepipeds with Exposed {111} Facets and Mesoscopic Void Space: A Superior Candidate for Efficient Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 26022–26035. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Kim, D.; Lee, K.; Spiecker, E.; Schmuki, P. TiO2 Nanotubes and Their Application in Dye-Sensitized Solar Cells. Nanoscale 2010, 2, 45–59. [Google Scholar] [CrossRef]
- Liu, B.; Aydil, E.S. Growth of Oriented Single-Crystalline Rutile TiO Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2009, 131, 3985–3990. [Google Scholar] [CrossRef] [PubMed]
- Dadgostar, S.; Tajabadi, F.; Taghavinia, N. Mesoporous Submicrometer TiO2 Hollow Spheres as Scatterers in Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2012, 4, 2964–2968. [Google Scholar] [CrossRef]
- Ye, M.; Zheng, D.; Wang, M.; Chen, C.; Liao, W.; Lin, C.; Lin, Z. Hierarchically Structured Microspheres for High-Efficiency Rutile TiO2-Based Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 2893–2901. [Google Scholar] [CrossRef]
- Alivov, Y.; Fan, Z.Y. A Method for Fabrication of Pyramid-Shaped TiO2 Nanoparticles with a High {001} Facet Percentage. J. Phys. Chem. C 2009, 113, 12954–12957. [Google Scholar] [CrossRef]
- Liu, G.; Yang, H.G.; Pan, J.; Yang, Y.Q.; Lu, G.Q.M.; Cheng, H.M. Titanium Dioxide Crystals with Tailored Facets. Chem. Rev. 2014, 114, 9559–9612. [Google Scholar] [CrossRef] [PubMed]
- Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and Energetics of Stoichiometric TiO2 Anatase Surfaces. Phys. Rev. B—Condens. Matter Mater. Phys. 2001, 63, 1554091–1554099. [Google Scholar] [CrossRef]
- Dudziak, S.; Kowalkińska, M.; Zielińska-Jurek, A. Crystal Facet Engineering of TiO2 from Theory to Application. In Updates on Titanium Dioxide; IntechOpen: London, UK, 2023. [Google Scholar]
- Ramar, A.; Saraswathi, R.; Rajkumar, M.; Chen, S.-M. Influence of Poly( N-Vinylcarbazole) as a Photoanode Component in Enhancing the Performance of a Dye-Sensitized Solar Cell. J. Phys. Chem. C 2015, 119, 23830–23838. [Google Scholar] [CrossRef]
- Sivakumar, R.; Ramkumar, J.; Shaji, S.; Paulraj, M. Efficient TiO2 Blocking Layer for TiO2 Nanorod Arrays-Based Dye-Sensitized Solar Cells. Thin Solid Film. 2016, 615, 171–176. [Google Scholar] [CrossRef]
- Pan, J.; Liu, G.; Lu, G.Q.; Cheng, H.M. On the True Photoreactivity Order of {001}, {010}, and {101} Facets of Anatase TiO2 Crystals. Angew. Chem.—Int. Ed. 2011, 50, 2133–2137. [Google Scholar] [CrossRef]
- Yu, J.; Fan, J.; Lv, K. Anatase TiO2 Nanosheets with Exposed (001) Facets: Improved Photoelectric Conversion Efficiency in Dye-Sensitized Solar Cells. Nanoscale 2010, 2, 2144. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Selloni, A. Reactivity of Anatase TiO2 Nanoparticles: The Role of the Minority (001) Surface. J. Phys. Chem. B 2005, 109, 19560–19562. [Google Scholar] [CrossRef]
