Neuromodulation for the Treatment of Refractory Chronic Renal Pain: Clinical Report and Literature Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Case Report
3.2. Clinical Data and Tables
4. Discussion
4.1. Epidemiology and Risk Factors
4.2. Pathophysiology of LPHS and UPJO
4.3. Diagnosis and Treatment
4.3.1. Neuromodulation as an Alternative Treatment
4.3.2. Mechanisms of Neuromodulation
- Modulation of Neuroinflammation: SCS may regulate systemic and local inflammatory mediators through gene expression and glial cell modulation [22].
- Neurotransmitter Regulation: Multiple studies indicate that SCS alters the release and reuptake of key neurotransmitters, including serotonin, GABA, norepinephrine, and endogenous opioids, thereby contributing to pain relief [22].
- Neuronal Circuit Restoration: Despite incomplete understanding of cortical neurocircuit stimulation, both basic and clinical studies have demonstrated long-term alterations in neuronal firing patterns. West et al. propose that electrical stimulation of the spinal cord increases the resting membrane potential of neurons, thereby restoring effective action potential firing that was previously impaired [25].
- Inhibition of Noxious Stimuli: Studies suggest that neuromodulation and SCS can modulate ascending and descending pain pathways, thereby inhibiting noxious stimuli transmission via electrical stimulation [25].
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, F.; Ahmed, K.; Lee, N.; Challacombe, B.; Khan, M.S.; Dasgupta, P. Management of ureteropelvic junction obstruction in adults. Nat. Rev. Urol. 2014, 11, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Grasso, M.; Caruso, R.P.; Phillips, C.K. UPJ Obstruction in the Adult Population: Are Crossing Vessels Significant? Rev. Urol. 2001, 3, 42–51. [Google Scholar] [PubMed]
- Richter, B.; Bergman, J.; Pierre, J.; Tomycz, N.D. Spinal Cord Stimulation for Loin Pain Hematuria Syndrome: Clinical Report. Pain. Pract. 2019, 19, 440–442. [Google Scholar] [CrossRef]
- Zuidema, X.; Schapendonk, J.W.L.C. Dorsal Root Ganglion Stimulation: A Treatment Option for Chronic Pain Due to Refractory Loin Pain Haematuria Syndrome. Neuromodulation 2017, 20, 841–843. [Google Scholar] [CrossRef]
- Kim, C.H. Spinal Cord Stimulation for the Treatment ofChronic Renal Pain Secondary to Uretero-PelvicJunction Obstruction. Pain. Phys. 2011, 14, 55–59. [Google Scholar] [CrossRef]
- Goroszeniuk, T.; Khan, R.; Kothari, S. Lumbar Sympathetic Chain Neuromodulation with Implanted Electrodes for Long-Term Pain Relief in Loin Pain Haematuria Syndrome. Neuromodulation 2009, 12, 284–291. [Google Scholar] [CrossRef]
- Hashim, H.; Woodhouse, C.R.J. Ureteropelvic Junction Obstruction. Eur. Urol. Suppl. 2012, 11, 25–32. [Google Scholar] [CrossRef]
- Fwu, C.-W.; Barthold, J.S.; Mendley, S.R.; Bennett, K.; Chan, K.; Wilkins, K.J.; Parsa, A.; Norton, J.M.; Eggers, P.W.; Kimmel, P.L.; et al. Epidemiology of Infantile Ureteropelvic Junction Obstruction in the US. Urology 2024, 183, 185–191. [Google Scholar] [CrossRef]
- Little, P.J.; Sloper, J.S.; De Wardener, H.E. A syndrome of loin pain and haematuria associated with disease of paripheral renal arteries. QJM Int. J. Med. 1967, 36, 253–259. [Google Scholar]
- Mahmoud, T.A.; Morsy, E.E.d.S.; Morsy, H.A.E.A.; Abouzeid, A.M.; Elmoghazy, H.M. Predictors of surgical intervention for antenatally detected ureteropelvic junction obstruction (UPJO): A prospective multivariate analysis. Urologia 2023, 91, 220–225. [Google Scholar] [CrossRef]
- Li, Y.; Qu, Y.; He, Y.; Zhang, W.; Song, H. Risk Factors Analysis for Baseline Renal Function Impairment in Patients with Ureteropelvic Junction Obstruction and Intermittent Abdominal Pain. Res. Sq. 2023, preprint. [Google Scholar] [CrossRef]
