Optimisation of Fibre-Reinforced Hybrid Composites Under Combined Loading
Abstract
1. Introduction
2. Methodology
2.1. Materials
2.2. FEA-Based Model
2.3. Optimal Ply Angle
2.4. Response Surface
2.5. Determination of Candidates
3. Results and Discussion
3.1. Optimal Ply Angles
3.2. Failure Loads
3.3. Candidates
4. Conclusions
- Optimal ply orientation: The best-performing laminates have ply angles ranging from 12° to 30°, depending on the layup configuration.
- Superior layup types: Sandwich-type layups such as [C3G]S, [C2G2]S, and [CG3]S show the highest strength-to-weight ratios and cost-effectiveness compared to full-carbon or full-glass laminates.
- Fibre volume fraction effects: The failure load is highly sensitive to both carbon (Vfc) and glass (Vfg) fibre volume fractions. The optimum region is Vfc = 0.3–0.65 and Vfg < 0.5625 to prevent strength reduction.
- Strength performance: The best-performing hybrid layups achieved failure loads exceeding 300 N while maintaining relatively low density and cost.
- Failure mechanisms: Failure tends to initiate on the compressive side due to microbuckling/kinking, with sandwich configurations mitigating these effects through load redistribution.
- Design implications: The proposed prediction formulas and contour maps provide practical guidelines for selecting ply orientation and fibre ratios during preliminary design.
- Future work: Experimental validation, inclusion of interlaminar debonding effects, and extension to other loading modes (impact and fatigue) are recommended to further enhance the robustness of hybrid composite designs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, H.; Kumar, A.; Rana, S.; Sahoo, N.G.; Jamil, M.; Kumar, R.; Sharma, S.; Li, C.; Kumar, A.; Eldin, S.M.; et al. Critical review on advancements on the fiber-reinforced composites: Role of fiber/matrix modification on the performance of the fibrous composites. J. Mater. Res. Technol. 2023, 26, 2975–3002. [Google Scholar] [CrossRef]
- Wang, P.; Chen, Y.; Pei, R.; Lian, C.; Zhang, K.; Zhou, Y. Buckling and post-buckling analysis of composite wing box under loads with torsion-bending coupling. Thin-Walled Struct. 2023, 193, 111266. [Google Scholar] [CrossRef]
- Mukherjee, P.; Punera, D.; Mishra, M. Coupled flexural torsional analysis and buckling optimization of variable stiffness thin-walled composite beams. Mech. Adv. Mater. Struct. 2021, 29, 2795–2815. [Google Scholar] [CrossRef]
- Ren, W.; Zhou, X.-H.; Fu, Z.-L.; Cao, Y.-Q.; Wang, Y.-H.; Deng, R.; Pu, H.-N.; Zhang, J. Static behavior of large-diameter stiffened steel tubes for wind turbine towers under combined compression-bending-torsion load. Thin-Walled Struct. 2022, 175, 109272. [Google Scholar] [CrossRef]
- Patuelli, C.; Cestino, E.; Frulla, G. A Beam Finite Element for Static and Dynamic Analysis of Composite and Stiffened Structures with Bending-Torsion Coupling. Aerospace 2023, 10, 142. [Google Scholar] [CrossRef]
- Dong, C.; Ranaweera-Jayawardena, H.A.; Davies, I.J. Flexural properties of hybrid composites reinforced by S-2 glass and T700S carbon fibres. Compos. Part B Eng. 2012, 43, 573–581. [Google Scholar] [CrossRef]
