Rocking Devices and the Role of Vestibular Stimulation on Sleep—A Systematic Review
Abstract
:1. Introduction
1.1. Why Passive Vestibular Stimulation in Sleep?
1.2. Sleep and the Vestibular System
1.3. Sleep, Memory Consolidation, and the Vestibular System
1.4. Sleep under Minimal Vestibular Stimulation
2. Methods
3. Studies
3.1. Daytime Naps on Rocking Devices
3.2. Nighttime Sleep on Rocking Devices
3.3. The Effect of Stimulus Intensity
4. Discussion
5. Conclusions and Future Directions
6. Limitation
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Registration and Protocol
References
- Windmüller, S. Einschwingen in Die Ordnung Der Welt. Wiegen-Praxen Und -Diskurse. In Körper, Dinge und Bewegung. Der Gleichgewichtssinn in Materieller Kultur und Ästhetik; Schönhammer, R., Ed.; Facultas Verlags- und Buchhandel AG: Vienna, Austria, 2009; ISBN 978-1-7089-0460-3. [Google Scholar]
- Obladen, M. Swinging and Rocking: Two Millennia of Debating the Cradle. Neonatology 2021, 118, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Edinger, J.D.; Leggett, M.K.; Carney, C.E.; Manber, R. Psychological and Behavioral Treatments for Insomnia II. In Principles and Practice of Sleep Medicine; Elsevier: Amsterdam, The Netherlands, 2017; pp. 814–831.e7. ISBN 978-0-323-24288-2. [Google Scholar]
- Morin, C.M.; Davidson, J.R.; Beaulieu-Bonneau, S. Cognitive Behavior Therapies for Insomnia I. In Principles and Practice of Sleep Medicine; Elsevier: Amsterdam, The Netherlands, 2017; pp. 804–813.e5. ISBN 978-0-323-24288-2. [Google Scholar]
- Matthews, E.E.; Arnedt, J.T.; McCarthy, M.S.; Cuddihy, L.J.; Aloia, M.S. Adherence to Cognitive Behavioral Therapy for Insomnia: A Systematic Review. Sleep Med. Rev. 2013, 17, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.; Nutt, D. Pharmacological Treatment of Nocturnal Sleep Disturbance. In Sleep Disorders in Neurology; Overeem, S., Reading, P., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2010; pp. 55–66. [Google Scholar]
- Konopka, A.; Pełka Wysiecka, J.; Samochowiec, J. Chapter 32—Benzodiazepine Misuse and Addiction. Risk Factors and Adverse Behavioral Aspects. In Neuropathology of Drug Addictions and Substance Misuse; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 327–333. ISBN 978-0-12-800634-4. [Google Scholar]
- Park, K.S.; Choi, S.H.; Yoon, H. Modulation of Sleep Using Noninvasive Stimulations during Sleep. Biomed. Eng. Lett. 2023, 13, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, R.; Howard, R.; Wiles, C.; Spencer, G. Use of the Rocking Bed in the Treatment of Neurogenic Respiratory Insufficiency. QJM Int. J. Med. 1994, 87, 423–429. [Google Scholar] [CrossRef]
- Omlin, X.; Crivelli, F.; Heinicke, L.; Zaunseder, S.; Achermann, P.; Riener, R. Effect of Rocking Movements on Respiration. PLoS ONE 2016, 11, e0150581. [Google Scholar] [CrossRef] [PubMed]
- Bayer, L.; Constantinescu, I.; Perrig, S.; Vienne, J.; Vidal, P.-P.; Mühlethaler, M.; Schwartz, S. Rocking Synchronizes Brain Waves during a Short Nap. Curr. Biol. 2011, 21, R461–R462. [Google Scholar] [CrossRef] [PubMed]
- Omlin, X.; Crivelli, F.; Näf, M.; Heinicke, L.; Skorucak, J.; Malafeev, A.; Fernandez Guerrero, A.; Riener, R.; Achermann, P. The Effect of a Slowly Rocking Bed on Sleep. Sci. Rep. 2018, 8, 2156. [Google Scholar] [CrossRef]
- Perrault, A.A.; Khani, A.; Quairiaux, C.; Kompotis, K.; Franken, P.; Muhlethaler, M.; Schwartz, S.; Bayer, L. Whole-Night Continuous Rocking Entrains Spontaneous Neural Oscillations with Benefits for Sleep and Memory. Curr. Biol. 2019, 29, 402–411.e3. [Google Scholar] [CrossRef]