- Acevedo-Peña, P.; González, F.; González, G.; González, I. The Effect of Anatase Crystal Orientation on the Photoelectrochemical Performance of Anodic TiO2 Nanotubes. Phys. Chem. Chem. Phys. 2014, 16, 26213–26220. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhang, G. TiO2 Nanotip Arrays: Anodic Fabrication and Field-Emission Properties. ACS Appl. Mater. Interfaces 2012, 4, 6053–6061. [Google Scholar] [CrossRef] [PubMed]
- Chanmanee, W.; Watcharenwong, A.; Chenthamarakshan, C.R.; Kajitvichyanukul, P.; de Tacconi, N.R.; Rajeshwar, K. Formation and Characterization of Self-Organized TiO2 Nanotube Arrays by Pulse Anodization. J. Am. Chem. Soc. 2008, 130, 965–974. [Google Scholar] [CrossRef] [PubMed]
Sl.No | NH4F (%) | Time (h) | 2θ | (hkl) | Crystalline Size (10−9 m) | d-Spacing (A°) | Dislocation Density (1015 lines/m2) | Lattice Parameter (A°) | Strain | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Exp | Cal | |||||||||||||
Exp | Cal | Exp | Cal | a | c | a | c | |||||||
1 | 0.25 | 6 | 25.31 | 25.32 | 101 | 14.5 | 3.518 | 3.517 | 4.7 | 3.78 | 9.55 | 3.78 | 9.51 | 0.043 |
2 | 12 | 25.4 | 25.32 | 101 | 14.6 | 3.488 | 4.69 | 3.79 | 9.56 | 0.043 | ||||
3 | 18 | 25.35 | 25.32 | 101 | 14.7 | 3.513 | 4.6 | 3.77 | 9.42 | 0.043 | ||||
4 | 24 | 25.33 | 25.32 | 101 | 15.1 | 3.516 | 4.36 | 3.77 | 9.42 | 0.042 | ||||
5 | 0.5 | 6 | 25.18 | 25.32 | 101 | 13.6 | 3.512 | 3.517 | 5.3 | 3.75 | 9.42 | 3.78 | 9.51 | 0.047 |
6 | 12 | 25.5 | 25.32 | 101 | 13.8 | 3.506 | 5.2 | 3.81 | 9.45 | 0.045 | ||||
7 | 18 | 25.4 | 25.32 | 101 | 14.3 | 3.492 | 4.8 | 3.82 | 9.58 | 0.044 | ||||
8 | 24 | 25.36 | 25.32 | 101 | 14.5 | 3.536 | 4.6 | 3.77 | 9.42 | 0.043 |
Details | Jsc (mA/cm2) | VOC/V | Fill Factor (FF) | η (%) |
---|---|---|---|---|
a | 8.35 | 0.737 | 0.527 | 3.251 |
b | 9.55 | 0.777 | 0.459 | 3.413 |
c | 13.11 | 0.737 | 0.359 | 3.473 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathew, J.; Thankaraj Salammal, S.; Sivaramalingam, A.; Manidurai, P. Electrochemical Anodization-Induced {001} Facet Exposure in A-TiO2 for Improved DSSC Efficiency. J. Compos. Sci. 2025, 9, 462. https://doi.org/10.3390/jcs9090462
Mathew J, Thankaraj Salammal S, Sivaramalingam A, Manidurai P. Electrochemical Anodization-Induced {001} Facet Exposure in A-TiO2 for Improved DSSC Efficiency. Journal of Composites Science. 2025; 9(9):462. https://doi.org/10.3390/jcs9090462
Chicago/Turabian StyleMathew, Jolly, Shyju Thankaraj Salammal, Anandhi Sivaramalingam, and Paulraj Manidurai. 2025. "Electrochemical Anodization-Induced {001} Facet Exposure in A-TiO2 for Improved DSSC Efficiency" Journal of Composites Science 9, no. 9: 462. https://doi.org/10.3390/jcs9090462
APA StyleMathew, J., Thankaraj Salammal, S., Sivaramalingam, A., & Manidurai, P. (2025). Electrochemical Anodization-Induced {001} Facet Exposure in A-TiO2 for Improved DSSC Efficiency. Journal of Composites Science, 9(9), 462. https://doi.org/10.3390/jcs9090462