- Dong, C.; Davies, I.J. Effect of stacking sequence on the flexural properties of carbon and glass fibre-reinforced hybrid composites. Adv. Compos. Hybrid Mater. 2018, 1, 530–540. [Google Scholar] [CrossRef]
- Rajpurohit, A.; Joannès, S.; Singery, V.; Sanial, P.; Laiarinandrasana, L. Hybrid Effect in In-Plane Loading of Carbon/Glass Fibre Based Inter- and Intraply Hybrid Composites. J. Compos. Sci. 2020, 4, 6. [Google Scholar] [CrossRef]
- Infante, V.; Madeira, J.; Ruben, R.B.; Moleiro, F.; de Freitas, S.T. Characterization and optimization of hybrid carbon–glass epoxy composites under combined loading. J. Compos. Mater. 2019, 53, 2593–2605. [Google Scholar] [CrossRef]
- Moazed, R.; Khozeimeh, M.A.; Fotouhi, R. Simplified Approach for Parameter Selection and Analysis of Carbon and Glass Fiber Reinforced Composite Beams. J. Compos. Sci. 2021, 5, 220. [Google Scholar] [CrossRef]
- Monte, S.M.C.; Infante, V.; Madeira, J.F.A.; Moleiro, F. Optimization of fibers orientation in a composite specimen. Mech. Adv. Mater. Struct. 2016, 24, 410–416. [Google Scholar] [CrossRef]
- Dong, C. Multi-objective optimal design of carbon and glass reinforced hybrid composites based on design rules. Compos. Part C Open Access 2022, 8, 100280. [Google Scholar] [CrossRef]
- Kalantari, M.; Dong, C.; Davies, I.J. Multi-objective robust optimisation of unidirectional carbon/glass fibre reinforced hybrid composites under flexural loading. Compos. Struct. 2016, 138, 264–275. [Google Scholar] [CrossRef]
- Dong, C. Flexural properties of symmetric carbon and glass fibre reinforced hybrid composite laminates. Compos. Part C Open Access 2020, 3, 100047. [Google Scholar] [CrossRef]
- Piggott, M.R. Angle Ply Laminates. In Wiley Encyclopedia of Composites; Wiley: Hoboken, NJ, USA, 2012; pp. 1–3. [Google Scholar]
- Dong, C. Uncertainties in flexural strength of carbon/glass fibre reinforced hybrid epoxy composites. Compos. Part B Eng. 2016, 98, 176–181. [Google Scholar] [CrossRef]
- Lo, K.; Chim, E.-M. Compressive Strength of Unidirectional Composites. J. Reinf. Plast. Compos. 1992, 11, 838–896. [Google Scholar] [CrossRef]
- Shi, J.; Qin, T.; Zhou, J.; Zhao, H.; Wang, H.; Fu, J.; Jin, L. Interlaminar shear behavior of basalt fiber-reinforced polymer tendons subjected to a combined effect of prestress, grout and seawater. Constr. Build. Mater. 2025, 462, 139982. [Google Scholar] [CrossRef]
Material | Elastic Modulus (GPa) | Tensile Strength (MPa) | Density (g/cm3) | Cost ($/Litre) |
---|---|---|---|---|
Epoxy | 3.1 | 69.6 | 1.09 | 26.2 |
High-strength carbon fibre | 230 | 4900 | 1.8 | 151.2 |
E-glass fibre | 72 | 3450 | 2.58 | 10.8 |
Vfc | Vfg | Failure Load (N) |
---|---|---|
0.3 | 0.3 | 192.42 |
0.3 | 0.3875 | 224.74 |
0.3 | 0.475 | 259.41 |
0.3 | 0.5625 | 263.20 |
0.3 | 0.65 | 239.94 |
0.3875 | 0.3 | 199.54 |
0.3875 | 0.3875 | 229.20 |
0.3875 | 0.475 | 269.80 |
0.3875 | 0.5625 | 276.70 |
0.3875 | 0.65 | 252.60 |
0.475 | 0.3 | 208.30 |
0.475 | 0.3875 | 241.82 |
0.475 | 0.475 | 274.85 |
0.475 | 0.5625 | 286.89 |
0.475 | 0.65 | 264.04 |
0.5625 | 0.3 | 217.38 |
0.5625 | 0.3875 | 250.04 |
0.5625 | 0.475 | 284.53 |
0.5625 | 0.5625 | 300.51 |
0.5625 | 0.65 | 274.68 |
0.65 | 0.3 | 229.22 |
0.65 | 0.3875 | 259.01 |
0.65 | 0.475 | 296.71 |
0.65 | 0.5625 | 308.35 |
0.65 | 0.65 | 285.03 |
Layup | Ply Angle (°) |
