Biobased Foams: A Critical Review of Their Synthesis, Performance and Prospective Applications
Abstract
1. Introduction
1.1. Foams—A Type of Lightweight Cellular Material with Versatile Applications
1.2. Polymeric Foams and Biobased Foams (BBFs)
2. Common Polymer Foaming Methods
2.1. Physical Foaming
2.1.1. Extrusion Foaming
2.1.2. Injection Molding Foaming (IMF)
2.2. Chemical Foaming
2.3. Mechanical Foaming
3. Foam Properties
3.1. Typical Physical Properties of Polymeric Foams
3.1.1. Mass Density
3.1.2. Thermal Conductivity (TC)
3.2. Mechanical Properties of Polymeric Foams
3.2.1. Experimental Observations
3.2.2. Rate Effects in Mechanical Properties of Polymeric Foams
4. Sustainable Biobased Foams (BBFs): A Promising Future
4.1. Soybean-Based Foams (SBFs-1)
4.2. Corn-Based Foams (CBFs)
4.3. Starch-Based Foams (SBFs-2)
5. Challenges in BBF Manufacturing
- High manufacturing costs of BBFs compared to those of conventional synthetic foams.
- Pretreatment of biomass materials and extraction of bio-polyols and bio-phenols for processing of biobased PU and bio-phenolic foams [77].
- Difficulties in maintaining uniform cell morphology, including cell size, cell density, cell wall thickness, and struts of BBFs.
- High viscosities and lower reactivities of soy-based polyols, which complicate processing and foam formulation.
- Technical challenges in uniformly dispersing additives to achieve optimal mechanical performance. The incorporation of soybean husk-derived ashes as a filler into rigid PUFs may disrupt the cellular structure and hinder uniform cell formation and quality. Limited chemical interaction between the fillers and the polymeric resins results in weak interfacial adhesion and poor mechanical properties [107].
- Relatively lower mechanical and thermal properties of BBFs compared to conventional synthetic counterparts. Feasible additives (e.g., plant fibers and nanomaterials) and chemical modification are desired to further enhance the physical and mechanical properties of BBFs [13].
- Poor moisture resistance of BBFs due to hydrophilic nature of constituents, e.g., starch, cellulose, and protein foams. Chemical modification is sought to improve the water resistance and hydrophobicity of BBFs for high performance and durability in applications.
- Inadequate standardized life-cycle assessment (LCA) data for biobased materials, e.g., lignin and plant-derived polyols, which complicates the assessment of their impacts on the environment [133].
- Replacement of bio-polyols with lignin to overcome negative environmental impacts of bio-polyols with compromised mass density and thermal conductivity, since bio-polyols are not always environmentally friendly [133].
- Inherent brittleness and water sensitivity of starch-based materials negatively influence physical and mechanical properties of resulting BBFs. Additional chemical modifications, plasticizers, coatings, and additives need to be rationally explored to address the weaknesses and enhance the desired properties [124].
6. Promising Applications of BBFs
- Automobile and aerospace industries: Applications in vehicle interiors, door panels, and aerospace insulation due to their light weight and thermal resistance properties.
- Thermal and acoustic insulation: Installation in buildings, fire-resistant structures, refrigerators, sound-absorbing walls, vibration dampers, and other thermal and acoustic barriers.
- Agriculture: Potential applications in controlled agricultural practices, e.g., greenhouse thermal insulation and hydroponic substrates. Sound and thermal insulation and moisture resistance of BBFs can provide improved plant growth conditions. Dsouza et al. [133] reported that biobased PU and phenolic foams, especially those improved with lignocellulosic materials, showed huge potential for hydrophilic usage, including environmental remediation, floral arrangements, and hydroponic germination.
- Packaging solutions: Broad applications of low-cost BBFs for food trays, containers, and loose filling materials for the packaging of commercial products.
7. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
ADC | Azodicarbonamide |
BA | Blowing agent |
BBF | Biobased foam |
BEF | Biobased epoxy foam |
BPF | Biobased phenolic foam |
BPU | Biobased polyurethane |
BPUF | Biobased polyurethane foam |
BRPUF | Biobased rigid polyurethane foam |
CB | Carbon black |
CBA | Chemical blowing agent |
CBF | Corn-based foam |
CBPUT | Corn-based flexible polyurethane foam |
CBFPUT | Corn-based polyurethane foam |
CNF | Carbon nanofiber |
CO2 | Carbon dioxide |
CPPC | Chlorinated poly(propylene carbonate) |
DMMP | Dimethyl methyl phosphonate |
DSF | Defatted soy flour |
EVO | Epoxidized vegetable oil |
EPS | Expanded polystyrene |
HFC | Hydrofluorocarbon |
HC | Hydrocarbon |
HDPE | High-density polyethylene |
IMF | Injection molding forming |
LCA | Life-cycle assessment |
LDPE | Low-density polyethylene |
MDI | Methylene diphenyl diisocyanate |
NTC | Negative temperature coefficient |
PBAT | Polybutylene adipate-co-terephthalate |
PBS | Polybutylene succinate |
PCL | Polycaprolactone |
PE | Polyethylene |
PET | Polyethylene terephthalate |
PHA | Polyhydroxyalkanoate |
PI | Polyimide |
PI6 | Polyimide with the specific structural features |
PLA | Polylactic acid |
PO | Polyolefin |
PP | Polypropylene |
PPC | Polypropylene carbonate |
PS | Polystyrene |
PTFE | Polytetrafluoroethylene |
PU | Polyurethane |
PUF | Polyurethane foam |
PVA | Polyvinyl alcohol |
PVC | Polyvinyl chloride |
RPUF | Rigid polyurethane foam |
SBF-1 | Soybean-based foam |
SBF-2 | Starch-based foam |
SBPUF | Soybean-based polyurethane foam |
Sc-CO2 | Supercritical carbon dioxide |
SEM | Scanning electron microscopy |
SPC | Soy protein concentrate |
SPI | Soy protein isolate |
TC | Thermal conductivity |
