Artificial Intelligence Methods for Identifying and Localizing Abnormal Parathyroid Glands: A Review Study
Abstract
:1. Introduction
2. Methods
2.1. Literature Review
- (Hyperparathyroidism OR Parathyroid Glands) AND (Deep Learning OR Artificial Intelligence)
- (Hyperparathyroidism OR Parathyroid Glands) AND (Convolutional Neural Networks OR Machine Learning)
- (Hyperparathyroidism or PHPT) AND (Deep Learning OR Artificial Intelligence)
2.2. Machine Learning and Deep Learning in a Nutshell
2.2.1. Machine Learning
2.2.2. Deep Learning
3. Results
3.1. Thyroidectomy Assisting Methods for Localizing Parathyroid Glands
3.2. Preoperative Parathyroid Gland Detection and Abnormality Identification
Study | First Author | Year | Category | Aim | Major Findings |
---|---|---|---|---|---|
[33] | Kim | 2022 | Operative | PG detection | mAP: 94.7% |
[41] | Sandqvist | 2022 | Preoperative | PTA detection | MGD-patients PPV: 72% SGD-patients MR: 6% |
[42] | Stefaniak | 2003 | Preoperative | PTA detection | R2 of 0.543 and standard error of 0.567 |
[36] | Akbulut | 2021 | Operative | PG normal-abnormal classification and parathyroid pathology discrimination | PG normal-abnormal Accuracy: 95% Parathyroid pathology discrimination Accuracy: 84% |
[37] | Wang | 2022 | Operative | PG identification | Precision: 88.7% Recall: 92.3% F1: 90.5% |
[38] | Avci | 2022 | Operative | PG identification | Precision: 95.7% Recall: 90.5% |
[39] | Avci | 2022 | Operative | PG identification | Precision: 89% Recall: 89% AUC: 0.9 |
[43] | Yoshida | 2022 | Preoperative | PTA identification | Early Phase Sensitivity: 82% mFPI: 0.44 Delayed Phase Sensitivity: 83% mFPI: 0.31 |
[45] | Somnay | 2017 | Preoperative | PHPT recognition | Accuracy: 95.2% AUC: 0.989 |
[40] | Wang | 2021 | Operative | PG identification | Accuracy: 92% |
[46] | Imbus | 2017 | Preoperative | MGD detection | Accuracy: 94.1% Sensitivity: 94.1% Specificity: 83.8% PPV: 94.1% AUC: 0.984 |
[47] | Chen | 2020 | Preoperative | PHPT detection | Recall: 96% |
[48] | Apostolopoulos | 2022 | Preoperative | PG identification | Accuracy: 96.56% Sensitivity: 96.38% Specificity: 97.02% PPV: 98.76% NPV: 91.57% |
Study | Method | Data Information | Major Findings |
---|---|---|---|
[33] | Deep Learning (YOLO v5) | Participants: 6 human subjects Classes: Not applicable Validation: 4 for training, 2 for testing Data Type: Video data (1287 images) | mAP: 94.7% |
[41] | Machine Learning (Ensemble of Decision Trees) | Participants: 349 patients Classes: Patients with Single-Gland Disease (SGD) correctly localized at imaging and MGD patients in whom only one PTA was localized on imaging. Distribution between the two classes is not mentioned Validation: 70% for training and 30% for testing Data Type: Tabular—Six predictor variables | MGD-patients PPV: 72% SGD-patients MR: 6% |
[42] | Machine Learning (ANN) | Participants: 35 patients Classes: Visually detectable Parathyroid Adenoma, probable Parathyroid Adenoma, background and/or outside body area, and thyroid gland. Distribution between the classes is not mentioned Validation: 25 for training, 10 for testing Data Type: Planar neck scintigrams | R2 of 0.543 and standard error of 0.567 |
[36] | Machine Learning (Ensemble of Decision Trees) | Participants: 333 PGs Classes: abnormal (n = 149) versus normal PGs (n = 184) Data Type: Tabular—Three predictor variables | PG normal-abnormal Accuracy: 95% Parathyroid pathology discrimination Accuracy: 84% |
[37] | Deep Learning (Faster R-CNN) | Participants: 166 endoscopic thyroidectomy videos 1700 images were employed (frames) Classes: Not applicable Validation: Training-validation ratio 15:2 20 full length videos were used as controls Data Type: Thyroidectomy videos | Precision: 88.7% Recall: 92.3% F1: 90.5% |