- Zubair, A.S.; Salameh, H.; Erickson, S.B.; Prieto, M. Loin Pain Hematuria Syndrome. Clin. Kidney J. 2016, 9, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Hebert, L.A.; Betts, J.A.; Sedmak, D.D.; Cosio, F.G.; Bay, W.H.; Carlton, S. Loin pain-hematuria syndrome associated with thin glomerular basement membrane disease and hemorrhage into renal tubules. Kidney Int. 1996, 49, 168–173. [Google Scholar] [CrossRef]
- Leaker, B.R.; Gordge, M.P.; Patel, A.; Neild, G.H. Haemostatic changes in the loin pain and haematuria syndrome: Secondary to renal vasospasm? Q. J. Med. 1990, 76, 969–979. [Google Scholar] [PubMed]
- Spetie, D.N.; Nadasdy, T.; Nadasdy, G.; Agarwal, G.; Mauer, M.; Agarwal, A.K.; Khabiri, H.; Nagaraja, H.N.; Nahman, N.S.; Hartman, J.A.; et al. Proposed pathogenesis of idiopathic loin pain-hematuria syndrome. Am. J. Kidney Dis. 2006, 47, 419–427. [Google Scholar] [CrossRef]
- Praga, M.; Martínez, M.A.; Andrés, A.; Alegre, R.; Vara, J.; Morales, E.; Herrero, J.C.; Novo, O.; Rodicio, J.L. Association of thin basement membrane nephropathy with hypercalciuria, hyperuricosuria and nephrolithiasis. Kidney Int. 1998, 54, 915–920. [Google Scholar] [CrossRef]
- Williams, B.; Tareen, B.; Resnick, M.I. Pathophysiology and treatment of ureteropelvic junction obstruction. Curr. Urol. Rep. 2007, 8, 111–117. [Google Scholar] [CrossRef]
- Isali, I.; McClellan, P.; Wong, T.R.; Gupta, S.; Woo, L. A systematic review of underlying genetic factors associated with ureteropelvic junction obstruction in stenotic human tissue. J. Pediatr. Urol. 2022, 18, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Passoni, N.M.; Peters, C.A. Managing Ureteropelvic Junction Obstruction in the Young Infant. Front. Pediatr. 2020, 8, 242. [Google Scholar] [CrossRef]
- Kostic, D.; Beozzo, G.P.N.S.; Do Couto, S.B.; Kato, A.H.T.; Lima, L.; Palmeira, P.; Krebs, V.L.J.; Bunduki, V.; Francisco, R.P.V.; Zugaib, M.; et al. The role of renal biomarkers to predict the need of surgery in congenital urinary tract obstruction in infants. J. Pediatr. Urol. 2019, 15, 242.e1–242.e9. [Google Scholar] [CrossRef] [PubMed]
- Urits, I.; Li, N.; Berger, A.A.; Walker, P.; Wesp, B.; Zamarripa, A.M.; An, D.; Cornett, E.M.; Abd-Elsayed, A.; Kaye, A.D. Treatment and Management of Loin Pain Hematuria Syndrome. Curr. Pain. Headache Rep. 2021, 25, 6. [Google Scholar] [CrossRef] [PubMed]
- Caylor, J.; Reddy, R.; Yin, S.; Cui, C.; Huang, M.; Huang, C.; Rao, R.; Baker, D.G.; Simmons, A.; Souza, D.; et al. Spinal cord stimulation in chronic pain: Evidence and theory for mechanisms of action. Bioelectron. Med. 2019, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Melzack, R.; Wall, P.D. Pain Mechanisms: A New Theory. Science 1965, 150, 971–979. [Google Scholar] [CrossRef]
- Woodroffe, R.W.; Pearson, A.C.; Pearlman, A.M.; Howard, M.A.; Nauta, H.J.W.; Nagel, S.J.; Hori, Y.S.; Machado, A.G.; Almeida Frizon, L.; Helland, L.; et al. Spinal Cord Stimulation for Visceral Pain: Present Approaches and Future Strategies. Pain. Med. 2020, 21, 2298–2309. [Google Scholar] [CrossRef]
- Wolter, T. Spinal Cord Stimulation Inhibits CorticalSomatosensory Evoked Potentials SignificantlyStronger than Transcutaneous Electrical NerveStimulation. Pain. Phys. 2013, 16, 405–414. [Google Scholar] [CrossRef]
Author/Year | Pathology | Age | Sex | Clinical Presentation | Time-Course | Failed Therapies | SCS Device and Settings | Clinical Outcome |
---|---|---|---|---|---|---|---|---|
Urreola et al., 2024 | UPJO | 36 | M | 5/10 chronic flank pain | 10 years | Long-Acting Opioids | Medtronic Spinal Cord Stimulator | “Significant Pain Relief” “Improved Quality of Life” |