TDI | Toluene diisocyanate |
VOC | Volatile organic compound |
WAI | Water absorption index |
WSI | Water solubility index |
References
- Hill, C.; Eastoe, J. Foams: From nature to industry. Adv. Colloid Interface Sci. 2017, 247, 496–513. [Google Scholar] [CrossRef]
- Lefebvre, L.P.; Banhart, J.; Dunand, D.C. Porous metal and metallic foams: Current status and recent developments. Adv. Eng. Mater. 2008, 10, 775–787. [Google Scholar] [CrossRef]
- Stevenson, P. (Ed.) Foam Engineering: Fundamentals and Applications; Wiley-Blackwell: West Sussex, UK, 2012. [Google Scholar]
- Mills, N. Polymer Foams Handbook: Engineering and Biomechanics Applications and Design Guide; Butterworth-Heinemann: Oxford, UK, 2007. [Google Scholar]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Singh, S.; Bhatnagar, N. A survey of fabrication and application of metallic foams (1925–2017). J. Porous Mater. 2018, 25, 537–554. [Google Scholar] [CrossRef]
- Afolabi, L.O.; Ariff, Z.M.; Hashim, S.F.S.; Alomayri, T.; Mahzan, S.; Kamarudin, K.A.; Muhammad, I.D. Syntactic foams formulations, production techniques, and industry applications: A review. J. Mater. Res. Technol. 2020, 9, 10698–10718. [Google Scholar] [CrossRef]
- Banhart, J. Manufacturing methods for metallic foams. J. Mater. Proc. Tech. 2001, 110, 21–27. [Google Scholar]
- Bhaduri, S.B. Science and technology of ceramic foams. Adv. Performance Mater. 1994, 1, 205–220. [Google Scholar] [CrossRef]
- Yeetsorn, R.; Tungkamani, S.; Maiket, Y. Fabrication of a ceramic foam catalyst using polymer foam scrap via the replica technique for dry reforming. ACS Omega 2022, 7, 4202–4213. [Google Scholar] [CrossRef]
- Hassan, A.; Alnser, I.A. A review of different manufacturing methods of metallic foams. ACS Omega 2024, 9, 6280–6295. [Google Scholar] [CrossRef]
- Tomin, M.; Kmetty, Á. Polymer foams as advanced energy absorbing materials for sports applications—A review. J. Appl. Polym. Sci. 2022, 139, 51714. [Google Scholar] [CrossRef]
- Wang, X.; Jang, J.; Su, Y.; Liu, J.; Zhang, H.; He, Z.; Ni, Y. Starting materials, processes and characteristics of bio-based foams: A review. J. Bioresour. Bioprod. 2024, 9, 160–173. [Google Scholar] [CrossRef]
- Song, W.; Barber, K.; Lee, K.Y. Heat-induced bubble expansion as a route to increase the porosity of foam-templated bio-based macroporous polymers. Polymer 2017, 118, 97–106. [Google Scholar] [CrossRef]
- Gonçalves, L.F.F.F.; Reis, R.L.; Fernandes, E.M. Forefront research of foaming strategies on biodegradable polymers and their composites by thermal or melt-based processing technologies: Advances and perspectives. Polymers 2024, 16, 1286. [Google Scholar] [CrossRef]
- Sarika, P.R.; Nancarrow, P.; Khansaheb, A.; Ibrahim, T. Progress in bio-based phenolic foams: Synthesis, properties, and applications. ChemBioEng Rev. 2021, 8, 612–632. [Google Scholar] [CrossRef]
- Gautam, R.; Bassi, A.S.; Yanful, E.K. A review of biodegradation of synthetic plastic and foams. Appl. Biochem. Biotechnol. 2007, 141, 85–108. [Google Scholar] [CrossRef]
- Yu, Y.J.; Hearon, K.; Wilson, T.S.; Maitland, D.J. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams. Smart Mater. Struct. 2011, 20, 085010. [Google Scholar] [CrossRef]
- Marrazzo, C.; Maio, E.D.; Iannace, S. Foaming of synthetic and natural biodegradable polymers. J. Cell. Plast. 2007, 43, 123–133. [Google Scholar] [CrossRef]
- Mort, R.; Vorst, K.; Curtzwiler, G.; Jiang, S. Biobased foams for thermal insulation: Material selection, processing, modeling, and performance. RSC Adv. 2021, 11, 4375–4394. [Google Scholar] [CrossRef]
- Tagliavia, G.; Porfiri, M.; Gupta, N. Influence of moisture absorption on flexural properties of syntactic foams. Compos. Part B Eng. 2012, 43, 115–123. [Google Scholar] [CrossRef]
- Jin, F.L.; Zhao, M.; Park, M.; Park, S.J. Recent trends of foaming in polymer processing: A review. Polymers 2019, 11, 953. [Google Scholar] [CrossRef]
- Maiti, A.; Small, W.; Lewicki, J.P.; Weisgraber, T.H.; Duoss, E.B.; Chinn, S.C.; Pearson, M.A.; Spadaccini, C.M.; Maxwell, R.S.; Wilson, T.S. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response. Sci. Rep. 2016, 6, 24871. [Google Scholar]
- Liu, T.; Peng, X.F.; Mi, H.Y.; Li, H.; Turng, L.S.; Xu, B.P. Preparation of fast-degrading poly(lactic acid)/soy protein concentrate biocomposite foams via supercritical CO2 foaming. Polym. Eng. Sci. 2019, 59, 1753–1762. [Google Scholar] [CrossRef]
- Rapp, F.; Schneider, A.; Elsner, P. Biopolymer foams—Relationship between material characteristics and foaming behavior of cellulose based foams. AIP Conf. Proc. 2014, 1593, 362–366. [Google Scholar]
- De Souza, F.M.; Desai, Y.; Gupta, R.K. Introduction to polymeric foams. ACS Symp. Ser. 2023, 1439, 1–23. [Google Scholar]
- Tomasko, D.L.; Burley, A.; Feng, L.; Yeh, S.-K.; Miyazono, K.; Nirmal-Kumar, S.; Kusaka, I.; Koelling, K. Development of CO2 for polymer foam applications. J. Supercrit. Fluids 2009, 47, 493–499. [Google Scholar] [CrossRef]
- Kabir, M.E.; Saha, M.C.; Jeelani, S. Tensile and fracture behavior of polymer foams. Mater. Sci. Eng. A 2006, 429, 225–235. [Google Scholar] [CrossRef]
- Sperling, L.H. Introduction to Physical Polymer Science, 4th ed.; John Wiley & Sons: Hoboken, NY, USA, 2006. [Google Scholar]
- Chandra, R.; Rustgi, R. Bodegradable polymers. Prog. Polym. Sci. 1998, 23, 1273–1335. [Google Scholar] [CrossRef]
- Gross, R.A.; Kalra, B. Biodegradable polymers for the environment. Science 2002, 297, 803–807. [Google Scholar] [CrossRef]
- Samir, A.; Ashour, F.H.; Hakim, A.A.; Bassyouni, M. Recent advances in biodegradable polymers for sustaibable applications. NPJ Mater. Degrad. 2022, 6, 68. [Google Scholar] [CrossRef]
- Grand View Research. Available online: https://www.grandviewresearch.com/industry-analysis/polymer-foam-market (accessed on 16 March 2025).