---|---|
[C8] | 16 |
[C7G] | 30 |
[C6G2] | 26 |
[C5G3] | 25 |
[C4G4] | 26 |
[C3G5] | 26 |
[C2G6] | 28 |
[CG7] | 15 |
[G8] | 21 |
[C3G]S | 13 |
[C2G2]S | 12 |
[CG3]S | 12 |
Failure Load (N) | |||
---|---|---|---|
Layup | Angle Ply | [0/90/±45]S | [0/±45/90]S |
[C8] | 306.84 | 189.60 | 225.71 |
[C7G] | 293.67 | 219.99 | 260.80 |
[C6G2] | 273.85 | 227.89 | 232.39 |
[C5G3] | 273.75 | 209.12 | 233.15 |
[C4G4] | 274.11 | 208.45 | 235.00 |
[C3G5] | 277.99 | 208.33 | 234.97 |
[C2G6] | 281.57 | 200.68 | 237.46 |
[CG7] | 256.73 | 200.84 | 228.59 |
[G8] | 269.53 | 188.85 | 212.39 |
[C3G]S | 314.50 | 190.36 | 223.45 |
[C2G2]S | 291.43 | 171.23 | 227.43 |
[CG3]S | 270.57 | 175.74 | 211.27 |
Layup | Failure Load (N) | Vfc | Vfg | Density (g/cm3) | Cost ($/L) |
---|---|---|---|---|---|
[C]8 | 306.84 | 0.3 | - | 1.303 | 63.70 |
[C3G]S | 314.50 | 0.3 | 0.3 | 1.362 | 53.17 |
[C3G]S | 314.40 | 0.3 | 0.36 | 1.384 | 52.94 |
[C3G]S | 314.42 | 0.3 | 0.42 | 1.406 | 52.71 |
[C6G2] | 251.87 | 0.3 | 0.44 | 1.414 | 52.63 |
[C2G2]S | 282.72 | 0.3 | 0.3 | 1.420 | 42.64 |
[C2G2]S | 268.11 | 0.3 | 0.36 | 1.465 | 42.18 |
[C2G2]S | 270.68 | 0.3 | 0.42 | 1.509 | 41.72 |
[CG3]S | 250.51 | 0.52 | 0.31 | 1.529 | 38.87 |
[CG3]S | 255.14 | 0.5 | 0.34 | 1.559 | 37.90 |
[CG3]S | 251.87 | 0.45 | 0.35 | 1.561 | 36.22 |
[C3G5] | 251.21 | 0.3 | 0.44 | 1.580 | 36.03 |
[CG3]S | 251.39 | 0.42 | 0.38 | 1.589 | 34.94 |
[CG3]S | 251.25 | 0.4 | 0.39 | 1.597 | 34.20 |
[CG3]S | 250.35 | 0.37 | 0.4 | 1.603 | 33.14 |
[CG3]S | 250.12 | 0.32 | 0.41 | 1.605 | 31.46 |
[CG3]S | 251.84 | 0.3 | 0.42 | 1.613 | 30.72 |
[CG7] | 253.77 | 0.3 | 0.39 | 1.625 | 25.63 |
[G]8 | 250.25 | - | 0.44 | 1.746 | 19.42 |
Layup | Failure Load (N) | Vfc | Vfg | Density (g/cm3) | Cost ($/L) |
---|---|---|---|---|---|
[C]8 | 306.84 | 0.3 | - | 1.303 | 63.70 |
[C7G] | 301.46 | 0.34 | 0.3 | 1.357 | 62.81 |
[C3G]S | 314.50 | 0.3 | 0.3 | 1.362 | 53.17 |
[C3G]S | 314.40 | 0.3 | 0.36 | 1.384 | 52.94 |
[C3G]S | 314.42 | 0.3 | 0.42 | 1.406 | 52.71 |
[C2G2]S | 305.27 | 0.35 | 0.3 | 1.438 | 45.77 |
[CG3]S | 300.37 | 0.58 | 0.43 | 1.673 | 39.36 |
[CG3]S | 300.95 | 0.54 | 0.47 | 1.711 | 37.65 |
[CG3]S | 302.62 | 0.51 | 0.49 | 1.728 | 36.48 |
[C3G5] | 300.56 | 0.47 | 0.51 | 1.743 | 35.00 |
[CG3]S | 301.54 | 0.44 | 0.53 | 1.760 | 33.83 |
[CG3]S | 302.11 | 0.4 | 0.56 | 1.787 | 32.23 |
[CG3]S | 302.52 | 0.36 | 0.58 | 1.802 | 30.75 |
[CG3]S | 301.77 | 0.34 | 0.64 | 1.866 | 29.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, C.; Vaidyan, J.A.P. Optimisation of Fibre-Reinforced Hybrid Composites Under Combined Loading. J. Compos. Sci. 2025, 9, 486. https://doi.org/10.3390/jcs9090486
Dong C, Vaidyan JAP. Optimisation of Fibre-Reinforced Hybrid Composites Under Combined Loading. Journal of Composites Science. 2025; 9(9):486. https://doi.org/10.3390/jcs9090486
Chicago/Turabian StyleDong, Chensong, and Joseph Abel Philip Vaidyan. 2025. "Optimisation of Fibre-Reinforced Hybrid Composites Under Combined Loading" Journal of Composites Science 9, no. 9: 486. https://doi.org/10.3390/jcs9090486
APA StyleDong, C., & Vaidyan, J. A. P. (2025). Optimisation of Fibre-Reinforced Hybrid Composites Under Combined Loading. Journal of Composites Science, 9(9), 486. https://doi.org/10.3390/jcs9090486