- van Sluijs, R.M.; Rondei, Q.J.; Schluep, D.; Jäger, L.; Riener, R.; Achermann, P.; Wilhelm, E. Effect of Rocking Movements on Afternoon Sleep. Front. Neurosci. 2020, 13, 1446. [Google Scholar] [CrossRef]
- Kompotis, K.; Hubbard, J.; Emmenegger, Y.; Perrault, A.; Mühlethaler, M.; Schwartz, S.; Bayer, L.; Franken, P. Rocking Promotes Sleep in Mice through Rhythmic Stimulation of the Vestibular System. Curr. Biol. 2019, 29, 392–401.e4. [Google Scholar] [CrossRef]
- Besnard, S.; Tighilet, B.; Chabbert, C.; Hitier, M.; Toulouse, J.; Le Gall, A.; Machado, M.-L.; Smith, P.F. The Balance of Sleep: Role of the Vestibular Sensory System. Sleep Med. Rev. 2018, 42, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Fuller, P.M.; Jones, T.A.; Jones, S.M.; Fuller, C.A. Neurovestibular Modulation of Circadian and Homeostatic Regulation: Vestibulohypothalamic Connection? Proc. Natl. Acad. Sci. USA 2002, 99, 15723–15728. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.; Moussay, S.; Bulla, I.; Bulla, J.; Toupet, M.; Etard, O.; Denise, P.; Davenne, D.; Coquerel, A.; Quarck, G. Exploration of Circadian Rhythms in Patients with Bilateral Vestibular Loss. PLoS ONE 2016, 11, e0155067. [Google Scholar] [CrossRef] [PubMed]
- Leong, R.L.F.; Chee, M.W.L. Understanding the Need for Sleep to Improve Cognition. Annu. Rev. Psychol. 2023, 74, 27–57. [Google Scholar] [CrossRef] [PubMed]
- Mölle, M.; Bergmann, T.O.; Marshall, L.; Born, J. Fast and Slow Spindles during the Sleep Slow Oscillation: Disparate Coalescence and Engagement in Memory Processing. Sleep 2011, 34, 1411–1421. [Google Scholar] [CrossRef] [PubMed]
- Mölle, M.; Born, J. Slow Oscillations Orchestrating Fast Oscillations and Memory Consolidation. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2011; Volume 193, pp. 93–110. ISBN 978-0-444-53839-0. [Google Scholar]
- Ngo, H.-V.V.; Martinetz, T.; Born, J.; Mölle, M. Auditory Closed-Loop Stimulation of the Sleep Slow Oscillation Enhances Memory. Neuron 2013, 78, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Brandt, T.; Schautzer, F.; Hamilton, D.A.; Brüning, R.; Markowitsch, H.J.; Kalla, R.; Darlington, C.; Smith, P.; Strupp, M. Vestibular Loss Causes Hippocampal Atrophy and Impaired Spatial Memory in Humans. Brain 2005, 128, 2732–2741. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.F. Recent Developments in the Understanding of the Interactions between the Vestibular System, Memory, the Hippocampus, and the Striatum. Front. Neurol. 2022, 13, 986302. [Google Scholar] [CrossRef]
- Chari, D.A.; Madhani, A.; Sharon, J.D.; Lewis, R.F. Evidence for Cognitive Impairment in Patients with Vestibular Disorders. J. Neurol. 2022, 269, 5831–5842. [Google Scholar] [CrossRef]
- Gonfalone, A. Sleep on Manned Space Flights: Zero Gravity Reduces Sleep Duration. Pathophysiology 2016, 23, 259–263. [Google Scholar] [CrossRef]
- Shen, M.; Frishman, W.H. Effects of Spaceflight on Cardiovascular Physiology and Health. Cardiol. Rev. 2019, 27, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Zivi, P.; De Gennaro, L.; Ferlazzo, F. Sleep in Isolated, Confined, and Extreme (ICE): A Review on the Different Factors Affecting Human Sleep in ICE. Front. Neurosci. 2020, 14, 851. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Morita, Y.; Yamaguchi, K.; Ashida, K.; Ikeura, R.; Yokoyama, K. Verification of Sleep-Inducing Effect by Excitation Apparatus Simulating Mother’s Embrace and Rocking Motion. In Proceedings of the 9th International Workshop on Robot Motion and Control, Kuslin, Poland, 3–5 July 2013; pp. 80–85. [Google Scholar]
- Crivelli, F.; Omlin, X.; Rauter, G.; Von Zitzewitz, J.; Achermann, P.; Riener, R. Somnomat: A Novel Actuated Bed to Investigate the Effect of Vestibular Stimulation. Med. Biol. Eng. Comput. 2016, 54, 877–889. [Google Scholar] [CrossRef] [PubMed]
