VOD: Vision-Based Building Energy Data Outlier Detection
Abstract
:1. Introduction
2. Literature Review
2.1. Conventional Outlier Detection Methods
2.2. Outlier Detection Based on Load Shape
2.3. Supervised Outlier Detection
2.4. Model’s Explainability
3. VOD Outlier Detection Methodology
3.1. Overview
3.2. Dataset
3.3. Typical Daily Electricity Consumption Load Shape of Office Buildings on Workdays
3.4. Definition of Outliers in Daily Electricity Consumption
- Point outliers refer to data instances that are significantly different from the majority of data points in a dataset.
- Contextual outliers, also called conditional outliers, are anomalous instances in a specific context. They usually have relatively larger or smaller values with respect to their adjacent values. However, when viewed independently, they will fall within the normal range expected for the signal.
- Collective outliers, also known as group outliers, are a series of data points that are anomalous with respect to the entire data set. They usually show an unusual shape compared with the entire dataset.
3.5. Classification Dataset
3.6. Object Detection Dataset
3.7. Model Development
3.7.1. Classification Model
3.7.2. Classification Model Visual Explanation via Grad-CAM
3.7.3. Object Detection Model
3.8. Loss Function and Evaluation Metrics
N | the number of observations; |
the ground truth of the ith observation, which can be 0 or 1; | |
the predicted probability of the ith observation being of class 1; | |
the bounding-box prediction loss; | |
the object loss; | |
the classification loss; | |
the recall at the ith IoU threshold; | |
the precision at the ith IoU threshold. |
4. Outlier Detection Success and Discussion
4.1. Outlier Classification
4.2. Adding Grad-CAM to Visualize the Classification Model
4.3. Outlier Object Detection
5. Comparison and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Grad-CAM Visualization of the Classification Model
Appendix A.1. Visualization of the “Looking Good" Category
Appendix A.2. Visualization of the “ Potential Problems” Category
Appendix B. Validation and Test Results of the Outlier Object Detection Model
References
- EIA. Buildings Sectorial Overview; Technical Report CC BY 4.0; U.S. Energy Information Administration (EIA): Washington, DC, USA, 2022. [Google Scholar]
- Li, T.; Liu, T.; Sawyer, A.O.; Tang, P.; Loftness, V.; Lu, Y.; Xie, J. Generalized building energy and carbon emissions benchmarking with post-prediction analysis. Dev. Built Environ. 2024, 17, 100320. [Google Scholar] [CrossRef]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Gaddam, A.; Wilkin, T.; Angelova, M.; Gaddam, J. Detecting sensor faults, anomalies and outliers in the internet of things: A survey on the challenges and solutions. Electronics 2020, 9, 511. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, S.; Liu, F. Sensor fault detection and diagnosis in the presence of outliers. Neurocomputing 2019, 349, 156–163. [Google Scholar] [CrossRef]
- Li, X.; Bowers, C.P.; Schnier, T. Classification of energy consumption in buildings with outlier detection. IEEE Trans. Ind. Electron. 2009, 57, 3639–3644. [Google Scholar] [CrossRef]
- Martin Nascimento, G.F.; Wurtz, F.; Kuo-Peng, P.; Delinchant, B.; Jhoe Batistela, N. Outlier Detection in Buildings’ Power Consumption Data Using Forecast Error. Energies 2021, 14, 8325. [Google Scholar] [CrossRef]
- Larson, S.; Mahendran, A.; Lee, A.; Kummerfeld, J.K.; Hill, P.; Laurenzano, M.A.; Hauswald, J.; Tang, L.; Mars, J. Outlier detection for improved data quality and diversity in dialog systems. arXiv 2019, arXiv:1904.03122. [Google Scholar] [CrossRef]
- Zhang, Y.; Meratnia, N.; Havinga, P.J. Ensuring high sensor data quality through use of online outlier detection techniques. Int. J. Sens. Netw. 2010, 7, 141–151. [Google Scholar] [CrossRef]
- Himeur, Y.; Ghanem, K.; Alsalemi, A.; Bensaali, F.; Amira, A. Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. Appl. Energy 2021, 287, 116601. [Google Scholar] [CrossRef]
- Copiaco, A.; Himeur, Y.; Amira, A.; Mansoor, W.; Fadli, F.; Atalla, S.; Sohail, S.S. An innovative deep anomaly detection of building energy consumption using energy time-series images. Eng. Appl. Artif. Intell. 2023, 119, 105775. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. kdd 1996, 96, 226–231. [Google Scholar]