- Fortune Business Insights. Available online: https://www.fortunebusinessinsights.com/polyurethane-foam-market-110512 (accessed on 16 March 2025).
- Skleničková, K.; Abbrent, S.; Halecký, M.; Kočí, V.; Beneš, H. Biodegradability and ecotoxicity of polyurethane foams: A review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 157–202. [Google Scholar] [CrossRef]
- Tian, H.; Wu, J.; Xiang, A. Polyether polyol-based rigid polyurethane foams reinforced with soy protein fillers. J. Vinyl Addit. Technol. 2018, 24, E105–E111. [Google Scholar] [CrossRef]
- Altuna, F.I.; Ruseckaite, R.A.; Stefani, P.M. Biobased thermosetting epoxy foams: Mechanical and thermal characterization. ACS Sustain. Chem. Eng. 2015, 3, 1406–1411. [Google Scholar] [CrossRef]
- Endres, H.J. Bio-based thermopalstic and thermset polymer. In Lightweight and Sustainable Materials for Automotive Applications, 1st ed.; Faruk, O., Tjong, J., Sain, M., Eds.; CRC: Baca Raton, FL, USA, 2017. [Google Scholar]
- Huang, X.; Yang, X.; Liu, H.; Shang, S.; Cai, Z.; Wu, K. Bio-based thermosetting epoxy foams from epoxideized soybean oil and rosin with enhanced properties. Ind. Crops Porducts 2019, 139, 111540. [Google Scholar] [CrossRef]
- Członka, S.; Strąkowska, A.; Strzelec, K.; Kairytė, A.; Kremensa, A. Bio-based polyurethane composite foams with improved mechancial, thermal, and anitbacterial properteis. Materials 2020, 13, 1108. [Google Scholar] [CrossRef]
- Regasa, M.B.; Fanta, G.M. Applications of polymeric foams in thermal insulation. ACS Symp. Ser. 2023, 1440, 167–185. [Google Scholar]
- de Beukelaer, H.; Hilhorst, M.; Workala, Y. Maaskant, and W. Post. Overview of the mechanical, thermal and barrier properties of biobased and/or biodegradable thermoplastic materials. Polym. Test. 2022, 116, 107803. [Google Scholar] [CrossRef]
- Polymeric Foam. Available online: https://en.wikipedia.org/wiki/Polymeric_foam (accessed on 7 July 2025).
- Zhang, C.; Zhu, B.; Lee, L.J. Extrusion foaming of polystyrene/carbon particles using carbon dioxide and water as co-blowing agents. Polymer 2011, 52, 1847–1855. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, K.J.; Jeong, H.G.; Kim, S.W. Growth of gas bubbles in the foam extrusion process. Adv. Polym. Technol. 2000, 19, 97–112. [Google Scholar] [CrossRef]
- Aksit, M.; Zhao, C.; Klose, B.; Kreger, K.; Schmidt, H.W.; Altstädt, V. Extruded polystyrene foams with enhanced insulation and mechanical properties by a benzene-trisamide-based additive. Polymers 2019, 11, 268. [Google Scholar] [CrossRef] [PubMed]
- Mengeloglu, F.; Matuana, L.M. Foaming of rigid PVC/wood-flour composites through a continuous extrusion process. J. Vinyl Addit. Technol. 2001, 7, 142–148. [Google Scholar] [CrossRef]
- Kim, S.; Li, K.; Alsbaiee, A.; Brutman, J.P.; Dichtel, W.R. Circular reprocessing of thermoset polyurethane foams. Adv. Mater. 2023, 35, 2305387. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Liu, T.; Xu, Z.; Park, C.B.; Zhao, L. Improving the continuous microcellular extrusion foaming ability with supercritical CO2 of thermoplastic polyether ester elastomer through in-situ fibrillation of polytetrafluoroethylene. Polymers 2019, 11, 1983. [Google Scholar] [CrossRef]
- Wang, L.; Ganjyal, G.M.; Jones, D.D.; Weller, C.L.; Hanna, M.A. Modeling of bubble growth dynamics and nonisothermal expansion in starch-based foams during extrusion. Adv. Polym. Technol. 2005, 24, 29–45. [Google Scholar] [CrossRef]
- Kastner, C.; Mitterlehner, T.; Altmann, D.; Steinbichler, G. Backpressure optimization in foam injection molding: Method and assessment of sustainability. Polymers 2020, 12, 2696. [Google Scholar] [CrossRef]
- Costeux, S.; Kim, H.; Foether, D. Foam injection-molding process designed to produce sub-micron cells. Annu. Tech. Conf. ANTEC 2017, 2017, 2460–2465. [Google Scholar]
- Ronkay, F.; Molnar, B.; Dogossy, G. The effect of mold temperature on chemical foaming of injection molded recycled polyethylene-terephthalate. Thermochim. Acta 2017, 651, 65–72. [Google Scholar] [CrossRef]
- Chen, X.; Heuzey, M.C.; Carreau, P.J. Rheological properties of injection molded LDPE and mPE foams. Polym. Eng. Sci. 2004, 44, 2158–2164. [Google Scholar] [CrossRef]
- Yao, S.; Chen, Y.; Ling, Y.; Hu, D.; Xi, Z.; Zhao, L. Analysis of bubble growth in supercritical CO2 extrusion foaming polyethylene terephthalate process based on dynamic flow simulation. Polymers 2021, 13, 2799. [Google Scholar] [CrossRef]
- Koçyi, N. A review of micro and nanoporous polymeric foams: Properties, preparation techniques, foaming agents and usage areas. Rev. Investig. Univ. Quindío 2022, 34, 217–230. [Google Scholar]
