Special Issue “Selected Papers from CD-MAKE 2020 and ARES 2020”
1. Introduction
2. Editorial
Conflicts of Interest
References
- Holzinger, A.; Kieseberg, P.; Weippl, E.; Tjoa, A.M. Current advances, trends and challenges of machine learning and knowledge extraction: From machine learning to explainable AI. In Springer Lecture Notes in Computer Science LNCS 11015; Springer: Cham, Switzerland, 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Kieseberg, P.; Weippl, E.; Holzinger, A. Trust for the doctor-in-the-loop. European Research Consortium for Informatics and Mathematics (ERCIM) News: Tackling Big Data in the Life Sciences. ERCIM News 2016, 104, 32–33. [Google Scholar]
- Holzinger, A.; Weippl, E.; Tjoa, A.M.; Kieseberg, P. Digital transformation for sustainable development goals (sdgs)—A security, safety and privacy perspective on AI. In Springer Lecture Notes in Computer Science, LNCS 12844; Springer: Cham, Switzerland, 2021; pp. 1–20. [Google Scholar] [CrossRef]
- Anjomshoaa, A.; Curry, E. Transfer Learning in Smart Environments. Mach. Learn. Knowl. Extr. 2021, 3, 318–332. [Google Scholar] [CrossRef]
- Mayr, F.; Yovine, S.; Visca, R. Property Checking with Interpretable Error Characterization for Recurrent Neural Networks. Mach. Learn. Knowl. Extr. 2021, 3, 205–227. [Google Scholar] [CrossRef]
- Hillebrand, L.; Biesner, D.; Bauckhage, C.; Sifa, R. Interpretable Topic Extraction and Word Embedding Learning Using Non-Negative Tensor DEDICOM. Mach. Learn. Knowl. Extr. 2021, 3, 123–167. [Google Scholar] [CrossRef]
- Shin, K.; Ishikawa, T.; Liu, Y.-L.; Shepard, D.L. Learning DOM Trees of Web Pages by Subpath Kernel and Detecting Fake e-Commerce Sites. Mach. Learn. Knowl. Extr. 2021, 3, 95–122. [Google Scholar] [CrossRef]
- Fischer, L.; Ehrlinger, L.; Geist, V.; Ramler, R.; Sobiezky, F.; Zellinger, W.; Brunner, D.; Kumar, M.; Moser, B. AI System Engineering—Key Challenges and Lessons Learned. Mach. Learn. Knowl. Extr. 2021, 3, 56–83. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weippl, E.R.; Holzinger, A.; Kieseberg, P. Special Issue “Selected Papers from CD-MAKE 2020 and ARES 2020”. Mach. Learn. Knowl. Extr. 2023, 5, 173-174. https://doi.org/10.3390/make5010012
Weippl ER, Holzinger A, Kieseberg P. Special Issue “Selected Papers from CD-MAKE 2020 and ARES 2020”. Machine Learning and Knowledge Extraction. 2023; 5(1):173-174. https://doi.org/10.3390/make5010012
Chicago/Turabian StyleWeippl, Edgar R., Andreas Holzinger, and Peter Kieseberg. 2023. "Special Issue “Selected Papers from CD-MAKE 2020 and ARES 2020”" Machine Learning and Knowledge Extraction 5, no. 1: 173-174. https://doi.org/10.3390/make5010012
APA StyleWeippl, E. R., Holzinger, A., & Kieseberg, P. (2023). Special Issue “Selected Papers from CD-MAKE 2020 and ARES 2020”. Machine Learning and Knowledge Extraction, 5(1), 173-174. https://doi.org/10.3390/make5010012