Kim et al., 2011 [5] | UPJO | 38 | F | 8/10 chronic R-sided flank pain 10/10 pain during flare ups | 15 years | Long-Acting Opioids Renal Stents Physical Therapy Celiac Plexus Block | Boston Scientific Octad lead Placement: T7 Vertebral Body Amplitude: 7.0 mA Pulse Width: 160 ms Frequency: 60 Hz | 85% relief in pain Discontinuation of pain medications Improved sleep Improvement of mood |
Zuidema et al., 2017 [4] | LPHS | 37 | F | 9/10 R-sided flank pain | 2 Years | Go | Spinal Modulation Inc(Abbott, Sylmar California, USA). Quadripolar Stimulation Lead & Modulation Axium, Implantable Pulse Generator Placement: DRG T12 & L1 on Right side Amplitude: 0.2, 0.35 mA Pulse Width: 180, 180 ms Frequency: 20, 20 Hz Impedance: <600, <700 | 4 weeks-100% pain relief 36 weeks-over 50% pain reduction 3/10 pain Discontinuation of pain medications |
Goroszeniuk et al., 2009 [6] | LPHS | 35 | M | 10/10 pain radiating from loin to groin | NA | Ureteric Stent Lithotripsy Long-Acting Opioids | Two Medtronic 33 cm Pisces Quad Electrodes at L3 & Medtronic IPG-Synergy SCS System Current: 2–3.5 amps Pulse Width: 450 ms Frequency: 5 Hz | 3 months pain-free 1 year pain-free 0/10 pain |
Goroszeniuk et al., 2009 [6] | LPHS | 44 | F | 8–10/10 Bilateral loin pain Microscopic hematuria | 8 Years | Physiotherapy Facet Join Injections Lumbar Epidural Long-Acting Opioids | Two Medtronic 33 cm Pisces Quad Electrodes & Medtronic IPG-Synergy SCS System Placement: L4/L5 lumbar sympathetic chain Current: 2–3 amps Pulse Width: 450 ms Frequency: 5 Hz | 1 year complete pain relief 0/10 pain |
Goroszeniuk et al., 2009 [6] | LPHS | 43 | M | 10/10 bilateral groin and loin pain Sleep disturbances | 20 years | Left Pyloroplasty Bilateral Nephrostomies Ureteric Stents Transcutaneous Electrical Nerve Stimulation Long-Acting Opioids Local Anesthetic Patches | Stimulong Monoelectrode catheter Placement: L3-Left Lumbar Sympathetic Plexus Frequency: 2 Hz Timing: 5 min, 3–4 times daily | 7 months complete pain relief 0/10 pain Discontinuation of pain medications |
Goroszeniuk et al., 2009 [6] | LPHS | 44 | F | 2–8/10 left loin pain Hematuria | 5.5 years | Long-acting opioids | Pajunk, Stimulong monoelectrode catheter | Complete pain relief 0/10 pain |
Richter et al., 2018 [3] | LPHS | 24 | F | 10/10 flank pain Hematuria Severe pain attacks | 6 Years | Long-Acting Opioids Radiofrequency Ablation of renal nerves | Abbott PENTA 5-column paddle lead T10-R lateral dorsal epidural space | Improved quality of life 25–50% pain reduction Discontinuation of pain medications |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Swiss Federation of Clinical Neuro-Societies. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urreola, G.; Ortuno, O.; Castillo, J. Neuromodulation for the Treatment of Refractory Chronic Renal Pain: Clinical Report and Literature Review. Clin. Transl. Neurosci. 2025, 9, 14. https://doi.org/10.3390/ctn9010014
Urreola G, Ortuno O, Castillo J. Neuromodulation for the Treatment of Refractory Chronic Renal Pain: Clinical Report and Literature Review. Clinical and Translational Neuroscience. 2025; 9(1):14. https://doi.org/10.3390/ctn9010014
Chicago/Turabian StyleUrreola, Gabriel, Omar Ortuno, and Jose Castillo. 2025. "Neuromodulation for the Treatment of Refractory Chronic Renal Pain: Clinical Report and Literature Review" Clinical and Translational Neuroscience 9, no. 1: 14. https://doi.org/10.3390/ctn9010014
APA StyleUrreola, G., Ortuno, O., & Castillo, J. (2025). Neuromodulation for the Treatment of Refractory Chronic Renal Pain: Clinical Report and Literature Review. Clinical and Translational Neuroscience, 9(1), 14. https://doi.org/10.3390/ctn9010014