- Sauceau, M.; Fages, J.; Common, A.; Nikitine, C.; Rodier, E. New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide. Prog. Polym. Sci. 2011, 36, 749–766. [Google Scholar] [CrossRef]
- Keshtkar, M.; Nofar, M.; Park, C.B.; Carreau, P.J. Extruded PLA/clay nanocomposite foams blown with supercritical CO2. Polymer 2014, 55, 4077–4090. [Google Scholar] [CrossRef]
- Spina, R. Technological characterization of PE/EVA blends for foam injection molding. Mater. Des. 2015, 84, 64–71. [Google Scholar] [CrossRef]
- Shaayegan, V.; Wang, G.; Park, C.B. Effect of foam processing parameters on bubble nucleation and growth dynamics in high-pressure foam injection molding. Chem. Eng. Sci. 2016, 155, 27–37. [Google Scholar] [CrossRef]
- Guo, M.-C.; Heuzey, M.-C.; Careau, P.J. Cell structure and dynamic properties of injection molded polypropylene foams. Polym. Eng. Sci. 2007, 47, 1070–1081. [Google Scholar] [CrossRef]
- Huang, P.W.; Peng, H.S.; Hwang, S.J.; Huang, C.T. Study on the flow, foaming characteristics and structural strength of polypropylene structural foam injection molding by innovative nitrogen and molten plastic mixing mechanism. Polymers 2023, 15, 2166. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhao, G.; Wang, G.; Zhang, W.; Li, Y. A new core-back foam injection molding method with chemical blowing agents. Mater. Des. 2018, 144, 331–342. [Google Scholar] [CrossRef]
- Wang, L.; Hikima, Y.; Ohshima, M.; Yusa, A.; Yamamoto, S.; Goto, H. Development of a simplified foam injection molding technique and its application to the production of high void fraction polypropylene foams. Ind. Eng. Chem. Res. 2017, 56, 13734–13742. [Google Scholar] [CrossRef]
- Ates, M.; Karadag, S.; Eker, A.A.; Eker, B. Polyurethane foam materials and their industrial applications. Polym. Int. 2022, 71, 1157–1163. [Google Scholar] [CrossRef]
- Cui, X.; Chen, J.; Zhu, Y.; Jiang, W. Lightweight and conductive carbon black/chlorinated poly(propylene carbonate) foams with a remarkable negative temperature coefficient effect of resistance for temperature sensor applications. J. Mater. Chem. C 2018, 6, 9354–9362. [Google Scholar] [CrossRef]
- Merle, J.; Trinsoutrot, P.; Bouhtoury, F.C. Optimization of the formulation for the synthesis of bio-based foams. Eur. Polym. J. 2016, 84, 577–588. [Google Scholar] [CrossRef]
- Kim, H.J.; Jin, X.; Choi, J.W. Investigation of bio-based rigid polyurethane foams synthesized with lignin and castor oil. Sci. Rep. 2024, 14, 13490. [Google Scholar] [CrossRef] [PubMed]
- DSouza, G.C.; Li, H.; Yuan, Z.; Xu, C.C.; Ray, M.B.; Prakash, A. Investigating the hydrophilicity of phenol formaldehyde foams: Effects of synthesis parameters. J. Appl. Polym. Sci. 2024, 141, e54877. [Google Scholar] [CrossRef]
- Park, S.K.; Hettiarachchy, N.S. Physical and mechanical properties of soy protein-based plastic foams. J. Amer. Oil Chem. Soc. 1999, 76, 1201–1205. [Google Scholar] [CrossRef]
- Gu, R.; Konar, S.; Sain, M. Preparation and characterization of sustainable polyurethane foams from soybean oils. J. Amer. Oil Chem. Soc. 2012, 89, 2103–2111. [Google Scholar] [CrossRef]
- Thirumal, Y.P.N.M.; Khastgir, D.; Singha, N.K.; Manjunath, B.S. Effect of foam density on the properties of water blown rigid polyurethane foam. J. Appl. Polym. Sci. 2008, 108, 1810–1817. [Google Scholar] [CrossRef]
- Wypych, G. Mechanisms of action of blowing agents. In Handbook of Foaming and Blowing Agents, 2nd ed.; ChemTech Publishing: Toronto, ON, Canada, 2022; pp. 29–44. [Google Scholar]
- Dhaliwal, G.S.; Anandan, S.; Chandrashekhara, K.; Dudenhoeffer, N.; Nam, P. Fabrication and testing of soy-based polyurethane foam for insulation and structural applications. J. Polym. Environ. 2019, 27, 1897–1907. [Google Scholar] [CrossRef]
- Dukarska, D.; Mirski, R. Current trends in the use of biomass in the manufacture of rigid polyurethane foams: A review. J. Compos. Sci. 2024, 8, 286. [Google Scholar] [CrossRef]
- Fraleoni-Morgera, A.; Chhikara, M. Polymer-based nano-composites for thermal insulation. Adv. Eng. Mater. 2019, 21, 1801162. [Google Scholar] [CrossRef]
- DSouza, G.C.; Ng, H.; Charpentier, P.; Xu, C.C. Recent developments in biobased foams and foam composites for construction applications. ChemBioEng 2024, 11, 7–38. [Google Scholar] [CrossRef]
- Członka, S.; Bertino, M.F.; Kośny, J.; Strąkowska, A.; Masłowski, M.; Strzelec, K. Linseed oil as a natural modifier of rigid polyurethane foams. Ind. Crops Prod. 2018, 115, 40–51. [Google Scholar] [CrossRef]