[38] | Deep Learning (Google AutoML) | Participants: 466 intraoperative near-infrared images of 197 participants Classes: Not applicable Validation: 80% for training, 10% for validation, 10% for testing Data Type: Near-infrared images | Precision: 95.7% Recall: 90.5% |
[39] | Deep Learning (Google AutoML) | Participants: 906 intraoperative parathyroid autofluorescence images of 303 participants Classes: 78 abnormal and 628 normal PG images Validation: 80% for training, 10% for validation, 10% for testing Data Type: Near-infrared images | Precision: 89% Recall: 89% AUC: 0.9 |
[43] | Deep Learning (Retina Net) | Participants: 281 patients Classes: Not applicable Validation: 192 for training, 45 for validation, 44 for testing Data Type: Early- and late-phase parathyroid scintigrams | Early Phase Sensitivity: 82% mFPI: 0.44 Delayed Phase Sensitivity: 83% mFPI: 0.31 |
[45] | Machine Learning (Bayesian Networks) | Participants: 11830 patients Classes: 6777 patients (study) with biochemical PHPT, 5053 patients without Validation: 10-fold cross-validation Data Type: Tabular—Clinical predictors | Accuracy: 95.2% AUC: 0.989 |
[40] | Machine Learning (ANN) | Participants: 1525 original spectra from 20 smear samples of three rabbits Classes: 773 PG spectra and 752 NPG spectra Validation: 3-fold cross-validation Data Type: Tabular—Clinical predictors | Accuracy: 92% |
[46] | Machine Learning (Boosted Tree) | Participants: 2010 participants Classes: 1532 patients with Single Adenoma SGD and 478 with MGD Validation: 10-fold cross-validation Data Type: Tabular—14 predictor variables | Accuracy: 94.1% Sensitivity: 94.1% Specificity: 83.8% PPV: 94.1% AUC: 0.984 |
[47] | Deep Learning (CNN) | Participants: 1000 ultrasound images containing PHPTs Classes: Not mentioned Validation: 200 images (of the initial 1000) Data Type: Ultrasound images | Recall: 96% |
[48] | Deep Learning (CNN) | Participants: 632 parathyroid scans Classes: PG (414 samples), nPG (168 samples) Validation: 10-fold cross-validation Data Type: Parathyroid scans | Accuracy: 96.56% Sensitivity: 96.38% Specificity: 97.02% PPV: 98.76% NPV: 91.57% |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wieneke, J.A.; Smith, A. Parathyroid Adenoma. Head Neck Pathol. 2008, 2, 305–308. [Google Scholar] [CrossRef]
- Walker, M.D.; Silverberg, S.J. Primary Hyperparathyroidism. Nat. Rev. Endocrinol. 2018, 14, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Astaraki, M.; Zakko, Y.; Toma Dasu, I.; Smedby, Ö.; Wang, C. Benign-Malignant Pulmonary Nodule Classification in Low-Dose CT with Convolutional Features. Phys. Med. 2021, 83, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Haggenmüller, S.; Maron, R.C.; Hekler, A.; Utikal, J.S.; Barata, C.; Barnhill, R.L.; Beltraminelli, H.; Berking, C.; Betz-Stablein, B.; Blum, A.; et al. Skin Cancer Classification via Convolutional Neural Networks: Systematic Review of Studies Involving Human Experts. Eur. J. Cancer 2021, 156, 202–216. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Kang, H.; Jeong, J.-H.; Kang, D. Performance Evaluation in [18F]Florbetaben Brain PET Images Classification Using 3D Convolutional Neural Network. PLoS ONE 2021, 16, e0258214. [Google Scholar] [CrossRef] [PubMed]
- Abbaci, M.; De Leeuw, F.; Breuskin, I.; Casiraghi, O.; Lakhdar, A.B.; Ghanem, W.; Laplace-Builhé, C.; Hartl, D. Parathyroid Gland Management Using Optical Technologies during Thyroidectomy or Parathyroidectomy: A Systematic Review. Oral. Oncol. 2018, 87, 186–196. [Google Scholar] [CrossRef]
- Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. Machine Learning Basics. Deep. Learn. 2016, 98–164. Available online: http://whdeng.cn/Teaching/PPT_01_Machine%20learning%20Basics.pdf (accessed on 23 August 2022).