- Jalori, S.; Reddy, T.A. A New Clustering Method to Identify Outliers and Diurnal Schedules from Building Energy Interval Data. ASHRAE Trans. 2015, 121, 33. [Google Scholar]
- Piscitelli, M.S.; Brandi, S.; Capozzoli, A. Recognition and classification of typical load profiles in buildings with non-intrusive learning approach. Appl. Energy 2019, 255, 113727. [Google Scholar] [CrossRef]
- Liu, X.; Sun, H.; Han, S.; Han, S.; Niu, S.; Qin, W.; Sun, P.; Song, D. A data mining research on office building energy pattern based on time-series energy consumption data. Energy Build. 2022, 259, 111888. [Google Scholar] [CrossRef]
- Li, T.; Bie, H.; Lu, Y.; Sawyer, A.O.; Loftness, V. MEBA: AI-powered precise building monthly energy benchmarking approach. Appl. Energy 2024, 359, 122716. [Google Scholar] [CrossRef]
- Price, P. Methods for Analyzing Electric Load Shape and Its Variability; Technical Report; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 2010. [Google Scholar] [CrossRef]
- Luo, X.; Hong, T.; Chen, Y.; Piette, M.A. Electric load shape benchmarking for small-and medium-sized commercial buildings. Appl. Energy 2017, 204, 715–725. [Google Scholar] [CrossRef]
- Liu, X.; Ding, Y.; Tang, H.; Xiao, F. A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data. Energy Build. 2021, 231, 110601. [Google Scholar] [CrossRef]
- Fan, C.; Xiao, F.; Zhao, Y.; Wang, J. Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data. Appl. Energy 2018, 211, 1123–1135. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, Y.; Niu, X.; Dai, H.N.; Zhou, Y. Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Trans. Ind. Inform. 2017, 14, 1606–1615. [Google Scholar] [CrossRef]
- Fahim, M.; Fraz, K.; Sillitti, A. TSI: Time series to imaging based model for detecting anomalous energy consumption in smart buildings. Inf. Sci. 2020, 523, 1–13. [Google Scholar] [CrossRef]
- Carcillo, F.; Le Borgne, Y.A.; Caelen, O.; Kessaci, Y.; Oblé, F.; Bontempi, G. Combining unsupervised and supervised learning in credit card fraud detection. Inf. Sci. 2021, 557, 317–331. [Google Scholar] [CrossRef]
- Bawono, A.H.; Bachtiar, F.A. Outlier Detection with Supervised Learning Method. In Proceedings of the 2019 International Conference on Sustainable Information Engineering and Technology (SIET), Lombok, Indonesia, 28–30 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 306–309. [Google Scholar] [CrossRef]
- Paulheim, H.; Meusel, R. A decomposition of the outlier detection problem into a set of supervised learning problems. Mach. Learn. 2015, 100, 509–531. [Google Scholar] [CrossRef]
- Aggarwal, C.C.; Aggarwal, C.C. Supervised outlier detection. In Outlier Analysis; Springer: Berlin/Heidelberg, Germany, 2017; pp. 219–248. [Google Scholar]
- Takahashi, K.; Ooka, R.; Kurosaki, A. Seasonal threshold to reduce false positives for prediction-based outlier detection in building energy data. J. Build. Eng. 2024, 84, 108539. [Google Scholar] [CrossRef]
- Araya, D.B.; Grolinger, K.; ElYamany, H.F.; Capretz, M.A.; Bitsuamlak, G. An ensemble learning framework for anomaly detection in building energy consumption. Energy Build. 2017, 144, 191–206. [Google Scholar] [CrossRef]
- Shoemaker, L.; Hall, L.O. Anomaly detection using ensembles. In Proceedings of the Multiple Classifier Systems: 10th International Workshop, MCS 2011, Naples, Italy, 15–17 June 2011; Proceedings 10; Springer: Berlin/Heidelberg, Germany, 2011; pp. 6–15. [Google Scholar] [CrossRef]
- Miyata, S.; Akashi, Y.; Lim, J.; Motomura, A.; Tanaka, K.; Tanaka, S.; Kuwahara, Y. Fault Detection and Diagnosis in Building Heat Source Systems Using Machine Learning (Part 2) Preprocessing of Fault Data for Improvement in Diagnosis Performance and Application to BEMS Data. Trans. SHASE Jpn. 2018, 261, 1–9. [Google Scholar]
- Xu, C.; Chen, H. Abnormal energy consumption detection for GSHP system based on ensemble deep learning and statistical modeling method. Int. J. Refrig. 2020, 114, 106–117. [Google Scholar] [CrossRef]
- Hsu, D. Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data. Appl. Energy 2015, 160, 153–163. [Google Scholar] [CrossRef]