- Kahlerras, Z.; Irinislimane, R.; Bruzaud, S.; Belhaneche-Bensemra, N. Elaboration and characterization of polyurethane foams based on renewably sourced polyols. J. Polym. Environ. 2020, 28, 3003–3018. [Google Scholar] [CrossRef]
- Srivastava, V.; Srivastava, R. On the polymeric foams: Modeling and properties. J. Mater. Sci. 2014, 49, 2681–2692. [Google Scholar] [CrossRef]
- Banger, A.; Jangid, N.K.; Srivastava, A.; Srivastava, M. Polymeric foams: Mechanisms and properties. ACS Symp. Ser. 2023, 1439, 43–61. [Google Scholar]
- Shivakumar, N.D.; Deb, A. Dependence of the mechanical properties of rigid PU foam on density. J. Reinf. Plast. Compos. 2022, 41, 355–363. [Google Scholar] [CrossRef]
- Saha, M.C.; Kabir, M.E.; Jeelani, S. Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles. Mater. Sci. Eng. A 2008, 479, 213–222. [Google Scholar] [CrossRef]
- Malai, A.; Youwai, S. Stiffness of expanded polystyrene foam for different stress states. Int. J. Geosynth. Ground Eng. 2021, 7, 80. [Google Scholar] [CrossRef]
- Fried, J.R. Polymer Science and Technology, 3rd ed.; Prentice Hall: Boston, MA, USA, 2014. [Google Scholar]
- Wu, X.F. Mechanics of Bonded and Adhesively Bonded Joints; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Wu, X.F.; Dzenis, Y.A. Rate effects on mode-I delamination tougnness of a graphite/epoxy laminated composite. Int. J. Fracture 2001, 112, L9–L12. [Google Scholar] [CrossRef]
- Wu, X.F.; Dzenis, Y.A. Determination of dynamic delamination toughness of a graphite/epoxy compoiste using Hopkinson pressure bar. Polym. Compos. 2005, 26, 165–180. [Google Scholar] [CrossRef]
- Wu, X.F.; Ghoshal, G.; Kartshaov, M.; Asian, Z.; Turner, J.A.; Dzenis, Y.A. Experimental characerization of the impact-damage tolerance of a cross-ply graphite-fiber/epoxy laminate. Polym. Compos. 2008, 29, 534–543. [Google Scholar] [CrossRef]
- Wu, X.F.; Yarin, A.L. Recent progress in interfacial toughening and damage self-healing of polymer composites based on electrospun and solution-blown nanofibers: An overview. J. Appl. Polym. Sci. 2013, 130, 2225–2237. [Google Scholar] [CrossRef]
- Chen, W.; Hao, H.; Hughes, D.; Shi, Y.; Cui, J.; Li, Z.X. Static and dynamic mechanical properties of expanded polystyrene. Mater. Des. 2015, 69, 170–180. [Google Scholar] [CrossRef]
- Guo, A.; Javni, I.; Petrovic, Z. Rigid polyurethane foams based on soybean oil. J. Appl. Polym. Sci. 2000, 77, 467–473. [Google Scholar] [CrossRef]
- Zhang, S.; Xiang, A.; Tian, H.; Rajulu, A.V. Water-blown castor oil-based polyurethane foams with soy protein as a reactive reinforcing filler. J. Polym. Environ. 2018, 26, 15–22. [Google Scholar] [CrossRef]
- Heinen, M.; Gerbase, A.E.; Petzhold, C.L. Vegetable oil-based rigid polyurethanes and phosphorylated flame-retardants derived from epoxydized soybean oil. Polym. Degrad. Stab. 2014, 108, 76–86. [Google Scholar] [CrossRef]
- Zhang, C.; Madbouly, S.A.; Kessler, M.R. Biobased polyurethanes prepared from different vegetable oils. ACS Appl. Mater. Interfaces 2015, 7, 1226–1233. [Google Scholar] [CrossRef]
- Pawlik, H.; Prociak, A. Influence of palm oil-based polyol on the properties of flexible polyurethane foams. J. Polym. Environ. 2012, 20, 438–445. [Google Scholar] [CrossRef]
- Qiu, J.F.; Zhang, M.Q.; Rong, M.Z.; Wu, S.P.; Karger-Kocsis, J. Rigid bio-foam plastics with intrinsic flame retardancy derived from soybean oil. J. Mater. Chem. A 2013, 1, 2533–2542. [Google Scholar] [CrossRef]
- Dhaliwal, G.S.; Anandan, S.; Chandrashekhara, K.; Lees, J.; Nam, P. Development and characterization of polyurethane foams with substitution of polyether polyol with soy-based polyol. Eur. Polym. J. 2018, 107, 105–117. [Google Scholar] [CrossRef]
- Bote, S.D.; Narayan, R. Synthesis of biobased polyols from soybean meal for application in rigid polyurethane foams. Ind. Eng. Chem. Res. 2021, 60, 5733–5743. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Chen, P.; Shao, L.; Cao, Y.; Zhao, B.; Lee, E.C.; Wang, X.; Zhang, J. Scalable manufacturing and reprocessing of vitrimerized flexible polyurethane foam (PUF) based on commercial soy polyols. Ind. Chem. Mater. 2025, 3, 231–245. [Google Scholar] [CrossRef]
- Rojek, P.; Prociak, A. Effect of different rapeseed-oil-based polyols on mechanical properties of flexible polyurethane foams. J. Appl. Polym. Sci. 2012, 125, 2930–2945. [Google Scholar] [CrossRef]
- Campanella, R.P.W.A.; Bonnaillie, L.M. Polyurethane foams from soyoil-based polyols. J. Appl. Polym. Sci. 2009, 112, 2567–2578. [Google Scholar] [CrossRef]