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Denton, E.; Hanna, A.; Amironesei, R.; Smart, A.; Nicole, H. On the Genealogy of Machine Learning Datasets: A Critical History of ImageNet. Big Data Soc. 2021, 8, 205395172110359. [Google Scholar] [CrossRef]
- Jiang, T.; Gradus, J.L.; Rosellini, A.J. Supervised Machine Learning: A Brief Primer. Behav. Ther. 2020, 51, 675–687. [Google Scholar] [CrossRef]
- Sen, P.C.; Hajra, M.; Ghosh, M. Supervised Classification Algorithms in Machine Learning: A Survey and Review. In Emerging Technology in Modelling and Graphics; Mandal, J.K., Bhattacharya, D., Eds.; Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; Volume 937, pp. 99–111. ISBN 9789811374029. [Google Scholar]
- Alloghani, M.; Al-Jumeily, D.; Mustafina, J.; Hussain, A.; Aljaaf, A.J. A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science. In Supervised and Unsupervised Learning for Data Science; Berry, M.W., Mohamed, A., Yap, B.W., Eds.; Unsupervised and Semi-Supervised Learning; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–21. ISBN 978-3-030-22474-5. [Google Scholar]
- Berry, M.W.; Mohamed, A.; Yap, B.W. (Eds.) Supervised and Unsupervised Learning for Data Science; Unsupervised and Semi-Supervised Learning; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-22474-5. [Google Scholar]
- Hady, M.F.A.; Schwenker, F. Semi-Supervised Learning. In Handbook on Neural Information Processing; Bianchini, M., Maggini, M., Jain, L.C., Eds.; Intelligent Systems Reference Library; Springer: Berlin/Heidelberg, Germany, 2013; Volume 49, pp. 215–239. ISBN 978-3-642-36656-7. [Google Scholar]
- Van Engelen, J.E.; Hoos, H.H. A Survey on Semi-Supervised Learning. Mach. Learn. 2020, 109, 373–440. [Google Scholar] [CrossRef] [Green Version]
- Marcot, B.G.; Penman, T.D. Advances in Bayesian Network Modelling: Integration of Modelling Technologies. Environ. Model. Softw. 2019, 111, 386–393. [Google Scholar] [CrossRef]
- Kotsiantis, S.B. Decision Trees: A Recent Overview. Artif. Intell. Rev. 2013, 39, 261–283. [Google Scholar] [CrossRef]
- Suthaharan, S. Support Vector Machine. In Machine Learning Models and Algorithms for Big Data Classification; Integrated Series in Information Systems; Springer: Boston, MA, USA, 2016; Volume 36, pp. 207–235. ISBN 978-1-4899-7640-6. [Google Scholar]
- Li, H.; Zhang, Z.; Liu, Z. Application of Artificial Neural Networks for Catalysis: A Review. Catalysts 2017, 7, 306. [Google Scholar] [CrossRef]
- Kramer, O. Genetic Algorithms. In Genetic Algorithm Essentials; Studies in Computational Intelligence; Springer International Publishing: Cham, Switzerland, 2017; Volume 679, pp. 11–19. ISBN 978-3-319-52155-8. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- LeCun, Y.; Bengio, Y. Others Convolutional Networks for Images, Speech, and Time Series. Handb. Brain Theory Neural Netw. 1995, 3361, 1995. [Google Scholar]
- LeCun, Y.; Kavukcuoglu, K.; Farabet, C. Convolutional networks and applications in vision. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; IEEE: Paris, France, 2010; pp. 253–256. [Google Scholar]
- Affonso, C.; Rossi, A.L.D.; Vieira, F.H.A.; de Leon Ferreira, A.C.P. Others Deep Learning for Biological Image Classification. Expert Syst. Appl. 2017, 85, 114–122. [Google Scholar] [CrossRef]