- Chen, Z.; Xiao, F.; Guo, F.; Yan, J. Interpretable machine learning for building energy management: A state-of-the-art review. Adv. Appl. Energy 2023, 9, 100123. [Google Scholar] [CrossRef]
- Choo, J.; Liu, S. Visual analytics for explainable deep learning. IEEE Comput. Graph. Appl. 2018, 38, 84–92. [Google Scholar] [CrossRef]
- Li, Y.; O’Neill, Z.; Zhang, L.; Chen, J.; Im, P.; DeGraw, J. Grey-box modeling and application for building energy simulations—A critical review. Renew. Sustain. Energy Rev. 2021, 146, 111174. [Google Scholar] [CrossRef]
- Wang, Z.; Hong, T.; Piette, M.A. Building thermal load prediction through shallow machine learning and deep learning. Appl. Energy 2020, 263, 114683. [Google Scholar] [CrossRef]
- Machlev, R.; Heistrene, L.; Perl, M.; Levy, K.; Belikov, J.; Mannor, S.; Levron, Y. Explainable Artificial Intelligence (XAI) techniques for energy and power systems: Review, challenges and opportunities. Energy AI 2022, 9, 100169. [Google Scholar] [CrossRef]
- Somu, N.; MR, G.R.; Ramamritham, K. A deep learning framework for building energy consumption forecast. Renew. Sustain. Energy Rev. 2021, 137, 110591. [Google Scholar] [CrossRef]
- Li, C.; Ding, Z.; Zhao, D.; Yi, J.; Zhang, G. Building energy consumption prediction: An extreme deep learning approach. Energies 2017, 10, 1525. [Google Scholar] [CrossRef]
- Fan, C.; Xiao, F.; Zhao, Y. A short-term building cooling load prediction method using deep learning algorithms. Appl. Energy 2017, 195, 222–233. [Google Scholar] [CrossRef]
- Hawkins, D.M. Identification of Outliers; Springer: Berlin/Heidelberg, Germany, 1980; Volume 11. [Google Scholar] [CrossRef]
- Cook, A.A.; Mısırlı, G.; Fan, Z. Anomaly detection for IoT time-series data: A survey. IEEE Internet Things J. 2019, 7, 6481–6494. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Shafiq, M.; Gu, Z. Deep residual learning for image recognition: A survey. Appl. Sci. 2022, 12, 8972. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Jocher, G.; Stoken, A.; Borovec, J.; Changyu, L.; Hogan, A.; Diaconu, L.; Poznanski, J.; Yu, L.; Rai, P.; Ferriday, R.; et al. ultralytics/yolov5: v3. 0. Zenodo 2020. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, L.; Wang, S.; Xu, H. Apple stem/calyx real-time recognition using YOLO-v5 algorithm for fruit automatic loading system. Postharvest Biol. Technol. 2022, 185, 111808. [Google Scholar] [CrossRef]
- Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 2778–2788. [Google Scholar]
- Zhou, F.; Zhao, H.; Nie, Z. Safety helmet detection based on YOLOv5. In Proceedings of the 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), Shenyang, China, 22–24 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 6–11. [Google Scholar] [CrossRef]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8759–8768. [Google Scholar] [CrossRef]
- Overview of Model Structure about YOLOv5. Available online: https://github.com/ultralytics/yolov5/issues/280 (accessed on 30 March 2024).
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part V 13; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
Hyperparameter | Settings |
---|---|
lr | 0.01 |
epochs | 100 |
batch_size | 128 |
warm_up epochs | 3 |
scale | 0.5 (probability) |
mosaic | 1.0 (probability) |
translate | 0.1 (probability) |
horizontal flip | 0.5 (probability) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Zhao, T.; Li, Z.; Li, T.; Bie, H.; Loftness, V. VOD: Vision-Based Building Energy Data Outlier Detection. Mach. Learn. Knowl. Extr. 2024, 6, 965-986. https://doi.org/10.3390/make6020045
Tian J, Zhao T, Li Z, Li T, Bie H, Loftness V. VOD: Vision-Based Building Energy Data Outlier Detection. Machine Learning and Knowledge Extraction. 2024; 6(2):965-986. https://doi.org/10.3390/make6020045
Chicago/Turabian StyleTian, Jinzhao, Tianya Zhao, Zhuorui Li, Tian Li, Haipei Bie, and Vivian Loftness. 2024. "VOD: Vision-Based Building Energy Data Outlier Detection" Machine Learning and Knowledge Extraction 6, no. 2: 965-986. https://doi.org/10.3390/make6020045
APA StyleTian, J., Zhao, T., Li, Z., Li, T., Bie, H., & Loftness, V. (2024). VOD: Vision-Based Building Energy Data Outlier Detection. Machine Learning and Knowledge Extraction, 6(2), 965-986. https://doi.org/10.3390/make6020045