- John, J.; Bhattacharya, M.; Turner, R.B. Characterization of polyurethane foams from soybean oil. J. Appl. Polym. Sci. 2002, 86, 3097–3107. [Google Scholar] [CrossRef]
- Li, J.; Zor, M.; Zhou, X.; Du, G.; Rodrigue, D.; Wang, X. Environmentally friendly tannic acid-furfuryl alcohol-soybean isolate/casein composite foams reinforced with wood fibers. J. Renew. Mater. 2025, 13, 329–347. [Google Scholar] [CrossRef]
- Liu, B.; Jiang, L.; Zhang, J. Extrusion foaming of poly (lactic acid)/soy protein concentrate blends. Macromol. Mater. Eng. 2011, 296, 835–842. [Google Scholar] [CrossRef]
- Tang, G.; Liu, M.; Deng, D.; Zhao, R.; Liu, X.; Yang, Y.; Yang, S.; Liu, X. Phosphorus-containing soybean oil-derived polyols for flame-retardant and smoke-suppressant rigid polyurethane foams. Polym. Degrad. Stab. 2021, 191, 109701. [Google Scholar] [CrossRef]
- Magiera, A.; Kuźnia, M.; Błoniarz, A.; Magdziarz, A. Rigid polyurethane foams modified with soybean-husk-derived ash as potential insulating materials. Processes 2023, 11, 3416. [Google Scholar] [CrossRef]
- Lui, W.B.; Peng, J. Thermal properties and cellular structure of cornstarch-based foams formed by extrusion technology. J. Food Process. Preserv. 2015, 39, 1605–1617. [Google Scholar] [CrossRef]
- Park, J.H.; Jo, K.I.; Kim, I.J.; Kwon, T.; Yu, S.; Ko, J.W.; Lee, J.H. Optimizing the preparation parameters of eco-friendly flexible polyurethane foams derived from a corn-based bio-polyol. J. Appl. Polym. Sci. 2024, 141, e55554. [Google Scholar] [CrossRef]
- Silva, S.A.; Zawadzki, S.F.; Barbosa, R.V.; Ramos, L.P. Epoxidized corn oil polyol-based composites polyurethane flexible foams, preparation, and characterization. Ciência Nat. 2019, 41, e44. [Google Scholar] [CrossRef]
- Polyyurethane Foam Association (www.pfa.org). Flexible polyurethane foam: A primer. IN·TOUCH 2016, 1, 1–7. [Google Scholar]
- Ugarte, L.; Gómez-Fernández, S.; Peña-Rodríuez, C.; Prociak, A.; Corcuera, M.A.; Eceiza, A. Tailoring mechanical properties of rigid polyurethane foams by sorbitol and corn derived biopolyol mixtures. ACS Sustain. Chem. Eng. 2015, 3, 3382–3387. [Google Scholar] [CrossRef]
- Sulaiman, M.R. Corn Oil-Based Highly Flame Retardant Rigid Polyurethane Foams for Industrial Application. Master’s Thesis, Pittsburg State University, Pittsburg, KS, USA, 2021. [Google Scholar]
- Kairytė, A.; Vaitkus, S.; Pundienė, I.; Balčiūnas, G. Effect of propylene glycol, rapeseed glycerine, and corn starch modified polyol blends parameters on the properties of thermal insulating polyurethane foams. J. Cell. Plast. 2019, 55, 365–384. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, Y.; Li, B.; Sun, C.; Guo, Z. Environmentally friendly alternative to polyester polyol by corn straw on preparation of rigid polyurethane composite. Compos. Commun. 2020, 17, 109–114. [Google Scholar] [CrossRef]
- Guan, J.; Hanna, M.A. Functional properties of extruded foam composites of starch acetate and corn cob fiber. Ind. Crops Products 2004, 19, 255–269. [Google Scholar] [CrossRef]
- Li, B.; Zhou, M.; Huo, W.; Cai, D.; Qin, P.; Cao, H.; Tan, T. Fractionation and oxypropylation of corn-stover lignin for the production of biobased rigid polyurethane foam. Ind. Crops Products 2020, 143, 111887. [Google Scholar] [CrossRef]
- Polat, S.; Uslu, M.K.; Aygün, A.; Certel, M. The effects of the addition of corn husk fibre, kaolin and beeswax on cross-linked corn starch foam. J. Food Eng. 2013, 116, 267–276. [Google Scholar] [CrossRef]
- Abinader, G.; Lacoste, C.; Le Baillif, M.; Erre, D.; Copinet, A. Effect of the formulation of starch-based foam cushions on the morphology and mechanical properties. J. Cell. Plast. 2015, 51, 31–44. [Google Scholar] [CrossRef]
- Ramanujam, S.; Zequine, C.; Bhoyate, S.; Neria, B.; Kahol, P.K.; Gupta, R.K. Novel biobased polyol using corn oil for highly flame-retardant polyurethane foams. J. Carbon Res. 2019, 5, 13. [Google Scholar] [CrossRef]
- Kaewtatip, K.; Poungroi, M.; Holló, B.; Szécsényi, K.M. Effects of starch types on the properties of baked starch foams. J. Therm. Anal. Calorim. 2014, 115, 833–840. [Google Scholar] [CrossRef]
- Tibalia, E.M.S.E.; Wintoko, J.; Purnomo, C.W. Biodegradable food container from rice straw and sugarcane bagasse with orange peel addition. IOP Conf. Ser. Earth Environ. Sci. 2023, 1275, 012012. [Google Scholar] [CrossRef]
- Engel, J.B.; Ambrosi, A.; Tessaro, I.C. Development of biodegradable starch-based foams incorporated with grape stalks for food packaging. Carbohydr. Polym. 2019, 225, 115234. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Lee, J.; Kim, S.K.; Kang, D.H.; Park, H.B.; Shim, J.K. Impact of the amylose/amylopectin ratio of starch-based foams on foaming behavior, mechanical properties, and thermal insulation performance. ACS Sustain. Chem. Eng. 2023, 11, 2968–2977. [Google Scholar] [CrossRef]