- Ertl, M.; Fitze, D.C.; Wyssen, G.; Mast, F.W. Estimating Vestibular Perceptual Thresholds Using a Six-Degree-Of-Freedom Motion Platform. JoVE J. Vis. Exp. 2022, 186, e63909. [Google Scholar] [CrossRef]
- Ashida, K.; Morita, Y.; Ikeura, R.; Yokoyama, K.; Ding, M.; Mori, Y. Effective Rocking Motion for Inducing Sleep in Adults - Verification of Effect of Mothers Embrace and Rocking Motion. J. Robot. Netw. Artif. Life 2015, 1, 285. [Google Scholar] [CrossRef]
- Muto, T.; Yoshizawa, M.I.; Kim, C.; Kume, K. Sleep-Improving Effects of a Novel Motion Mattress. Sleep Biol. Rhythm. 2021, 19, 247–253. [Google Scholar] [CrossRef]
- Baek, S.; Yu, H.; Roh, J.; Lee, J.; Sohn, I.; Kim, S.; Park, C. Effect of a Recliner Chair with Rocking Motions on Sleep Efficiency. Sensors 2021, 21, 8214. [Google Scholar] [CrossRef]
- Kimura, H.; Kuramoto, A.; Inui, Y.; Inou, N. Mechanical Bed for Investigating Sleep-Inducing Vibration. J. Healthc. Eng. 2017, 2017, 2364659. [Google Scholar] [CrossRef]
- Del Vecchio, F.; Nalivaiko, E.; Cerri, M.; Luppi, M.; Amici, R. Provocative Motion Causes Fall in Brain Temperature and Affects Sleep in Rats. Exp. Brain Res. 2014, 232, 2591–2599. [Google Scholar] [CrossRef]
- Woodward, S.; Tauber, E.S.; Spielman, A.J.; Thorpy, M.J. Effects of Otolithic Vestibular Stimulation on Sleep. Sleep 1990, 13, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Shibagaki, H.; Ashida, K.; Morita, Y.; Ikeura, R.; Yokoyama, K. Verifying the Sleep-Inducing Effect of a Mother’s Rocking Motion in Adults. J. Robot. Netw. Artif. Life 2017, 4, 129–133. [Google Scholar] [CrossRef]
- van Sluijs, R.; Wilhelm, E.; Rondei, Q.; Omlin, X.; Crivelli, F.; Straumann, D.; Jäger, L.; Riener, R.; Achermann, P. Gentle Rocking Movements during Sleep in the Elderly. J. Sleep Res. 2020, 29. [Google Scholar] [CrossRef] [PubMed]
- Fitze, D.C.; Mast, F.W.; Ertl, M. Human Vestibular Perceptual Thresholds—A Systematic Review of Passive Motion Perception. Gait Posture 2023, 107, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Kobel, M.J.; Wagner, A.R.; Merfeld, D.M.; Mattingly, J.K. Vestibular Thresholds: A Review of Advances and Challenges in Clinical Applications. Front. Neurol. 2021, 12, 643634. [Google Scholar] [CrossRef] [PubMed]
- Klaus, M.P.; Schöne, C.G.; Hartmann, M.; Merfeld, D.M.; Schubert, M.C.; Mast, F.W. Roll Tilt Self-Motion Direction Discrimination Training: First Evidence for Perceptual Learning. Atten. Percept. Psychophys. 2020, 82, 1987–1999. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-J.; Dickman, J.D.; Angelaki, D.E. Detection Thresholds of Macaque Otolith Afferents. J. Neurosci. 2012, 32, 8306–8316. [Google Scholar] [CrossRef]
- Carriot, J.; Jamali, M.; Chacron, M.J.; Cullen, K.E. The Statistics of the Vestibular Input Experienced during Natural Self-Motion Differ between Rodents and Primates: Natural Vestibular Input in Rodents and Monkeys. J. Physiol. 2017, 595, 2751–2766. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Harun, A.; Oh, E.S.; Bigelow, R.T.; Studenski, S.; Agrawal, Y. Vestibular Impairment in Dementia. Otol. Neurotol. 2016, 37, 1137–1142. [Google Scholar] [CrossRef]
Paper | Sleep Type | Sample | Motion Type | Independent Variables | Changes in | |||||
---|---|---|---|---|---|---|---|---|---|---|
N | Linear Intensity in cm/s2 | Angular Intensity in °/s2 | Conditions | Condition Types | Stimulus Axes | SMA | SMI | CP | ||
Woodward et al. (1990) [38] | Night | 8 Men | 21.6 | NA | 2 | Motion | HV | − | NA | NA |
Nap | 7 Men | 21.6 | NA | 2 | Motion | HV | 0 | NA | NA | |