- Liu, W.; Wen, Y.; Yu, Z.; Yang, M. Large-Margin Softmax Loss for Convolutional Neural Networks. In Proceedings of the ICML, New York, NY, USA, 19–24 June 2016; Volume 2, p. 7. [Google Scholar]
- Apostolopoulos, I.D.; Aznaouridis, S.I.; Tzani, M.A. Extracting Possibly Representative COVID-19 Biomarkers from X-ray Images with Deep Learning Approach and Image Data Related to Pulmonary Diseases. J. Med. Biol. Eng. 2020, 40, 462–469. [Google Scholar] [CrossRef]
- Apostolopoulos, I.D.; Papathanasiou, N.D.; Spyridonidis, T.; Apostolopoulos, D.J. Automatic characterization of myocardial perfusion imaging polar maps employing deep learning and data augmentation. Hell. J. Nucl. Med. 2020, 23, 125–132. [Google Scholar]
- Apostolopoulos, I.D.; Apostolopoulos, D.I.; Spyridonidis, T.I.; Papathanasiou, N.D.; Panayiotakis, G.S. Multi-input deep learning approach for Cardiovascular Disease diagnosis using Myocardial Perfusion Imaging and clinical data. Phys. Med. 2021, 84, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulos, I.D.; Pintelas, E.G.; Livieris, I.E.; Apostolopoulos, D.J.; Papathanasiou, N.D.; Pintelas, P.E.; Panayiotakis, G.S. Automatic classification of solitary pulmonary nodules in PET/CT imaging employing transfer learning techniques. Med. Biol. Eng. Comput. 2021, 59, 1299–1310. [Google Scholar] [CrossRef]
- Papandrianos, N.I.; Feleki, A.; Moustakidis, S.; Papageorgiou, E.I.; Apostolopoulos, I.D.; Apostolopoulos, D.J. An Explainable Classification Method of SPECT Myocardial Perfusion Images in Nuclear Cardiology Using Deep Learning and Grad-CAM. Appl. Sci. 2022, 12, 7592. [Google Scholar] [CrossRef]
- Papandrianos, N.I.; Apostolopoulos, I.D.; Feleki, A.; Apostolopoulos, D.J.; Papageorgiou, E.I. Deep Learning Exploration for SPECT MPI Polar Map Images Classification in Coronary Artery Disease. Ann. Nucl. Med. 2022, 36, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lee, H.C.; Kim, J.; Oh, E.; Yoo, J.; Ning, B.; Lee, S.Y.; Ali, K.M.; Tufano, R.P.; Russell, J.O.; et al. A coaxial excitation, dual-red-green-blue/near-infrared paired imaging system toward computer-aided detection of parathyroid glands in situ and ex vivo. J. Biophotonics 2022, 15, e202200008. [Google Scholar] [CrossRef]
- Solórzano, C.C.; Thomas, G.; Baregamian, N.; Mahadevan-Jansen, A. Detecting the Near Infrared Autofluorescence of the Human Parathyroid: Hype or Opportunity? Ann. Surg. 2020, 272, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Akbulut, S.; Erten, O.; Kim, Y.S.; Gokceimam, M.; Berber, E. Development of an Algorithm for Intraoperative Autofluorescence Assessment of Parathyroid Glands in Primary Hyperparathyroidism Using Artificial Intelligence. Surgery 2021, 170, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zheng, J.; Yu, J.; Lin, S.; Yan, S.; Zhang, L.; Wang, S.; Cai, S.; Abdelhamid Ahmed, A.H.; Lin, L.; et al. Development of Artificial Intelligence for Parathyroid Recognition During Endoscopic Thyroid Surgery. Laryngoscope 2022. [Google Scholar] [CrossRef]
- Avci, S.N.; Isiktas, G.; Berber, E. A Visual Deep Learning Model to Localize Parathyroid-Specific Autofluorescence on Near-Infrared Imaging: Localization of Parathyroid Autofluorescence with Deep Learning. Ann. Surg. Oncol. 2022, 29, 4248–4252. [Google Scholar] [CrossRef]
- Avci, S.N.; Isiktas, G.; Ergun, O.; Berber, E. A Visual Deep Learning Model to Predict Abnormal versus Normal Parathyroid Glands Using Intraoperative Autofluorescence Signals. J. Surg. Oncol. 2022, 126, 263–267. [Google Scholar] [CrossRef]