- da Silva Figueiró, C.; Calcagno, C.I.W.; Santana, R.M.C. Starch foams and their additives: A brief review. Starch/Staerke 2024, 76, 2300012. [Google Scholar] [CrossRef]
- Jarpa-Parra, M.; Chen, L. Applications of plant polymer-based solid foams: Current trends in the food industry. Appl. Sci. 2021, 11, 9605. [Google Scholar] [CrossRef]
- Shogren, R.L.; Lawton, J.W.; Doane, W.M.; Tiefenbacher, K.F. Structure and morphology of baked starch foams. Polymer 1998, 39, 6649–6655. [Google Scholar] [CrossRef]
- Duan, Q.; Zhu, Z.; Chen, Y.; Liu, H.; Yang, M.; Chen, L.; Yu, L. Starch-based foams nucleated and reinforced by polysaccharide-based crystals. ACS Sustain. Chem. Eng. 2022, 10, 2169–2179. [Google Scholar] [CrossRef]
- Reis, M.O.; Olivato, J.B.; Bilck, A.P.; Zanela, J.; Grossmann, M.V.E.; Yamashita, F. Biodegradable trays of thermoplastic starch/poly (lactic acid) coated with beeswax. Ind. Crops Prod. 2018, 112, 481–487. [Google Scholar] [CrossRef]
- Kaisangsri, N.; Kerdchoechuen, O.; Laohakunjit, N. Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Ind. Crops Prod. 2012, 37, 542–546. [Google Scholar] [CrossRef]
- Lopez-Gil, A.; Silva-Bellucci, F.; Velasco, D.; Ardanuy, M.; Rodriguez-Perez, M.A. Cellular structure and mechanical properties of starch-based foamed blocks reinforced with natural fibers and produced by microwave heating. Ind. Crops Prod. 2015, 66, 194–205. [Google Scholar] [CrossRef]
- Kulkarni, A.; Emrich, J.; Narayan, R. Humidity resistant biodegradable starch foams reinforced with polyvinyl butyral (pvb) and chitosan. Polymers 2024, 16, 3402. [Google Scholar] [CrossRef] [PubMed]
- DSouza, G.C.; Dodangeh, F.; Venkata, G.B.; Ray, M.B.; Prakash, A.; Xu, C. A comprehensive review of biobased polyurethane and phenol formaldehyde hydrophilic foams for environmental remediation, floral, and hydroponics applications. Biomass Bioenergy 2025, 192, 107493. [Google Scholar] [CrossRef]
- Wendels, S.; Avérous, L. Biobased polyurethanes for biomedical applications. Bioact. Mater. 2021, 6, 1083–1106. [Google Scholar] [CrossRef] [PubMed]
- Bužarovska, A.; Selaru, A.; Serban, M.; Pircalabioru, G.G.; Costache, M.; Cocca, M.; Gentile, G.; Avérous, L.; Dinescu, S. Biobased multiphase foams with ZnO for wound dressing applications. J. Mater. Sci. 2023, 58, 17594–17609. [Google Scholar] [CrossRef]
- Selvaraj, V.K.; Subramanian, J.; Rajeev, P.K. A study on flexible bio-based conductive foam for pressure sensing and electromagnetic interference applications. Mater. Res. Express 2023, 10, 105307. [Google Scholar] [CrossRef]
- Chaudhary, J.P.; Nataraj, S.K.; Gogda, A.; Meena, R. Bio-based superhydrophilic foam membranes for sustainable oil-water separation. Green Chem. 2014, 16, 4552–4558. [Google Scholar] [CrossRef]
- Singh, I.; Samal, S.K.; Mohanty, S.; Nayak, S.K. Recent advancement in plant oil derived polyol-based polyurethane foam for future perspective: A Review. Eur. J. Lipid Sci. Technol. 2020, 122, 1900225. [Google Scholar] [CrossRef]
Polymeric Foams | Metallic Foams | Ceramic Foams | |
---|---|---|---|
Materials | Synthetic and biobased polymers: PU, PS, PVC, PI, PO, PLA, etc. | Metals and alloys: Most commonly aluminum, but also steel, titanium, copper, nickel, etc. | Metal oxides (Al2O3, ZrO2), carbides (SiC), nitrides (e.g., Si3N4), and other ceramic materials. |
Foaming Methods |
|
|
|
Properties |
|
|
|
Applications |
|
|
|
Synthetic Polymer Foams | BBFs | |
---|---|---|
Advantages |
|
|
Disadvantages |
|
|
Open-Cell Polymeric Foams | Closed-Cell Polymeric Foams | |
---|---|---|
Structure | Interconnected cells to result in a porous, sponge-like structure. Foams are more compliant. | Completely enclosed and isolated cells. Foams are more dense and rigid than open-cell foams. |
Mass Density | Generally, lower mass density, typically ranging from 6.5 to 20 kg/m3, compared to closed-cell polymer foams. | Generally, high mass density, typically ranging from 27 to 50 kg/m3. |
Heat Resistance R-Value | Lower R-value, with typical values of ~8.5 to 9.5 per cm. | Higher R-value, with typical values of ~16.5 to 17.5 per cm. |
Water Resistance | Porous, nonwaterproofing cellular structure capable of absorbing water and moisture due to the large surface area of the open cells. | High water resistance and strong moisture barrier. Sealed cells prevent water and other liquids from passing through the foam. |
