Why Topology for Machine Learning and Knowledge Extraction?
Abstract
:1. Introduction
2. The Shape of Datasets and Networks
3. The Shape of a Data Element
4. Visualization for the Human-In-The-Loop Paradigm
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Byun, H.; Lee, S.W. A survey on pattern recognition applications of support vector machines. Int. J. Pattern Recognit. Artif. Intell. 2003, 17, 459–486. [Google Scholar] [CrossRef]
- Cucker, F.; Smale, S. On the mathematical foundations of learning. Bull. Am. Math. Soc. 2002, 39, 1–49. [Google Scholar] [CrossRef]
- Lee, A.B.; Pedersen, K.S.; Mumford, D. The nonlinear statistics of high-contrast patches in natural images. Int. J. Comput. Vis. 2003, 54, 83–103. [Google Scholar] [CrossRef]
- Carlsson, G.; Ishkhanov, T.; de Silva, V.; Zomorodian, A. On the local behavior of spaces of natural images. Int. J. Comput. Vis. 2008, 76, 1–12. [Google Scholar] [CrossRef]
- Knudson, K.P. Morse Theory: Smooth and Discrete; World Scientific Publishing Company: Singpore, 2015. [Google Scholar]
- Singh, G.; Mémoli, F.; Carlsson, G.E. Topological methods for the analysis of high dimensional data sets and 3D object recognition. In SPBG 2017; The Eurographics Association: Geneva, Switzerland, 2007; pp. 91–100. [Google Scholar]
- Nicolau, M.; Levine, A.J.; Carlsson, G. Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc. Natl. Acad. Sci. USA 2011, 108, 7265–7270. [Google Scholar] [CrossRef] [PubMed]
- Lum, P.Y.; Singh, G.; Lehman, A.; Ishkanov, T.; Vejdemo-Johansson, M.; Alagappan, M.; Carlsson, J.; Carlsson, G. Extracting insights from the shape of complex data using topology. Sci. Rep. 2013, 3, 1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coudriau, M.; Lahmadi, A.; François, J. Topological analysis and visualisation of network monitoring data: Darknet case study. In Proceedings of the 2016 IEEE International Workshop on Information Forensics and Security (WIFS), Abu Dhabi, UAE, 4–7 December 2016; pp. 1–6. [Google Scholar]
- Guo, W.; Banerjee, A.G. Toward automated prediction of manufacturing productivity based on feature selection using topological data analysis. In Proceedings of the 2016 IEEE International Symposium on Assembly and Manufacturing (ISAM), Fort Worth, TX, USA, 21–22 August 2016; pp. 31–36. [Google Scholar]
- Rizvi, A.H.; Camara, P.G.; Kandror, E.K.; Roberts, T.J.; Schieren, I.; Maniatis, T.; Rabadan, R. Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and development. Nat. Biotechnol. 2017, 35, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Feged-Rivadeneira, A.; Angel, A.; González-Casabianca, F.; Rivera, C. Malaria intensity in Colombia by regions and populations. arXiv, 2017; arXiv:1710.00317. [Google Scholar]
- Saggar, M.; Sporns, O.; Gonzalez-Castillo, J.; Bandettini, P.A.; Carlsson, G.; Glover, G.; Reiss, A.L. Towards a new approach to reveal dynamical organization of the brain using topological data analysis. Nat. Commun. 2018, 9, 1399. [Google Scholar] [CrossRef] [PubMed]
- McInnes, L.; Healy, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv, 2018; arXiv:1802.03426. [Google Scholar]
- Strogatz, S.H. Exploring complex networks. Nature 2001, 410, 268–276. [Google Scholar] [CrossRef] [PubMed]
- De Silva, V.; Ghrist, R. Homological sensor networks. Not. Am. Math. Soc. 2007, 54, 1. [Google Scholar]
- Bronstein, M.M.; Bruna, J.; LeCun, Y.; Szlam, A.; Vandergheynst, P. Geometric deep learning: Going beyond euclidean data. IEEE Signal Process. Mag. 2017, 34, 18–42. [Google Scholar] [CrossRef]