- Wang, Q.; Xiangli, W.; Chen, X.; Zhang, J.; Teng, G.; Cui, X.; Idrees, B.S.; Wei, K. Primary Study of Identification of Parathyroid Gland Based on Laser-Induced Breakdown Spectroscopy. Biomed. Opt. Express 2021, 12, 1999. [Google Scholar] [CrossRef]
- Sandqvist, P.; Sundin, A.; Nilsson, I.-L.; Grybäck, P.; Sanchez-Crespo, A. Primary Hyperparathyroidism, a Machine Learning Approach to Identify Multiglandular Disease in Patients with a Single Adenoma Found at Preoperative Sestamibi-SPECT/CT. Eur. J. Endocrinol. 2022, 187, 257–263. [Google Scholar] [CrossRef]
- Stefaniak, B.; Cholewiński, W.; Tarkowska, A. Application of Artificial Neural Network Algorithm to Detection of Parathyroid Adenoma. Nucl. Med. Rev. 2003, 6, 111–117. [Google Scholar]
- Yoshida, A.; Ueda, D.; Higashiyama, S.; Katayama, Y.; Matsumoto, T.; Yamanaga, T.; Miki, Y.; Kawabe, J. Deep Learning-Based Detection of Parathyroid Adenoma by 99mTc-MIBI Scintigraphy in Patients with Primary Hyperparathyroidism. Ann. Nucl. Med. 2022, 36, 468–478. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Somnay, Y.R.; Craven, M.; McCoy, K.L.; Carty, S.E.; Wang, T.S.; Greenberg, C.C.; Schneider, D.F. Improving Diagnostic Recognition of Primary Hyperparathyroidism with Machine Learning. Surgery 2017, 161, 1113–1121. [Google Scholar] [CrossRef]
- Imbus, J.R.; Randle, R.W.; Pitt, S.C.; Sippel, R.S.; Schneider, D.F. Machine Learning to Identify Multigland Disease in Primary Hyperparathyroidism. J. Surg. Res. 2017, 219, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Guo, Q.; Jiang, Z.; Wang, H.; Yu, M.; Wei, Y. Recognition of Hyperparathyroidism Based on Transfer Learning. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Korea, 16–19 December 2020; IEEE: Piscataway, NJ, USA; pp. 2959–2961. [Google Scholar]
- Apostolopoulos, I.D.; Papathanasiou, N.D.; Apostolopoulos, D.J. A Deep Learning Methodology for the Detection of Abnormal Parathyroid Glands via Scintigraphy with 99mTc-Sestamibi. Diseases 2022, 10, 56. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 618–626. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolopoulos, I.D.; Papandrianos, N.I.; Papageorgiou, E.I.; Apostolopoulos, D.J. Artificial Intelligence Methods for Identifying and Localizing Abnormal Parathyroid Glands: A Review Study. Mach. Learn. Knowl. Extr. 2022, 4, 814-826. https://doi.org/10.3390/make4040040
Apostolopoulos ID, Papandrianos NI, Papageorgiou EI, Apostolopoulos DJ. Artificial Intelligence Methods for Identifying and Localizing Abnormal Parathyroid Glands: A Review Study. Machine Learning and Knowledge Extraction. 2022; 4(4):814-826. https://doi.org/10.3390/make4040040
Chicago/Turabian StyleApostolopoulos, Ioannis D., Nikolaos I. Papandrianos, Elpiniki I. Papageorgiou, and Dimitris J. Apostolopoulos. 2022. "Artificial Intelligence Methods for Identifying and Localizing Abnormal Parathyroid Glands: A Review Study" Machine Learning and Knowledge Extraction 4, no. 4: 814-826. https://doi.org/10.3390/make4040040
APA StyleApostolopoulos, I. D., Papandrianos, N. I., Papageorgiou, E. I., & Apostolopoulos, D. J. (2022). Artificial Intelligence Methods for Identifying and Localizing Abnormal Parathyroid Glands: A Review Study. Machine Learning and Knowledge Extraction, 4(4), 814-826. https://doi.org/10.3390/make4040040