Soundproofing | Excellent sound absorption. Open cells capable of trapping sound waves, ideal for noise reduction. | Useful in sound blocking. More dense and rigid cellular structures, helpful for sound transmission reduction. |
Flexibility | Soft and flexible, easily compressed, suitable to be used for cushioning. | Stiffer and more rigid. Able to maintain high structural integrity and not easily compressed. |
Air Permeability | Air- and vapor-permeable. | Air- and vapor-impermeable, suitable for use as air and vapor barriers. |
Applications | Furniture cushions, mattresses (e.g., memory foams), soundproofing panels, and interior insulation in above-grade walls. | Lightweight protective packaging, automotive parts, structural reinforcement, building and roofing insulation, flotation in marine applications. |
Cost | Low cost due to the lower mass density and use of less material. | More expensive due to the higher mass density and use of more material. |
Structural Support | Unable to provide sufficient structural stiffness and strength for structural supports. | Able to provide substantial structural strength and stiffness for structural supports. |
Biodegradable Polymer Foams | Nonbiodegradable Polymer Foams | |
---|---|---|
Source Materials |
|
|
Chemical Structure |
|
|
Cellular Structure |
|
|
Thermal Properties |
|
|
Mechanical Properties |
|
|
Environmental Effects |
|
|
Foaming Challenges |
|
|
Cost |
|
|
Foam Examples |
|
|
Common Applications |
|
|
Thermoplastic BBFs | Thermosetting BBFs | |
---|---|---|
Examples |
|
|
Polymer Structure |
|
|
Cellular Structure |
|
|
Properties |
|
|
Manufacturing Process |
|
|
Blowing Agents |
|
|
Applications |
|
|
Foaming Technique | Typical Synthesized Polymeric Foams | Use of BAs |
---|---|---|
Extrusion | HDPE, LDPE, PP, PS, PVC, PU, PTFE, starch-based, PLA | Water, CO2, N2, HCs, HFCs |
Injection | PP, PS, PE, PI6, PET, PU, PLA, PHA, biobased | Water, ADC, CO2, N2, HCs, HFCs, Sc-CO2 |
Chemical | PU, PE, PVC, PP, PI6 | Water, ADC, sodium bicarbonate, citric acid |
Mechanical | Epoxy resin, PP, phenolic, PU, biobased | Water, air |
PUF | (kgm−3) | (Wm−1K−1) | VP | Insulation Applications |
---|---|---|---|---|
Open cell | 35–60 | 0.035–0.042 | Higher | Interior uses, e.g., interior walls, ceilings, and attic areas |
Closed cell | 8–15 | 0.026–0.028 | Lower | Exterior uses, e.g., exterior walls in wet conditions |
Foam | Density (kgm−3) | (kPa) | (MPa) | (kPa) | (MPa) | Eb% | (Wm−1K−1) | Ref. |
---|---|---|---|---|---|---|---|---|
SBPUF | 54.9–98.8 | 61–137 | - | 47–115 | - | - | 0.025–0.027 | [74] |
SBRPUF | 28.9–32.4 | 148–229 | - | - | - | - | 0.022 | [92] |
SBRPUF | 41.0–41.7 | 203–257 | - | - | - | - | - | [99] |
SBFPUF | 15–34 | - | - | 1700–2500 | 0.18–0.29 | 52–76 | - | [102] |
SBRPUF | - | 390–425 | - | - | - | - | 0.028–0.030 | [95] |
SBPUF | 36–39 | 210–250 | - | - | - | - | - | [40] |
SBRPUF-FR | 30.4–39.6 | - | - | - | - | - | - | [94] |
SBRPUF | 37–55 | 128–148 | 1.90–2.90 | - | - | - | - | [107] |
Foam | Density (kgm−3) | (kPa) | (MPa) | Sm (MPa) | (Wm−1K−1) | Ref. |
---|---|---|---|---|---|---|
CBFPUFs | 80.6–83.6 | 16.5–20.3 | - | 28.8–48.9 | - | [109] |
SCBRPUFs | 66–103 | 1015–396 | 0.984–0.213 | - | 35.4–36.4 | [112] |
CBPUF-FR | 35 | 81–120 | - | - | - | [120] |
Foam | Density (kgm−3) | (kPa) | E (MPa) | (MPa) | Ref. |
---|---|---|---|---|---|
Starch-based | 98.68 | 2.77–9.14 | 0.0235–0.146 | - | [119] |
Starch | 14–34 | - | 142–450 | - | [127] |
Starch | 19.94–32.53 | 75–125.10 | - | - | [128] |
Starch/PLA | 119–129 | - | 185–294 | 6.1–11.5 | [129] |
Starch composites | 21.1–45.7 | 40–114 | - | - | [132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, J.; Zholobko, O.; Wu, X.-F. Biobased Foams: A Critical Review of Their Synthesis, Performance and Prospective Applications. J. Compos. Sci. 2025, 9, 473. https://doi.org/10.3390/jcs9090473
Ahmed J, Zholobko O, Wu X-F. Biobased Foams: A Critical Review of Their Synthesis, Performance and Prospective Applications. Journal of Composites Science. 2025; 9(9):473. https://doi.org/10.3390/jcs9090473
Chicago/Turabian StyleAhmed, Jameel, Oksana Zholobko, and Xiang-Fa Wu. 2025. "Biobased Foams: A Critical Review of Their Synthesis, Performance and Prospective Applications" Journal of Composites Science 9, no. 9: 473. https://doi.org/10.3390/jcs9090473
APA StyleAhmed, J., Zholobko, O., & Wu, X.-F. (2025). Biobased Foams: A Critical Review of Their Synthesis, Performance and Prospective Applications. Journal of Composites Science, 9(9), 473. https://doi.org/10.3390/jcs9090473