- Kaczynski, T.; Mischaikow, K.; Mrozek, M. Computational Homology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 157. [Google Scholar]
- Edelsbrunner, H.; Harer, J. Computational Topology: An Introduction; American Mathematical Society: Providence, RI, USA, 2010. [Google Scholar]
- Carlsson, G. Topology and data. Bull. Am. Math. Soc. 2009, 46, 255–308. [Google Scholar] [CrossRef]
- Carlsson, G. Topological pattern recognition for point cloud data. Acta Numer. 2014, 23, 289–368. [Google Scholar] [CrossRef]
- Edelsbrunner, H.; Harer, J. Persistent homology-a survey. Contemp. Math. 2008, 453, 257–282. [Google Scholar]
- Ghrist, R. Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 2008, 45, 61–75. [Google Scholar] [CrossRef]
- Donatini, P.; Frosini, P. Natural pseudodistances between closed manifolds. Forum Math. 2004, 16, 695–715. [Google Scholar] [CrossRef]
- Carlsson, G.; Zomorodian, A. The theory of multidimensional persistence. Discret. Comput. Geom. 2009, 42, 71–93. [Google Scholar] [CrossRef]
- Cagliari, F.; Di Fabio, B.; Ferri, M. One-dimensional reduction of multidimensional persistent homology. Proc. Am. Math. Soc. 2010, 138, 3003–3017. [Google Scholar] [CrossRef]
- Cohen-Steiner, D.; Edelsbrunner, H.; Harer, J. Stability of persistence diagrams. In Proceedings of the 21th Annual Symposium on Computational Geometry, Pisa, Italy, 6–8 June 2005; Mitchell, J.S.B., Rote, G., Eds.; ACM: New York, NY, USA, 2005; pp. 263–271. [Google Scholar]
- Chazal, F.; Cohen-Steiner, D.; Glisse, M.; Guibas, L.J.; Oudot, S.Y. Proximity of persistence modules and their diagrams. In Proceedings of the 25th Annual Symposium on Computational Geometry, Aarhus, Denmark, 8–10 June 2009; ACM: New York, NY, USA, 2009; pp. 237–246. [Google Scholar]
- Cerri, A.; Di Fabio, B.; Ferri, M.; Frosini, P.; Landi, C. Betti numbers in multidimensional persistent homology are stable functions. Math. Methods Appl. Sci. 2013, 36, 1543–1557. [Google Scholar] [CrossRef]
- Chazal, F.; de Silva, V.; Glisse, M.; Oudot, S. The Structure and Stability of Persistence Modules; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Verri, A.; Uras, C.; Frosini, P.; Ferri, M. On the use of size functions for shape analysis. Biol. Cybern. 1993, 70, 99–107. [Google Scholar] [CrossRef]
- Biasotti, S.; Cerri, A.; Frosini, P.; Giorgi, D.; Landi, C. Multidimensional size functions for shape comparison. J. Math. Imaging Vis. 2008, 32, 161–179. [Google Scholar] [CrossRef]
- Ferri, M. Persistent topology for natural data analysis—A survey. In Towards Integrative Machine Learning and Knowledge Extraction; Springer: Berlin/Heidelberg, Germany, 2017; pp. 117–133. [Google Scholar]
- Bubenik, P. Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 2015, 16, 77–102. [Google Scholar]
- Reininghaus, J.; Huber, S.; Bauer, U.; Kwitt, R. A stable multi-scale kernel for topological machine learning. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4741–4748. [Google Scholar]
- Kusano, G.; Hiraoka, Y.; Fukumizu, K. Persistence weighted Gaussian kernel for topological data analysis. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 2004–2013. [Google Scholar]
- Hofer, C.; Kwitt, R.; Niethammer, M.; Uhl, A. Deep Learning with Topological Signatures. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1633–1643. [Google Scholar]
- Ferri, M.; Frosini, P.; Lovato, A.; Zambelli, C. Point selection: A new comparison scheme for size functions (With an application to monogram recognition). In Computer Vision — ACCV’98. ACCV 1998; Chin, R., Pong, T.C., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 329–337. [Google Scholar]