Bayer et al. (2011) [11] | Nap | 10 Men | 25.9 | NA | 2 | Motion | IA | + | + | NA |
Shibagaki et al. (2017) [39] | Nap | 7 Men | 21.3 | NA | 3 4 | Motion or Aroma | HV & NO | + | NA | NA |
Omlin et al. (2018) [12] | Night | 18 Men | 10.1/15 | NA 3 | 3 | Timing of Motion | HV/IA/NO/IA & Yaw/HV & Pitch | + 5 | + 5 | 0 |
Kompotis et al. (2019) [15] 1 | Night 2 | 16 Mice | 4.9, 19.7, 79 & 177.7 | NA | 5 | Frequency | Horizontal translation | + | + | NA |
Night 2 | 9 Mice | 31.6, 79 & 177.7 | NA | 4 | Amplitude | Horizontal translation | 0 | 0 | NA | |
Perrault et al. (2019) [13] | Night | 10 Women 8 Men | 25.9 | NA | 2 | Motion | IA | + | + | + |
van Sluijs et al. (2020a) [14] | Nap | 22 Men | 15, 25 & 35 | NA 3 | 4 | Intensity | IA & Yaw | + | + | 0 |
Van Sluijs et al. (2020b) [40] | Night | 8 Women 11 Men | 15 | 2.15 | 2 | Motion | HV & Pitch/IA & Yaw | 0 | + | 0 |
Stimulus Axes | Paper | Sleep Macro-Architecture | Sleep Micro-Architecture | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SO | N1 | N2 | N3 | REM | W | SE | Delta Power | #SSO | SSO Density | #SS | SS Density | ||
Horizontal translation | Kompotis et al. (2019) [15] 1 | − | NREM 4: + | − 9 | − | NA | − 9 | NA | NA | − 9 | − 9 | ||
Inter-Aural | Bayer et al. (2011) [11] 2 | − | − | + | 0 | NA | − 10 | 0 | + | NA | NA | + | + |
Perrault et al. (2019) [13] 2 | − | 0 5 | 0 5 | + | 0 | 0 | 0 | NA | + 11 | 0 | + 11 | + 11 | |
Omlin et al. (2018) [12] 1,3 | 0 | 0 | + 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + 6 | 0 | |
Inter-Aural × Yaw | Van Sluijs et al. (2020a) [14] 2 | 0 | − | 0 | + 8 | NA | 0 | 0 | + 11 | 0 | + 8 | + | 0 |
Van Sluijs et al. (2020b) [40] 2,3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | − | 0 | 0 | 0 | 0 | |
Omlin et al. (2018) [12] 1,3 | 0 | 0 | + 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + 6 | 0 | |
Head-Vertical | Woodward et al. (1990) [38] 2 | 0 | 0 | 0 | 0 | 0 | 0 10 | 0 | NA | NA | NA | NA | NA |
0 | 0 | − | 0 | 0 | 0 10 | 0 | NA | NA | NA | NA | NA | ||
Omlin et al. (2018) [12] 1,3 | 0 | 0 | + 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + 6 | 0 | |
Head-Vertical × Naso-Occipital | Shibagaki et al. (2017) [39] 1 | 0 | NA | 0 7 | 0 7 | NA | NA | NA | NA | NA | NA | NA | NA |
Head-Vertical × Pitch | Van Sluijs et al. (2020b) [40] 2,3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | − | 0 | 0 | 0 | 0 |
Omlin et al. (2018) [12] 1,3 | 0 | 0 | + 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + 6 | 0 | |
Naso-Occipital | Omlin et al. (2018) [12] 1,3 | 0 | 0 | + 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + 6 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subramaniam, A.; Eberhard-Moscicka, A.K.; Ertl, M.; Mast, F.W. Rocking Devices and the Role of Vestibular Stimulation on Sleep—A Systematic Review. Clin. Transl. Neurosci. 2023, 7, 40. https://doi.org/10.3390/ctn7040040
Subramaniam A, Eberhard-Moscicka AK, Ertl M, Mast FW. Rocking Devices and the Role of Vestibular Stimulation on Sleep—A Systematic Review. Clinical and Translational Neuroscience. 2023; 7(4):40. https://doi.org/10.3390/ctn7040040
Chicago/Turabian StyleSubramaniam, Abimanju, Aleksandra K. Eberhard-Moscicka, Matthias Ertl, and Fred W. Mast. 2023. "Rocking Devices and the Role of Vestibular Stimulation on Sleep—A Systematic Review" Clinical and Translational Neuroscience 7, no. 4: 40. https://doi.org/10.3390/ctn7040040
APA StyleSubramaniam, A., Eberhard-Moscicka, A. K., Ertl, M., & Mast, F. W. (2023). Rocking Devices and the Role of Vestibular Stimulation on Sleep—A Systematic Review. Clinical and Translational Neuroscience, 7(4), 40. https://doi.org/10.3390/ctn7040040