- Donatini, P.; Frosini, P.; Lovato, A. Size functions for signature recognition. In Proceedings of the International Symposium on Optical Science, Engineering, and Instrumentation, San Diego, CA, USA, 2 October 1998; Vision Geometry VII. Volume 3454, pp. 178–184. [Google Scholar]
- Frosini, P. G-invariant persistent homology. Math. Methods Appl. Sci. 2015, 38, 1190–1199. [Google Scholar] [CrossRef]
- Otter, N.; Porter, M.A.; Tillmann, U.; Grindrod, P.; Harrington, H.A. A roadmap for the computation of persistent homology. EPJ Data Sci. 2017, 6, 17. [Google Scholar] [CrossRef]
- Ray, J.; Trovati, M. A Survey of Topological Data Analysis (TDA) Methods Implemented in Python. In Advances in Intelligent Networking and Collaborative Systems. INCoS 2017; Barolli, L., Woungang, I., Hussain, O., Eds.; Springer: Cham, Switzerland, 2017; pp. 594–600. [Google Scholar]
- Dey, T.K.; Mémoli, F.; Wang, Y. Multiscale mapper: Topological summarization via codomain covers. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington, VA, USA, 10–12 January 2016; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2016; pp. 997–1013. [Google Scholar]
- Bergomi, M.G.; Ferri, M.; Zuffi, L. Graph persistence. arXiv, 2017; arXiv:1707.09670. [Google Scholar]
- Holzinger, A. Human-Computer Interaction and Knowledge Discovery (HCI-KDD): What is the benefit of bringing those two fields to work together? In Availability, Reliability, and Security in Information Systems and HCI. CD-ARES 2013; Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 319–328. [Google Scholar]
- Holzinger, A. Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 2016, 3, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Casali, M.R.; Cristofori, P.; Dartois, S.; Grasselli, L. Topology in colored tensor models via crystallization theory. J. Geom. Phys. 2018, 129, 142–167. [Google Scholar] [CrossRef]
- Otasek, D.; Pastrello, C.; Holzinger, A.; Jurisica, I. Visual data mining: effective exploration of the biological universe. In Interactive Knowledge Discovery and Data Mining in Biomedical Informatics; Holzinger, A., Jurisica, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 19–33. [Google Scholar]
- Turkay, C.; Jeanquartier, F.; Holzinger, A.; Hauser, H. On computationally-enhanced visual analysis of heterogeneous data and its application in biomedical informatics. In Interactive Knowledge Discovery and Data Mining in Biomedical Informatics; Holzinger, A., Jurisica, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 117–140. [Google Scholar]
- Farber, M. Invitation to Topological Robotics; European Mathematical Society: Zurich, Switzerland, 2008; Volume 8. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferri, M. Why Topology for Machine Learning and Knowledge Extraction? Mach. Learn. Knowl. Extr. 2019, 1, 115-120. https://doi.org/10.3390/make1010006
Ferri M. Why Topology for Machine Learning and Knowledge Extraction? Machine Learning and Knowledge Extraction. 2019; 1(1):115-120. https://doi.org/10.3390/make1010006
Chicago/Turabian StyleFerri, Massimo. 2019. "Why Topology for Machine Learning and Knowledge Extraction?" Machine Learning and Knowledge Extraction 1, no. 1: 115-120. https://doi.org/10.3390/make1010006
APA StyleFerri, M. (2019). Why Topology for Machine Learning and Knowledge Extraction? Machine Learning and Knowledge Extraction, 1(1), 115-120. https://doi.org/10.3390/make1010006